Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Содержание
5.1 Видео и анимация
5.2 Звук
5.3 Текст
6. Аппаратные средства мультимедиа.
6.1 Звуковые карты
6.2 Видеокарты
7. Лазерные диски, CD-ROM
Мультимедиа это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать такие типы данных, как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук, речь.
Проводя краткий исторический экскурс, стоит отметить, что ещё более 30 лет назад мультимедиа ограничивалась пишущей машинкой «Консул», которая не только печатала, но и могла привлечь внимание заснувшего оператора мелодичным треском. Несколько позднее компьютеры уменьшились до бытовой аппаратуры, что позволило собрать их в гаражах и комнатах. Новым веянием в развитии мультимедиа явился компьютерный гороскоп 1980 года, который при помощи динамика и программируемого таймера синтезировал расплывчатые устные прогнозы на каждый день, а, кроме того, ещё перемещал по экрану звёзды. Появление самого термина мультимедиа также произошло в то время. Причём, скорее всего, он служил ширмой, отгораживающей лаборатории от взглядов непосвящённых.
По мере накопления критической массы технологий, появляются бластеры, CD - ROM и другие плоды эволюции. Появляется Интернет, микроэлектроника. Становится очевидным, что человечество переживает стадию информационной революции: общественная потребность в средствах передачи и отображения информации вызывает к жизни новую технологию. За неимением более корректного термина используется определение мультимедиа. В наши дни это понятие может полностью заменить компьютер практически в любом контексте.
Появление систем мультимедиа подготовлено как с требованиями практики, так и с развитием теории. Тем не менее, резкий рывок, произошедший в этом направлении за последние несколько лет, обеспечен, прежде всего, развитием технических и системных средств. Прежде всего, это прогресс в развитии ПЭВМ: резко возросшие объём памяти, и достижения в области видеотехники, лазерных дисков аналоговых и CD ROM, а также их массовое внедрение. Важную роль сыграла также разработка методов быстрого и эффективного сжатия (развёртки данных).
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т. д.
Современный, полностью оснащённый мультимедиа, персональный компьютер напоминает домашний стереофонический Hi - Fi комплекс, объединённый с дисплеем телевизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт дисков CD ROM. Кроме того, данный агрегат содержит новое для ПК устройство аудиоадаптер. Он позволяет перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями. На сегодняшний день мультимедиа технологии являются одним из наиболее перспективных и популярных направлений информатики. Среди их целей создание продукта, содержащего, по определению Европейской Комиссии, занимающейся проблемами внедрения и использования новых технологий, «коллекции изображений, текстов и данных, сопровождающихся звуком, видео, анимацией и другими визуальными эффектами (Simulation), включающего интерактивный интерфейс и другие механизмы управления». Это определение, сформулированное в 1988 году, тем не менее, до сих пор чётко отражает цели мультимедийных технологий. Идейной предпосылкой возникновения технологии мультимедиа принято считать концепцию организации памяти «MEMEX», предложенную американским учёным Ваннивером Бушем ещё в 1945 году. Данная концепция была основана на возможности поиска информации в соответствии с её смысловым содержанием. Сначала эта идея нашла своё выражение и компьютерную реализацию в виде системы гипертекста система работы с комбинациями текстовых материалов. Позднее появилась гипермедиа система, работающая с комбинацией графики, звука, видео и анимации. Завершающим этапом явилась мультимедиа, соединившая в себе обе эти системы. Тем не менее всплеск интереса в конце 80 х годов к применению мультимедиа технологии в гуманитарной области, в частности в историко-культурной, связан с именем выдающегося американского компьютерщика бизнесмена Билла Гейтса. Именно он является автором идеи создания и успешной реализации на практике мультимедийного коммерческого продукта на основе служебной музейной инвентарной базы данных с использованием в нём всех возможных «сред»: изображений, звука, анимации, гипертекстовой системы. Этот продукт носит название «NationalArtGaleri. London» и именно он аккумулировал в себе три основные принципа мультимедиа:
• Художественный дизайн интерфейса и средств навигации;
• Представление информации с помощью комбинации множества воспринимаемых человеком сред. Это тем более логично, если исходить из самого термина multimedia от англ. multi много, media среда;
• Наличие нескольких сюжетных линий в содержании продукта, в том числе и выстраиваемых самим пользователем на основе «свободного поиска» в рамках предложенной в содержании продукта информации.
