Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
2
Тема 1. Уравнение состояния идеального газа.
Состояние системы задается термодинамическими параметрами – совокупностью физических величин, характеризующих свойства термодинамической системы, например, давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния.
Для идеального газа уравнением состояния является уравнение Клапейрона – Менделеева:
,
где m – масса газа, – молярная масса (масса одного моля вещества),
– количество вещества,
R – универсальная газовая постоянная, .
(Идеальным называется такой газ, в котором считается, что собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда, в котором он находится, силы взаимодействия между молекулами газа отсутствуют, а столкновения между молекулами газа абсолютно упругие.)
Исходя из уравнения Клапейрона – Менделеева и понятия концентрации n (n – число молекул в единице объема: , где N – число всех молекул газа), можно получить уравнение состояния идеального газа в ином виде:
, то есть ,
где – постоянная Авогадро – число молекул в одном моле вещества,
, – постоянная Больцмана.
Тема 2. Термодинамические процессы. Изопроцессы.
Любое изменение в системе, связанное с изменением ее термодинамических параметров, называется термодинамическим процессом.
Из уравнения Клапейрона – Менделеева следует, что , то есть для данной массы газа в любом термодинамическом процессе, что является объединенным газовым законом.
Если в термодинамическом процессе один из параметров газа () не изменяется, то такой процесс называется изопроцессом.
Процесс, протекающий при постоянном давлении, называется изобарным. Из объединенного газового закона для изобарного процесса следует:
(уравнение изобарного процесса).
Процесс, протекающий при постоянном объеме, называется изохорным. Из объединенного газового закона для изохорного процесса следует:
(уравнение изохорного процесса).
Процесс, протекающий при постоянной температуре, называется изотермическим. Для изотермического процесса:
(уравнение изотермического процесса).
Тема 3. Основное уравнение молекулярно-кинетической теории
идеального газа.
Основное уравнение молекулярно-кинетической теории идеального газа связывает термодинамические параметры газа с параметрами, характеризующими движение его молекул. Так, давление газа, как следствие соударений молекул газа со стенками сосуда, определяется, согласно основному уравнению молекулярно-кинетической теории идеального газа, кинетической энергией поступательного движения молекул газа.
При выводе основного уравнения молекулярно-кинетической теории идеального газа полагают, что соударения молекул газа со стенками сосуда являются абсолютно упругими. Тогда, при соударении одна молекула газа массой m0, движущаяся перпендикулярно стенке сосуда со скоростью , передает ей импульс .
Выделив на стенке сосуда элементарную площадку S (рис. 1), определяют давление газа p на эту площадку. Построив цилиндр с основанием S и высотой (рис. 1), учитывают, что число молекул, способных за время t достигнуть площадки S соответствует Рис. 1
1/6 части всех N молекул, содержащихся в объеме выделенного цилиндра (, где n – концентрация молекул). Коэффициент 1/6 учитывает, что из всех N молекул, движущихся хаотично вдоль трех (x, y, z) взаимно перпендикулярных направлений, только их 1/6 часть движется по направлению к площадке S. Тогда число ударов молекул, движущихся в данном направлении, о площадку S за время t будет равно: .
При столкновении с площадкой S эти молекулы передадут ей импульс P :
,
что соответствует, согласно второму закону Ньютона, действию силы F :
.
Тогда давление газа, оказываемое им на стенки сосуда:
.
Однако, молекулы газа движутся с различными скоростями , ,…., что можно учесть в полученной формуле, введя понятие средней квадратичной скорости движения молекул :
, тогда .
Так как , а – средняя кинетическая энергия движения одноатомной молекулы, то получим:
,
где Е – суммарная кинетическая энергия всех молекул газа, .
Таким образом, получены два эквивалентных уравнения:
и ,
связывающие кинематические параметры движения отдельных молекул газа с термодинамическими параметрами газа в целом, каждое из которых называют основным уравнением молекулярно-кинетической теории идеального газа.
Из сравнения между собой уравнений и следует, что
,
то есть еще одно уравнение, связывающее термодинамический параметр газа (Т) со средней кинетической энергией молекулы одноатомного газа .
С другой стороны, величина средней кинетической энергии молекул газа определяется температурой газа Т (для случая одноатомного газа):
.
Тема 4. Распределение молекул идеального газа по скоростям.
В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, что это распределение для идеального газа описывается некоторой функцией , называемой функцией распределения молекул газа по скоростям.
Если разбить диапазон скоростей молекул на малые интервалы, равные , то на каждый интервал скорости будет приходиться некоторое число молекул , имеющих скорость, заключенную в этом интервале. Функция определяет относительное число молекул , скорости которых лежат в интервале от до , т. е.
