Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
ПРОИЗВОДСТВЕННЫЙ ШУМ
Шум (звук) упругие колебания в частотном диапазоне слышимости человека, распространяющиеся в виде волны в газообразных средах [5].
Звук представляет собой волновое движение упругой среды (например, воздуха, воды и др.), которое воспринимается слуховым аппаратом человека. Основные характеристики звука в соответствии с ГОСТ 12.1.00383 ССБТ «Шум. Общие требования безопасности» и СанПиН 2.2.4/2.1.8.10322002 «Шум на рабочих местах, в помещениях жилых и общественных зданий и на территориях жилой застройки» (с изм. и доп., внесенными постановлением Минздрава от 12.12.2005 г. №220).
Колебательная скорость v, м/с скорость колебания частиц воздуха относительно положения равновесия.
Скорость распространения звука (скорость звука) с, м/с скорость распространения звуковой волны. При нормальных атмосферных условиях (температура 20 °С, давление 105 Па) скорость распространения звука в воздухе равна 344 м/с.
Звуковое давление р, Па разность между мгновенным значением полного давления и средним давлением, которое наблюдается в невозмущенной среде:
Р = vpc,
где р плотность среды, кг/м3, рс удельное акустическое сопротивление, равное 410 Па • с/м для воздуха, 1,5 • 106 Па • с/м для воды, 4,8 • 107 Па ■ с/м для стали.
При распространении звука со скоростью звуковой волны происходит перенос энергии, которая характеризуется интенсивностью звука.
Интенсивность звука I, Вт/м2 : энергия, переносимая звуковой волной в единицу времени, отнесенная к площади поверхности, через которую она распространяется:
/=р2/(рс).
Звуковое давление и интенсивность звука принято характеризовать их логарифмическими значениями уровнями звукового давления и интенсивности звука.
Уровень звукового давления, дБ,
Lp =101^2/^2) = 201g(p/p0),
где pQ пороговое звуковое давление, равное 2 • 1(Н Па.
Уровень интенсивности звука, дБ,
L{ = 10 lg(7 /10),
где 10 пороговая интенсивность звука, равная Ю-12 Вт/м2.
Пороги слышимости минимальные значения звукового давления и интенсивности звука, которые слышит человек при частоте в 1000 Гц.
Диапазон звуковых частот разбит на октавные полосы (полоса частот, у которой отношение верхней граничной частоты f2 к нижней
Д равно 2, называется октавой). Каждая октава характеризуется среднегеометрической частотой fcr = ^fj^, .
Граничные и среднегеометрические частоты октавных полос приведены в табл. 8.3.
Если f2 /Д = ^2 = 1,26, то ширина полосы равна 1/3 октавы. Для
гигиенических целей шумы исследуют обычно в октавных, а для технических в 1/3-октавных полосах частот.
Частоты и диапазоны октавных полос
Среднегеометрические значения октавных полос, Гц |
Граничные частоты и диапазоны октавных полос, Гц |
Среднегеометрические значения октавных полос, Гц |
Граничные частоты и диапазоны октавных полос, Гц |
63 |
45...90 |
1000 |
710...1400 |
125 |
90...180 |
2000 |
1400...2800 |
250 |
180...355 |
4000 |
2800...5600 |
500 |
355...710 |
8000 |
5600...11200 |
Производственный шум совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работников неприятные ощущения.
Шум классифицируется по частоте, временным и спектральным характеристикам (рис. 8.1).
Классификация производственного шума
Рис. 8.1. Классификация производственного шума
Постоянный шум шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени не более чем на 5 дБ А при измерениях на стандартизованной временной характеристике измерительного прибора «медленно».
Непостоянный шум шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени более чем на 5 дБА при измерениях на стандартизованной временной характеристике измерительного прибора «медленно». Непостоянный шум разделяют на колеблющийся, прерывистый и импульсный.
Колеблющийся шум шум, уровень звука которого непрерывно изменяется во времени.
Прерывистый шум шум, уровень звука которого изменяется во времени ступенчато (на 5 дБ А и более), при этом уровни звука, измеренные на стандартизованных временных характеристиках «импульс» и «медленно», отличаются менее чем на 7 дБА.
Импульсный шум шум, состоящий из одного или нескольких звуковых сигналов, для которых уровни звука, измеренные на стандартизованных временных характеристиках «импульс» и «медленно», отличаются на 7 дБА и более.