Также активно используются в представлении информации и являются несомненным достоинством и особенностью технологии следующие возможности мультимедиа:
• Возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим «лупа») при сохранении качества изображения. Данная возможность особенно ценна в процессе презентаций произведений искусства и уникальных исторических документов;
• Возможность хранения большого объёма разнообразной информации на одном носителе (до 20 томов авторского текста, около 2000 и более высококачественных изображений, 30 45 минут видеозаписи, до 7 часов звука);
• Возможность сравнения и обработки изображения разнообразными программными средствами с научно исследовательскими или познавательными целями;
• Возможность использования технологии гипертекста и гипермедиа выделение в сопровождающем изображении, текстовом или другом визуальном материале «горячих слов (областей)», по которым осуществляется немедленное получение справочной или любой другой пояснительной (в том числе визуальной) информации;
• Возможность осуществления непрерывного аудиосопровождения (музыкального или любого другого), соответствующего статичному или динамичному визуальному ряду;
• Возможность использования видеофрагментов из фильмов, видеозаписей и т. д., функции «стоп кадра», покадрового «пролистывания» видеозаписи;
• Возможность включения в содержание диска баз данных, методик обработки образов, анимации. К примеру, сопровождение рассказа о композиции картины графической, анимационной демонстрацией геометрических построений её композиции и т. д.;
• Возможность подключения к глобальной сети Internet;
• Возможность работы с различными приложениями: текстовыми, графическими и звуковыми редакторами, картографической информацией;
• Возможность создания собственных выборок из представляемой в продукте информации. Для этого предусмотрены специальные режимы режим «карман» или «мои пометки»;
• Возможность создания «закладок» - так называемого «запоминания пройденного пути» на заинтересовавшей экранной «странице»;
• Возможность автоматического просмотра всего содержания продукта «слайд шоу»;
• Возможность создания анимированного и озвученного «путеводителя гида» по продукту («говорящей и показывающей инструкции пользователя»);
• Включение в состав продукта игровых компонентов с информационными составляющими;
• Возможности «свободной» навигации по информации и выхода в основное меню (укрупнённое содержание), на полное оглавление или вовсе из программы в любой точке продукта.
Как правило, мультимедийные продукты ориентированы либо на компьютерные носители и средства воспроизведения (CD ROM), либо на специальные телевизионные приставки (CD-i), либо на телекоммуникационные сети и их системы.
В качестве носителей используются средства, способные хранить огромное количество самой разнообразной информации.
• CD ROM (CD ReadOnliMemori) оптический диск, предназначенный для компьютерных систем. Основные его достоинства многофункциональность, свойственная компьютеру, среди недостатков можно отметить отсутствие возможности пополнения информации её «дозаписи» на диск, не всегда удовлетворительное воспроизведение видео и аудио информации.
• CD i (CD Interactive) специальный формат компакт дисков, разработанный фирмой Philips для TV приставок. Среди его достоинств высокое качество воспроизведения динамичной видеоинформации и звука. Основные недостатки отсутствие многофункциональности, неудовлетворительное качество воспроизведения статичной визуальной информации, связанное с качеством TV мониторов.
• Video CD (TV формат компакт дисков) замена видеокассет с гораздо более высоким качеством изображения. Среди недостатков отсутствие многофункциональности и интерактивности (на которые он при создании и не был рассчитан).
• DVD i (DigitalVideoDiskInteractive) представляющий «интерактивное TV» или кино. В общем то DVD представляет собой не что иное, как компакт диск (CD), только более скоростной и много большей ёмкости. Кроме того, применён новый формат секторов, более надёжный код коррекции ошибок, улучшена модуляция каналов. Основным недостатком DVD видео как формата является наличие сложной схемы защиты от копирования и региональной блокировки (диск, купленный в одной части мира, может не воспроизводится на устройстве DVD, приобретённом в другой части мира.
Другая проблема не все существующие сегодня на рынке приводы DVD ROM читают диски с фильмами, записанными для бытовых проигрывателей.