, откуда .
Применяя методы теории вероятностей, Максвелл нашел вид этой функции:
,
где – масса одной молекулы газа.
График этой функции приведен на рис. 2.
Рис. 2
Относительное число молекул , скорости которых лежат в интервале от до , соответствует площади заштрихованной на рис. 2 полоски. Площадь под всей кривой распределения равна единице. Это означает, что функция удовлетворяет условию нормировки:
.
Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью :
.
Из этой формулы следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 3) смещается вправо. При этом величина максимума функции распределения молекул по скоростям с повышением температуры уменьшается (рис. 3).
Рис. 3
Кроме наиболее вероятной скорости , на рис. 2 приведены также средняя арифметическая скорость молекул и средняя квадратичная скорость молекул , которые определяются по формулам:
; .
Тема 5. Барометрическая формула. Распределение Больцмана.
Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой – , в состоянии теплового хаотического движения, что приводит к некоторому стационарному состоянию, при котором давление газа с высотой убывает.
Если атмосферное давление на высоте h равно р (рис. 4), то на высоте h+dh оно равно p+dp , причем при dh>0 изменение давления dp<0.
Так как dh настолько мало, что при изменении высоты h в этих пределах плотность воздуха можно считать постоянной, то разность давлений:
, то есть .
Рис. 4
Выражение для плотности газа можно получить из уравнения состояния идеального газа , а именно ,
где m – масса газа, – молярная масса газа.
Тогда или .
С изменением высоты от 0 до h давление изменяется от р0 до р (рис. 4). Поэтому, интегрируя в этих пределах предыдущее уравнение, получим:
, то есть ,
откуда
.
Это выражение называется барометрической формулой, где р0 – давление на нулевом уровне отсчета высоты h, то есть на уровне, где принято h = 0.
Барометрическую формулу можно преобразовать в зависимость концентрации молекул воздуха n от высоты h, если воспользоваться уравнением состояния идеального газа p=nkT :
,
где n – концентрация молекул воздуха на высоте h,
n0 – концентрация молекул воздуха на высоте h=0.
Так как (m0 – масса одной молекулы, – постоянная Авогадро), a , то или .
В этой формуле , где U – потенциальная энергия молекулы массой m0 , находящейся в поле сил тяготения Земли на высоте h от уровня, на котором потенциальная энергия молекул воздуха принята равной нулю, а концентрация молекул обозначена как n0. Тогда n соответствует концентрации молекул в том месте, где потенциальная энергия молекулы воздуха равна U. Таким образом, получено распределение молекул по потенциальной энергии в силовом поле (распределение Больцмана).
Тема 6. Явления переноса (диффузия, теплопроводность, вязкость).
В неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос массы, энергии, импульса.
Диффузия обусловлена переносом массы, теплопроводность – переносом энергии, а вязкость – переносом импульса.
Для характеристики необратимых процессов переноса вводятся параметры теплового движения молекул: среднее число соударений молекулы в единицу времени и средняя длина свободного пробега молекул .
Среднее число соударений молекулы за 1 с определяется по формуле:
,
где d – эффективный диаметр молекул, т.е. минимальное расстояние, на которое сближаются при столкновении центры двух молекул,
– эффективное сечение молекул, – концентрация молекул,
– средняя арифметическая скорость молекул.
Средняя длина свободного пробега молекул , т.е. средний путь, проходимый молекулой между двумя последовательными столкновениями:
.
При рассмотрении одномерных явлений переноса система отсчета выбирается так, чтобы ось х была ориентирована в направлении переноса.
1. Диффузия. Явление диффузии заключается в том, что происходит самопроизвольное взаимопроникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел. Диффузия сводится к переносу массы, возникает и продолжается до тех пор, пока на границе соприкосновения двух сред градиент плотности отличен от нуля.
Градиент плотности вдоль выбранной оси х, перпендикулярной плоскости соприкосновения двух сред, обозначается как и показывает как быстро изменяется величина плотности от точки к точке вдоль оси х.
Количественно явление диффузии подчиняется закону Фика:
,
где – плотность потока массы, то есть величина, определяемая массой газа, диффундирующего через единичную площадку S в единицу времени,
– градиент плотности газа в направлении x, перпендикулярном выбранной площадке S ,
D – коэффициент диффузии.
Знак минус в приведенной формуле означает, что перенос массы происходит в направлении убывания плотности.
Согласно молекулярно-кинетической теории идеального газа, коэффициент D:
,
где – средняя скорость теплового движения молекул,
– средняя длина свободного пробега молекул.