Широкополосный шум обладает непрерывным спектром более одной октавы, тональный (дискретный) содержит в спектре выраженные дискретные тона (частоты, уровень звука на которых значительно выше уровня звука на других частотах). Шум реактивного самолета широкополосный шум, шум дисковой пилы тональный (в спектре шума имеется ярко выраженная частота с доминирующим уровнем звука).
Механические шумы возникают по причинам наличия в механизмах инерционных возмущающих сил, соударения деталей, трения и др.
Аэродинамические шумы возникают в результате движения газа, обтекания газовыми (воздушными) потоками различных тел. Аэродинамический шум возникает при работе вентиляторов, воздуходувок, компрессоров, газовых турбин, выпусков пара и газа в атмосферу и т.д.
Гидравлические шумы возникают вследствие стационарных и нестационарных процессов в жидкостях.
Электромагнитные шумы возникают в электрических машинах и оборудовании, использующих электромагнитную энергию.
Шум звукового диапазона на производстве приводит к снижению внимания и увеличению ошибок при выполнении работы. В результате снижается производительность труда и ухудшается качество выполняемой работы. Шум замедляет реакцию человека на поступающие от технических объектов и внутрицехового транспорта сигналы, что способствует возникновению несчастных случаев на производстве.
Характеристика слухового восприятия человека с нормальным слухом представлена на рис. 8.2. Предельные значения уровней зву
кового давления изображены двумя кривыми. Нижняя кривая соответствует порогу слышимости. Как видно, при определенных частотах человек слышит отрицательные уровни звука. Это объясняется тем, что логарифмическая шкала уровней звукового давления построена таким образом, что за пороговое значение уровня звукового давления pQ принят порог слышимости на частоте 1000 Гц (Lp = 0 дБ). Однако порог слышимости человека
на частотах 2000...4000 Гц меньше. Верхняя кривая соответствует порогу болевого ощущения (Lp =120...130 дБ).
Звуки, превышающие по своему уровню порог болевого ощущения, могут вызвать боли и повреждения в слуховом аппарате (перфорация или даже разрыв барабанной перепонки). Область на частотной шкале, лежащая между двумя кривыми, называется областью слухового восприятия.
Шум с уровнем звукового давления до 30...45 дБ привычен для человека и не беспокоит его. Повышение уровня звука до 40...70 дБ создает дополнительную нагрузку на нервную систему, вызывает ухудшение самочувствия и при длительном воздействии может стать причиной неврозов.
Длительное воздействие шума с уровнем свыше 80 дБ может привести к ухудшению слуха профессиональной тугоухости. При действии шума свыше 130 дБ возможен разрыв барабанных перепонок, контузия, а при уровнях звука свыше 160 дБ вероятен смертельный исход.
Помимо снижения слуха рабочие, подвергающиеся постоянному воздействию шума, жалуются на головные боли, головокружение, боли в области сердца, желудка, желчного пузыря, повышенное артериальное давление. Шум снижает иммунитет человека и устойчивость человека к внешним воздействиям. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.
Степень воздействия шума на слуховой аппарат человека зависит не только от интенсивности и звукового давления, но также и от частоты, и характера изменения звука во времени.
Предельно допустимый уровень шума уровень, который при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю в течение всего рабочего стажа не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.
Субъективные ощущения человека от воздействия шума зависят не только от уровня звукового давления, но и от частоты. Звуки низкой частоты воспринимаются как менее громкие по сравнению со звуками более высокой частоты такой же интенсивности.
Уровень громкости (единица измерения фон) разность уровней громкости двух звуков данной частоты, для которых равные по громкости звуки с частотой 1000 Гц отличаются по интенсивности (или уровню звукового давления) на 1 дБ.
При частотах ниже 1000 Гц уровни громкости оказываются ниже уровней звукового давления, и, наоборот, при больших частотах
уровни громкости оказываются выше уровней звукового давления. Следовательно, понятие «уровень громкости» чисто физиологическая характеристика звука.
Измерения уровней шума в производственных условиях производят приборами шумомерами.
Частотным спектром постоянного шума называется зависимость среднеквадратичных значений звукового давления от частоты.
8.4.1. Нормирование уровня шума на рабочих местах
При нормировании допустимого звукового давления на рабочих местах частотный спектр шума разбивают на девять частотных полос.
Нормируемыми параметрами постоянного шума являются:
уровень звукового давления L, дБ, в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц;
уровень звука Ьд, дБ А.