4. Цели применения продуктов
Основными целями применения продуктов, созданных в мультимедиа технологиях (CD ROM с записанной на них информацией), являются: популяризаторская и развлекательная (CD используются в качестведомашних библиотек по искусству или литературе);
Научно просветительская или образовательная (используются в качестве методических пособий);
Научно исследовательская в музеях и архивах и т. д. (используются в качестве одного из наиболее совершенных носителей и «хранилищ» информации).
Популяризаторская цель. Пожалуй, широчайшее использование мультимедиа продуктов с этой целью не подвергается сомнению, тем более, что популяризаторство стало ныне некоторым эквивалентом рекламы. К сожалению, многие разработчики подчас не понимают, что простое использование широко известного носителя (CD ROMa) и программного обеспечения ещё не обеспечивают действительно мультимедийный характер продукта. Тем не менее, приходится признавать, что «разноцветье» представленных работ является отражением существующего общественного сознания и гуманитарных областях.
5. Типы данных мультимедиа информации и средства их обработки
Стандарт MPC (точнее средства пакета программ MultimediaWindows операционной среды для создания и воспроизведения мультимедиа информации) обеспечивают работу с различными типами данных мультимедиа. Мультимедиа информация содержит не только традиционные статистические элементы: текст, графику, но и динамические: видео, аудио и анимационные последовательности, а также еще есть неподвижные изображения. Сюда входят векторная графика и растровые картинки; последние включают изображения, полученные путём оцифровки с помощью различных плат захвата, грабберов, сканеров, а также созданные на компьютере или закупленные в виде готовых банков изображений.
Оптимизация (сжатие) представление графической информации более эффективным способом, другими словами «выжимание воды» из данных. Требуется использовать преимущество трёх обобщённых свойств графических данных: избыточности, предсказуемости и необязательности.
Сетевая графика представлена преимущественно двумя форматами файлов GIF (GraphicsInterchangeFormat) и JPG (JointPhotographiсsExpertsGroup). Оба эти формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество размер файла, влияющего на восприятие, добиваться уменьшения объёма графического файла, иногда в значительной степени. Степень сжатия графической информации в GIF не только от уровня её повторяемости и предсказуемости, но и от направления, т. к. сканирование рисунка производится построчно. JPG формата как такового не существует. В большинстве случаев это файлы форматов JFIF и JPEG TIFF сжатые по JPEG технологиям общепринятой терминологии. Алгоритм сжатия JPEG с потерями не очень хорошо обрабатывает изображения с небольшим количеством цветов и резкими границами их перехода. Например, нарисованную в обыкновенном графическом редакторе картинку или текст. Для таких изображений более эффективным может оказаться их представление в GIF формате. В то же время он незаменим при подготовке к web публикации фотографий. Этот метод может восстанавливать полноцветное изображение практически неотличимое от подлинника, используя, при этом около одного бита на пиксель для его хранения. Алгоритм сжатия JPEG достаточно сложен, поэтому работает медленнее большинства других. Кроме того, к этому типу сжатия относится несколько близких по своим свойствам JPEG технологий. Основным параметром, присутствующим у всех них является качество изображения (Q параметр) измеряемое в процентах. Размер выходного JPG файла находится в прямой зависимости от этого параметра, т. е. при уменьшении «Q», уменьшается размер файла.
5.1 Видео и анимация
Сейчас, когда сфера применения персональных компьютеров всё расширяется, возникает идея создать домашнюю видеостудию на базе компьютера. Однако, при работе с цифровым видеосигналом возникает необходимость обработки и хранения очень больших объёмов информации, например, одна минута цифрового видеосигнала с разрешением SIF (сопоставим с VHS) и цветопередачей truecolor (миллионы цветов) займёт (228*358) пикселов * 24 бита * 25 кадров/с * = 442 Мб, то есть на носителях, используемых в современных ПК, таких, как компакт диск (CD ROM, около 650 Мб) или жёсткий диск (несколько гигабайт) сохранить полноценное по времени видео, записанное, в таком формате не удастся. С помощью MPEG сжатия объём видеоинформации можно заметно без заметной деградации изображения.