2. Теплопроводность. Если в одной области газа температура больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, то есть процесс выравнивания температуры. Этот процесс переноса энергии, называемый теплопроводностью, возникает и продолжается до тех пор, пока на границе соприкосновения двух частей газа градиент температуры отличен от нуля.
Градиент температуры Т газа вдоль выбранной оси х, перпендикулярной плоскости соприкосновения двух частей газа, имеющих различную температуру, обозначается как и показывает как быстро изменяется температура газа от точки к точке вдоль оси х.
Количественно теплопроводность подчиняется закону Фурье:
,
где – плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты через единичную площадку S в единицу времени,
– градиент температуры в направлении x, перпендикулярном выбранной площадке S,
– коэффициент теплопроводности.
Знак минус в приведенной формуле означает, что при теплопроводности энергия переносится в направлении убывания температуры.
Согласно молекулярно-кинетической теории идеального газа, коэффициент
теплопроводности определяется следующим образом:
,
где – удельная теплоемкость газа при изохорном процессе (количество теплоты, необходимое для изохорного нагревания 1 кг газа на 1 К),
– плотность газа,
– средняя скорость теплового движения молекул,
– средняя длина свободного пробега молекул.
3. Вязкость. Вязкость это свойство жидкости или газа, обусловленное внутренним трением между соприкасающимися параллельными слоями жидкости или газа, движущимися с различными скоростями. В результате, импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее. Другими словами, внутреннее трение приводит к переносу импульса от одного движущегося слоя жидкости или газа к другому соприкасающемуся с ним слою.
Количественно сила внутреннего трения между двумя соприкасающимися слоями жидкости или газа подчиняется закону Ньютона:
,
где – коэффициент динамической вязкости,
– градиент скорости, показывающий быстроту изменения скорости течения жидкости или газа от слоя к слою в направлении х, перпендикулярном направлению движения слоев,
S – площадь соприкосновения слоев жидкости или газа, на которые действует сила внутреннего трения F.
Закон Ньютона для внутреннего трения можно представить в виде:
,
где – плотность потока импульса – величина, определяемая импульсом, переносимым в единицу времени через единичную площадку S соприкосновения слоев жидкости или газа в направлении оси х, перпендикулярном направлению движения слоев жидкости или газа.
Знак минус в приведенной формуле означает, что импульс переносится от слоя к слою жидкости (газа) в направлении убывания скорости их движения.
Согласно молекулярно-кинетической теории идеального газа, коэффициент
динамической вязкости идеального газа определяется следующим образом:
,
где – плотность газа,
– средняя скорость теплового движения молекул,
– средняя длина свободного пробега молекул.
Тема 7. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
Внутренней энергией газа U называется сумма кинетической энергии хаотического (теплового) движения всех молекул газа и энергии взаимодействия молекул газа между собой. Для идеального газа внутренняя энергия – это только кинетическая энергия всех молекул газа.
Внутренняя энергия идеального газа определяется числом степеней свободы его молекул и температурой газа.
Числом степеней свободы i механической системы называется количество независимых величин, с помощью которых может быть однозначно задано положение системы в пространстве.
Согласно закону о равнораспределении энергии по степеням свободы молекул для термодинамической системы, находящейся в равновесии, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная , а на каждую колебательную степень свободы – в среднем энергия, равная kT. Колебательная степень «обладает» вдвое большей энергией потому, что на нее приходится не только кинетическая энергия (как в случае поступательного и вращательного движений), но и потенциальная, причем средние значения кинетической и потенциальной энергий одинаковы.
Таким образом, средняя кинетическая энергия молекулы:
,
где i – сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы:
.
Внутренняя энергия N молекул идеального газа:
Так как число молекул газа (NА – число Авогадро) , где ,
то, с учетом соотношения , получим:
.
Изменение внутренней энергии ∆U при изменении температуры от Т1 до Т2:
, где = Т2 – Т1 .
Внутреннюю энергию газа можно увеличить за счет сообщения ему некоторого количества теплоты , которое может быть израсходовано также и на совершение механической работы А по расширению газа. При этом соблюдается закон сохранения и превращения энергии. Применительно к термодинамическим процессам это и есть первое начало термодинамики: количество теплоты , сообщаемое термодинамической системе, расходуется на изменение ее внутренней энергии ∆U и на совершение механической работы А против внешних сил:
.
Работа А, совершаемая газом при изменении его объема от V1 до V2:
,
где – элементарная работа при изменении объема газа на .
Работа газа при изопроцессах.
1. Изобарный процесс (p = const). При изобарном процессе работа газа при увеличении объема от V1 до V2 равна:
,
а первое начало термодинамики для изобарного процесса примет вид:
.
2. Изохорный процесс (V = const). При изохорном процессе газ не совершает работы против внешних сил, то есть А=0, а первое начало термодинамики для изохорного процесса примет вид:
.