Нормируемыми параметрами непостоянного шума являются:
эквивалентный (по энергии) уровень звука Ьд экв, дБ А,
максимальный уровень звука Ьд макс, дБ А.
Превышение хотя бы одного из указанных показателей квалифицируется как несоответствие настоящим санитарным нормам.
В соответствии с СанПиН 2.2.4/2.1.8.10322002 предельно допустимые уровни шума нормируются по двум категориям норм шума: ПДУ шума на рабочих местах и ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки.
ПДУ звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 8.4.
Таблица 8.4
Предельна допустимые уровни звука и эквивалентные уровни звука на рабочих местах
Категория напряженности трудового процесса |
Категория тяжести трудового процесса |
||||
физическая нагрузка |
тяжелый труд |
||||
легкая |
средняя |
I степени |
II степени |
III степени |
|
Легкой степени |
80 |
80 |
75 |
75 |
75 |
Средней степени |
70 |
70 |
65 |
65 |
65 |
Труд I степени |
60 |
60 |
|
|
|
Труд II степени |
50 |
50 |
|
|
|
ПДУ звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука представлены в прил. 2 к СанПиН 2.2.4/2.1.8.10322002.
Для тонального и импульсного шума, а также шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ должны приниматься на 5 дБ (дБА) меньше значений, указанных в табл. 8.4. настоящего параграфа и прил. 2 к СанПиН 2.2.4/2.1.8.10322002.
Максимальный уровень звука для колеблющегося и прерывистого шума не должен превышать 110 дБ А. Запрещается даже кратковременное пребывание в зонах с уровнем звука или уровнем звукового давления в любой октавной полосе свыше 135 дБ А (дБ).
ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки. Допустимые значения уровней звукового давления в октавных полосах частот эквивалентных и максимальных уровней звука проникающего шума в помещения жилых и общественных зданий и шума на территории жилой застройки устанавливаются согласно прил. 3 к СанПиН 2.2.4/2.1.8.10322002.
8.4.2. Средства и методы защиты от шума
Борьба с шумом на производстве осуществляется комплексно и включает меры технологического, санитарно-технического, лечебно-профилактического характера.
Классификация средств и методов защиты от шума приведена в ГОСТ 12.1.02980 ССБТ «Средства и методы защиты от шума. Классификация», СНиП II1277 «Защита от шума», которые предусматривают защиту от шума следующими строительно-акустическими методами:
а) звукоизоляцией ограждающих конструкций, уплотнением при-
творов окон, дверей, ворот и т.п., устройством звукоизолированных ка-
бин для персонала; укрытием источников шума в кожухи;
б) установкой в помещениях на пути распространения шума
звукопоглощающих конструкций и экранов;
в) применением глушителей аэродинамического шума в двига-
телях внутреннего сгорания и компрессорах; звукопоглощающих об-
лицовок в воздушных трактах вентиляционных систем;
г) созданием шумозащитных зон в различных местах нахожде-
ния людей, использованием экранов и зеленых насаждений.
Ослабление шума достигается путем использования под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой оборудования на амортизаторы или специально изолированные фундаменты. Широко применяются средства звукопоглощения минеральная вата, войлочные плиты, перфорированный картон, древесно-волокнистые плиты, стекловолокно, а также активные и реактивные глушители (рис. 8.3.).
Глушители аэродинамического шума бывают абсорбционными, реактивными (рефлексными) и комбинированными. В абсорбционных
глушителях затухание шума происходит в порах звукопоглощающего материала. Принцип работы реактивных глушителей основан на эффекте отражения звука в результате образования «волновой пробки» в элементах глушителя. В комбинированных глушителях происходит как поглощение, так и отражение звука.
Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения. С помощью звукоизолирующих устройств (рис. 8.4) легко снизить уровень шума на 30...40 дБ. Эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.
глушителях затухание шума происходит в порах звукопоглощающего материала. Принцип работы реактивных глушителей основан на эффекте отражения звука в результате образования «волновой пробки» в элементах глушителя. В комбинированных глушителях происходит как поглощение, так и отражение звука.
Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения. С помощью звукоизолирующих устройств (рис. 8.4) легко снизить уровень шума на 30...40 дБ. Эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.
глушителях затухание шума происходит в порах звукопоглощающего материала. Принцип работы реактивных глушителей основан на эффекте отражения звука в результате образования «волновой пробки» в элементах глушителя. В комбинированных глушителях происходит как поглощение, так и отражение звука.
Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения. С помощью звукоизолирующих устройств (рис. 8.4) легко снизить уровень шума на 30...40 дБ. Эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.
пролю
Для снижения шума в помещении на внутренние поверхности наносят звукопоглощающие материалы, а также размещают в помещении штучные звукопоглотители.
Звукопоглощающие устройства бывают пористыми, пористо-волокнистыми, с экраном, мембранные, слоистые, резонансные и объемные. Эффективность применения различных звукопоглощающих устройств определяется в результате акустического расчета с учетом требований СНиП II1277. Для достижения максимального эффекта рекомендуется облицовывать не менее 60% общей площади ограждающих поверхностей, а объемные (штучные) звукопоглотители располагать как можно ближе к источнику шума.
Снизить неблагоприятное воздействие шума на рабочих, возможно сократив время их нахождения в шумных цехах, рационально распределив время труда и отдыха и т.д. Время работы подростков в условиях шума регламентировано: для них необходимо устраивать обязательные 10... 15-минутные перерывы, во время которых они должны отдыхать в специально выделенных комнатах вне шумового воздействия. Такие перерывы устраиваются для подростков, работающих первый год, через каждые 50 мин 1ч работы, второй год через 1,5 ч, третий год через 2 ч работы.
Зоны с уровнем звука или эквивалентным уровнем звука выше 80 дБ А должны быть обозначены знаками безопасности.
Защита работающих от шума осуществляется коллективными средствами и методами и индивидуальными средствами.
Основными источниками вибрационного (механического) шума машин и механизмов являются зубчатые передачи, подшипники, соударяющиеся металлические элементы и т.п. Снизить шум зубчатых передач можно повышением точности их обработки и сборки, заменой материала шестерен, применением конических, косозубых и шевронных передач. Снизить шум станков можно применением быстрорежущей стали для резца, смазочно-охлаждающих жидкостей, заменой металлических частей станков пластмассовыми и т.д.
Для снижения аэродинамического шума используют специальные шумоглушащие элементы с криволинейными каналами. Снизить аэродинамический шум можно улучшением аэродинамических характеристик машин. Дополнительно применяются средства звукоизоляции и глушители.
Акустическая обработка обязательна в шумных цехах машиностроительных заводов, цехах ткацких фабрик, машинных залах машиносчетных станций и вычислительных центров.
Новым методом снижения шума является метод «антизвука» (равного по величине и противоположного по фазе звука). В результате интерференции основного звука и «антизвука» в некоторых местах
шумного помещения можно создать зоны тишины. В месте, где необходимо уменьшить шум, устанавливается микрофон, сигнал от которого усиливается и излучается определенным образом расположенными динамиками. Уже разработан комплекс электроакустических приборов для интерференционного подавления шума.
Применение средств индивидуальной защиты от шума целесообразно в тех случаях, когда средства коллективной защиты и другие средства не обеспечивают снижение шума до допустимых уровней.
СИЗ позволяют снизить уровень воспринимаемого звука на 0...45 дБ, причем наиболее значительное глушение шума наблюдается в области высоких частот, которые наиболее опасны для человека.
Средства индивидуальной защиты от шума подразделяются на противошумные наушники, закрывающие ушную раковину снаружи; противошумные вкладыши, перекрывающие наружный слуховой проход или прилегающие к нему; противошумные шлемы и каски; противошумные костюмы. Противошумные вкладыши делают из твердых, эластичных и волокнистых материалов. Они бывают однократного и многократного пользования. Противошумные шлемы закрывают всю голову, они применяются при очень высоких уровнях шума в сочетании с наушниками, а также противошумными костюмами.
100 1000 10 ООО/, Гц
Рис. 8.2. Слуховое восприятие человека
Рис. 8.3. Глушители шума: а абсорбционного трубчатого типа; бабсорбционного сотового типа; габсорбционного экранного типа; д реактивного камерного типа; е резонансный; ж комбинированного типа; 1 перфорированные трубки; 2 звукопоглощающий материал; 3 стеклоткань; 4 расширительная камера; 5 резонансная камера
* 2 3
ис. 8.4. Схемы звукоизолирующих устройств: о звукоизолирующая перегородка; б звукоизолирующий кожух; в звукоизолирующий экран; А зона повышенного шума; Б защищаемая зона; 1 источники шума; 2 звукоизолирующая перегородка; 3 звукоизолирующий кожух; 4 звукоизолирующая облицовка; 5 акустический экран