Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Производной функции yfx в точке x0 называется предел при ~x]0 отношения приращения функции в этой точке

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.11.2024

Определение производной. Геометрический смысл.

1) Производной функции y=f(x) в точке x0 называется предел при

Δx->0 отношения приращения функции  в этой точке к приращению аргумента (при условии, что предел существует).

2) Тангенс угла наклона касательной равен f '(x0), где х0 - точка касания.

Уравнение касательной.

 y=f(x0)+f '(x0)(x-x0)

Определение нормали. Уравнение нормали.

Нормалью к кривой y=f(x) в точке x0 называется прямая, проходящая через точку M0(x0;f(x0)) перпендикулярно касательной.

y=f(x0)-1/f '(x0)*(x-x0),если f '(x0) ≠ 0;

если f '(x0)=0, то x=x0.

Теорема о производной сложной функции.

Если функция х=φ(t) имеет производную в точке t0, а функция y=f(x) имеет производную в соответствующей точке х0= φ(t0), то сложная функция f[φ(t)] имеет производную в точке t0 и справедлива формула: y '(t0)=f '(x0)φ '(t0).

Теорема о производной обратной функции.

Если функция y=f(x) имеет в точке х0 производную f '(x0) ≠ 0, то обратная функция х=φ(y) также имеет в соответствующей точке y0=f(x0) производную, причем:

Φ '(y0) = 1/f '(x0).

Дифференциал функции.

Дифференциалом функции y=f(x) в точке х0 называется главная, линейная относительно Δx, часть приращения функции в этой точке: dy=f '(x0)Δx.

Условия монотонности функции.

Если функция f(x) дифференцируема на интервале (a,b) и f '(x) ≥ 0 (f '(x) ≤ 0) на (a,b), то функция f(x) не убывает (не возрастает) на (a,b).

Экстремум функции. Необходимое условие экстремума.

Экстре́мум функции — максимальное или минимальное значение функции y=f(x) на заданном множестве (a,b).

Точка x0 является точкой экстремума функции f(x) определенной на некотором интервале (a,b).

Тогда либо производная f '(x0) не существует, либо f '(x0) = 0.

Достаточные условия экстремума.

Исследование направления выпуклости кривой.

Кривая y=f(x) имеет на интервале [a;b] выпуклость вниз, если все точки кривой лежат выше любой касательной на интервале [a;b].

Кривая y=f(x) имеет на интервале [a;b] выпуклость вверх, если все точки кривой лежат ниже любой касательной на интервале [a;b].

Точки перегиба: определение, необходимые и достаточные условия.

Точка, в которой происходит изменение направления выпуклости, называется точкой перегиба.

Необходимое условие:

Пусть M0(x0;f(x0)) является точкой перегиба кривой y-f(x). Тогда, если в точке х0 существует вторая производная, то она равна 0.

Достаточное условие:

Пусть функция f(x) имеет вторую производную в некоторой окрестности точки х0. Тогда, если при переходе через х0 вторая производная меняет знак, то M0(x0;f(x0)) является точкой перегиба кривой y=f(x).




1. Инфраструктурный комплекс Чувашии
2. ОТКРОВЕНИЕ который пройдет с 9 января по 31 августа 2014г
3. Контрольная работа по дисциплине- Научные основы производства продуктов питания.html
4. Особенности аудита в туризме
5. Реализация различных технологий розничных продаж в страховании
6. 03 Міністерство освіти і науки України ПРОФЕСІЙНА ПЕДАГОГІКА назва нав
7. Тема- Засади кримінального процесу заняття 1- Засади- 1 верховенство права; 2 законність; 3 рівність
8. Двигательные возможности человека- методологические аспекты развития, сохранения и восстановления
9. і Відповідно до етапів та видів праці обрядові пісні осіннього циклу поділяються на жниварські зажинкові ж
10. Реферат- Электростатика
11. а название злокачественной опухоли происходит из названия ткани и второго корня ~ саркома например- фиброс
12. Участие адвоката в исследовании доказательств
13. вариантов- 2
14. разному Если первобытные люди довольствовались при счете количеством пальцев на руке а для их целей этого б
15. юньг~ карап фикерл~рг~ кир~к
16. Оказание помощи дошкольникам в формировании их системы самозащиты средствами физического воспитания
17. Инфляция как кризис российской экономики
18. Тема- Сущность денег их роль в экономике и социальной сфере
19. Игорь Федорович Стравинский
20. тематики та інформаційних систем і технологій