т. е. все количество теплоты, сообщаемое газу, расходуется на увеличение его внутренней энергии.
3. Изотермический процесс (T=const). Работа при изотермическом расширении газа:
.
Так как при постоянной температуре внутренняя энергия идеального газа не изменяется, то первое начало термодинамики для изотермического процесса:
,
то есть все количество теплоты Q, сообщаемое газу, расходуется на совершение им работы A против внешних сил.
Тема 8. Теплоемкость газа при изопроцессах. Уравнение Майера.
Теплоемкостью тела называется величина, равная количеству теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 К.
Удельная теплоемкость вещества – величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:
.
Молярная теплоемкость вещества – величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:
, откуда .
Различают теплоемкости газа при изохорном и изобарном процессах.
1. Молярная теплоемкость газа при изохорном процессе .
Для изохорного процесса первое начало термодинамики:
.
Следовательно , откуда .
2. Молярная теплоемкость газа при изобарном процессе .
Для изобарного процесса первое начало термодинамики:
.
Так как для изобарного процесса ,
то ,
откуда .
Уравнение Майера.
Сравнение между собой Ср и СV приводит к уравнению Майера:
.
Это уравнение показывает, что Ср больше, чем СV на величину универсальной газовой постоянной R. Это объясняется тем, что при изобарном нагревании газа, в отличие от изохорного нагревания, требуется дополнительное количество теплоты на совершение работы расширения газа.
Таким образом, молярная теплоемкость газа определяется лишь числом степеней свободы и не зависит от температуры. Это утверждение справедливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры.
Тема 9. Адиабатический процесс.
Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и окружающей средой. При адиабатическом процессе изменяются все термодинамические параметры (р, V, Т) в соответствии с уравнением Пуассона:
,
где – коэффициент Пуассона, равный отношению молярных теплоемкостей .
Полученное выражение есть уравнение адиабатического процесса в переменных р и V .
Для перехода от переменных р и V к переменным V, Т или p, Т при описании адиабатического процесса используется уравнение Клапейрона — Менделеева:
.
В результате соответствующие уравнения адиабатического процесса:
в переменных V и Т ,
в переменных р и Т .
Работа газа при адиабатическом процессе.
Из первого начала термодинамики () для адиабатического процесса () следует, что .
Если газ адиабатически расширяется от объема V1 до объема V2 , то его температура уменьшается от T1 до T2 и работа расширения идеального газа:
.
Используя уравнение адиабатического процесса в переменных V и Т , то есть полученное выражение для работы А при адиабатическом расширении газа можно преобразовать к иному виду, отражающему адиабатическое изменение объема газа от величины V1 до величины V2 :
.
Тема 10. Обратимый и необратимый процессы. Круговой процесс. Тепловая машина и цикл Карно.
Термодинамический процесс называется обратимым, если он может проходить как в прямом, так и в обратном направлении, причем если такой процесс проходит сначала в прямом, а затем в обратном направлении, и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.
Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное состояние.
Тепловая машина – это устройство для преобразования теплоты в работу.
Принцип действия тепловой машины приведен на рис. 5. От термостата с более высокой температурой Т1 , называемого нагревателем, за цикл отнимается количество теплоты Q1 , а термостату с более низкой температурой Т2 , называемому холодильником, за цикл передается количество теплоты Q2 , при этом совершается работа: А = Q1 – Q2.
Французский физик Карно рассмотрел обратимый циклический процесс, состоящий из чередования двух изотермических и двух адиабатических процессов (рис. 6). В цикле Карно в качестве рабочего тела используется идеальный газ, находящийся в цилиндре с подвижным поршнем.
Рис. 5 Рис. 6
График цикла Карно в координатах р и V изображен на рис. 6, где изотермическим расширению и сжатию соответствуют кривые 1–2 и 3–4, а адиабатическим расширению и сжатию – кривые 2–3 и 4–1. При изотермическом процессе U=const, поэтому количество теплоты Q1, полученное газом от нагревателя, равно работе расширения А12, совершаемой газом при переходе из состояния 1 в состояние 2:
.
При адиабатическом расширении 2–3 работа А23 совершается за счет изменения внутренней энергии:
.
Количество теплоты Q2 , отданное газом холодильнику при изотермическом сжатии, равно работе сжатия А34 :
.
Работа адиабатического сжатия:
.
Работа, совершаемая в результате кругового процесса:
,
Термический коэффициент полезного действия цикла Карно можно определить по формуле:
или , то есть
к.п.д. тепловой машины, работающей по циклу Карно, определяется только температурами нагревателя Т1 и холодильника Т2 .