MPEG 1 предназначен для записи синхронизованных видеоизображений (обычно в формате SIF, 228*358) и звукового сопровождения на CD ROM с учётом максимальной скорости считывания около 1,5 Мбит/с.
MPEG 2 предназначен для обработки видеоизображения соизмеримого по качеству с телевизионным, при пропускной способности системы передачи данных в пределах от 3 до 15 Мбит/с, профессионалы используют и большие потоки, в аппаратуре используются потоки до 50 Мбит/с. На технологии, основанные на MPEG 2, переходят многие телеканалы, сигнал сжатый в соответствии с этим стандартом транслируется через телевизионные спутники, используется для архивации больших объёмов видеоматериала.
MPEG 3 предназначен для использования в системах телевидения высокой чёткости (high defenitiontelevision, HDTV)со скоростью потока данных 20 40 Мбит/с, но позже стал частью стандарта MPEG 2 и отдельно теперь не упоминается.
MPEG 4 задаёт принципы работы с цифровым представлением медиа данных для трёх областей: интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Сеть), графических приложений и цифрового телевидения.
5.2 Звук
Возможна цифровая запись, редактирование, работа с волновыми формами звуковых данных (WAVE), а также фоновое воспроизведение цифровой музыки. Предусмотрена работа через порты MIDI. В последнее время особую популярность получил формат МР3. В его основу положены особенности человеческого слухового восприятия, отражённые в «псевдоаккустической» модели. Разработчики MPEG исходили из постулата, что далеко не вся информация, которая содержится в звуковом сигнале, является полезной и необходимой большинство слушателей её не воспринимают. Поэтому определённая часть данных может быть сочтена избыточной. Эта «лишняя» информация удаляется без особого вреда для субъективного восприятия. Приемлемая степень «очистки2 определяется путём многократных экспертных прослушиваний. При этом стандарт позволяет в заданных пределах менять параметры кодирования получать меньшую степень сжатия при лучшем качестве или, наоборот, идти на потери в восприятии ради более высокого коэффициента компрессии. Звуковой wav файл, преобразованный в формат MPEG 1 Layer III со скоростью потока в 128 Кбайт/сек, занимает в 10 12 раз меньше места на винчестере. На 100 мегабайтной ZIP дискете уменьшается около полутора часов звучания, на компакт диске порядка 10 часов. При кодировании со скоростью 256 Кбайт/сек на компакт диске можно записывать около 6 часов музыки при разнице в качестве по сравнению с CD, доступной лишь тренированному экспертному уху.
5.3 Текст
В руководстве Microsoft удалено особое внимание средствами ввода и обработки больших массивов текста. Рекомендуются различные методы и программы преобразования текстовых документов между различными форматами хранения, с учётом структуры документов, управляющих кодов текстовых процессоров или наборных машин, ссылок, оглавлений, гиперсвязей и т. п. , присущих исходному документу. Возможна работа и со сканированными текстами, предусмотрено использование средств оптического распознания символов.
Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналого-цифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее.Все оборудования, отвечающие за звук объединяются в так называемые звуковые карты, а за видео в видео карты.
6.1 Звуковые карты
Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции:
1. Для воспроизведения звука вместо частотной модуляции (FM) теперь всё больше используют табличный (wavetable) или WTсинтез, сигнал полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальные, то есть восстановить их полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты. Фирмы производители звуковых карт добавляют WTсинтез двумя способами: встраивают на звуковую карту в виде микросхем, либо реализуют в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.
2. Совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначены для игр и развлечений, поддерживают совместимость с Adlib и SoundBlaster. Все звуковые карты, ориентированные на бизнес приложения, совместимы обычно с MS WindowsSoundSistem фирмы Microsoft.
3. Совместные звуковые карты оснащены таким компонентом, как сигнальный процессор DSP (DigitalSignalProcessor). Распознание речи, трёхмерное звучание, WTсинтез, сжатие и декомпрессия аудиосигналов всё это входит в сферу действия данного устройства. Тем не менее, не столь велико количество звуковых карт, оснащённых DSP. Причиной этому является то, что такое достаточно мощное устройство может быть использовано только при решении строго определённых задач. На сегодняшний день один из самых известных производителей мощных DSP является фирма TexasInstruments. Стоит отметить, что в силу своей дороговизны DSP устройство устанавливается исключительно на профессиональных музыкальных картах.
4. Основной проблемой встроенных устройств обработки звука является ограниченность системных ресурсов IBM PC совместимых компьютеров. Потенциально корень проблемы кроется в возможности конфликтов по каналам прямого доступа к памяти (DMA). Примером плат со встроенным звуком можно представить системную плату OPTi 495 SLC, в которой используется 16 разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES.
5. Фирмы производители, стремясь к более естественному воспроизведению звука, используют технологии объёмного или трёхмерного звучания. Объёмность звучания в наши дни представляет собой самое модное направление в области воспроизведения звука. Последнее придаёт большую глубину ограниченного поля воспроизведения, которое присуще небольшим, находящимся на близком расстоянии колонкам.
6. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM. В основном используются приводы трёх фирм SONY, PANASONIC и Mitsumi. Также появились карты и приводы, которые поддерживают стандартный интерфейс ATA (IDE). Последний используется для компьютеров с винчестером.
7. Использование на картах режима Dual DMA, что означает двойной, прямой доступ к памяти. Реализовать одновременно запись и воспроизведение можно с помощью двух каналов DMA.
8. Происходит устойчивое внедрение звуковых технологий в телекоммуникации. В 90% случаев звуковые карты приобретаются для игр. В оставшемся для речевого сопровождения программ мультимедиа. В этом случае потребительские качества зависят от цифро-аналогового преобразователя и от усилителя звуковой частоты. Не менее важным представляется совместимость со стандартом SoundBlaster. Далеко не все программы способны обеспечить поддержку менее распространённых стандартов.
Наборы звуковых карт, как правило, состоят из драйвера, утилиты, программы записи и воспроизведения звука, а также средства для подготовки и произведения презентаций, энциклопедий, игр.
6.2 Видеокарты
На IBM PC совместимых компьютерах, для работы с видеосигналами, используется огромное количество устройств. Эти устройства можно классифицировать следующим образом: MPEG плееры устройства для ввода и захвата видеопоследовательностей (Cuptureplay), фреймграбберы (Framegrabbfer),TV тюнеры, преобразователи сигналовVGA TV.
MPEG плееры. В функции данных устройств входит воспроизведение фильмов, записанных на компакт дисках.
Еще есть такая прогрмма, как TV тюнеры. По своему внешнему виду эти устройства напоминают карту или бокс (небольшую коробочку). Они выполняют задачу преобразования аналогового видеосигнала, который поступает по сети кабельного телевидения или от антенны, видеомагнитофона или камкодера (camcoder). TV тюнеры могут входить в состав таких устройств, как MPEG плееры или фреймграбберы.
Некоторые из них содержат встроенные микросхемы для преобразователя звука. Ряд тюнеров выполняют функцию вывода телетекста.
Преобразователи VGA-TV. Основной задачей преобразователей является трансляция сигнала в цифровом образе VGA изображения в аналоговый сигнал, пригодный для ввода на телевизионный приёмник. Как правило, производителям предлагаются подобные устройства, выполненные в одном из двух вариантов: либо как внутренние ISA карта либо как внешний блок.
Примером использования преобразователей может служить наложение видеосигналов при создании титров. В этом случае осуществляется полная синхронизация преобразованного компьютерного сигнала. При наложении формируется специальный ключевой (key) сигнал трёх видов: lumakey, chromakey, alphachenol.
1. При формировании сигнала lumakey наложение производится там, где яркость Y превышает заданного уровня.
2. В случае с chromakey накладывание изображения прозрачно только там, где его цвет совпадает с заданным.
3. Альфа канал (alphachenol) используют в профессиональном оборудовании, которое основано на формировании специального сигнала с простым распределением, определяющим степень смещения видеоизображения в различных точках.
7. Лазерные диски, CD-ROM
Огромную популярность в последнее время приобрели устройства для чтения компакт дисков CD-ROM. Многие специалисты связывают этот факт с ростом объёмов и сложности программного обеспечения и широким внедрением мультимедиа приложений, сочетающих движущиеся изображения, текст, звук. CD приводы и сами диски доступны по цене, достаточно надёжны и могут хранить весьма большие объёмы информации (до 800 Мбайт). Вследствие этого они очень удобны для поставки программ и данных большого объёма (каталогов, энциклопедий, а также обучающих, демонстрационных и игровых программ). На сегодняшний день многие программы полностью или частично поставляются на CD дисках.
Компакт диски прочно вошли на рынок компьютерных устройств, несмотря на то, что изначально они были разработаны для любителей высококачественного звучания. В 1982 году оптические компакт диски пришли на смену виниловым. Было принято решение рассчитать стандарт на 74 минуты звучания «RED BOOK», что в пересчёте на байты составляет 640 Мбайт. Говоря о скорости воспроизведения, стоит отметить, что первые приводы имели единичную скорость (Singlespeed) равную 150 Кбайт/с. В 1992 году появились модели накопителей с удвоенной скоростью. Приводы со скоростью, увеличенной в три четыре раза были выброшены на рынок в начале 1994 года. Сегодня речь идёт о скорости в шесть и даже восемь раз превышающей первоначальную. Коэффициент увеличения скорости не обязательно целочисленный.
Говоря о принципах действия CD дисков, стоит начать с того, что информация на компьютерных компакт дисках кодируется посредством чередования отражающих и не отражающих свет участков на подложке диска. Подобный принцип применяется и в компакт дисках, применяемых в бытовых CD плеерах. Эта подложка выполняется из алюминия, а неотражающие свет участки делаются с помощью продавливания углублений в подложке специальной пресс - формой при промышленном производстве компакт дисков. Существуют также и единичные изделия, когда подложка выполняется из золота, а нанесение информации на неё осуществляется лучом лазера. И в том, и в другом случае информация, занесённая на компакт диск, защищена от повреждений благодаря прозрачному покрытию, которое находится сверху от подложки.
Несмотря на то, что по внешним признакам и свойствам компьютерные и бытовые CD диски мало чем отличаются друг от друга, является очевидной разница в ценах на данные носители. Это объясняется гораздо более высокой степенью надёжности, с которой должно выполнятся чтение программ и компьютерных данных по сравнению с обычным воспроизведением музыки. При чтении используемых в компьютере компакт дисков необходимо использование луча лазера небольшой мощности. Применение этой технологии позволяет записывать на компакт диски очень большой объём информации (650 800 Мбайт) и обеспечивает высокую надёжность информации. Тем не менее, скорость чтения данных гораздо выше с жёстких дисков, чем с компакт дисков. Частично это объясняется тем, что компакт диски вращаются не с постоянной угловой скоростью, а так, чтобы обеспечить неизменную линейную скорость отхождения информации под читающей головкой. Стандартная скорость чтения данных с компакт дисков всего 150 200 Кбайт/с, а время доступа 0,4 с. Впрочем, как было замечено ранее, в последнее время выпускаются в основном устройства с двойной, тройной и даже четверной скоростью вращения. Соответственно они обладают и более высокими скоростными показателями: время доступа 0,2 0,3 с , скорость считывания 500 Кбайт/с. Тем не менее устройства с тройной скоростью в реальных задачах способны ускорять работу с компакт диском не в полтора и не в два раза по сравнению с устройством с двойной скоростью, а только на 30 60%.
Заключение
Итак, в этом реферате мы прочитали что резкий рывок в мультимедийных технологий произошел за последние несколько лет, обеспечен, прежде всего, развитием технических и системных средств. Прежде всего, это прогресс в развитии ПЭВМ: резко возросшие объём памяти, и достижения в области видеотехники, лазерных дисков аналоговых и CD ROM, а также их массовое внедрение. Важную роль сыграла также разработка методов быстрого и эффективного сжатия (развёртки данных).
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности.
Список используемой литературы
1. Экономическая информатика. Учебник под редакцией В. П. Косарева и Л. В. Ерёмина М: Финансы и статистика
2. Автоматизированные информационные технологии в экономике. Учебник под редакцией профессора Г. А. Титоренко М: Юнити
3. Концепции современного естествознания. 2 е издание. М: Издательский центр «Академия»
4. Информационные технологии в экономике и управлении. А. А. Козырев, учебник 2 е издание: СПб изд. Михайлова В. А.