У вас вопросы?
У нас ответы:) SamZan.net

ты прямых затрат Строим оптимизационную модель 6 матрица коэфв пр

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 1.7.2025

Вопрос 22. Модель прогноза межотраслевых связей.

Как спрогнозировать коэф-ты прямых затрат

Строим оптимизационную модель

(6)

- матрица коэф-в пр. затрат за отч. год.

Ограничения:

  (7)

  (8)  (9)

- коэф-ты пр. затрат для прогнозного года

- ПП  -й отр. прогноз. года

- оценка пром. затрат -й отрасли прогн. года

Осн. вопрос – каким усл-ям должны удовлетворять заданные величины, чтобы мн-во реш-й с-мы пустое мн-во.

Условия баланса:

чтобы задача имела допустимые решения (необх. и дост.)

Док-во. Необх-ть.

У нас имеется нек. реш-е, удовл-е усл-ю. Сложим рав-ва (7) и (8) будет вып-ся балансов. ур-е.

Достаточность. Если вып-ся усл-е баланса, покажем, что сущ. хотя бы 1 допуст. план. Дост-но убед-ся, что точка

Покажем, что будет вып-ся рав-во (7)

(т.к. ) чтд (анал-но док-ся, что матрица уд-ет усл-ю 8)

 

Ф-я выпуклая, т.к. все миноры, составл-е по 2-й произв-й >0. Т.е. локальный min явл-ся и глобальным.

24.Оптимизац. динамическая модель МОБ.

B(t) – матрица кап. затрат

С(t)- вектор конеч. спроса

m(t) – вектор производ. мощностей в году t

m(0) =        m1(t)- произ. мощности 1 отр-ли в г. t

S(t) – вектор произ. запасов прод-и, для t = 0

S(0)=

m(t) – прирост произ. мощностей

m(t) = m(t)-m(t-1)

m(t) = m(0) +                      (7)

произ. мощности изм-ся так же как и ВВ

X(t) = A(t)x(t)+ B(t) ∆ m(t)+ c(t)+S(t) –S(t-1)    (8)

∆ m(t) =

0≤x(t)≤ m(t) ; ∆ m(t)≥0; S(t)≥0; S(t-1)≥0     (9)

Сист. 7-9 опис-ет разл. траектории разв-я э. Задача выбора наил. траектории разв-ся

*критерии – суммарн. тр. рес. →min

[l(t)x(t)+h(t) ∆ m(t) ] → min   (10)

h(t) – вектор трудоёмк. по вводу произ. отраслей.

Вопрос разрешимости задачи

Предположим, что m(0) и S(0) обесп-т ВВ прод-и для года t Є (1; T), кот. удовл-ют конеч. спросу

∆ dm(t)=0

∆ dS(t)= S(t) – S(t-1) = 0 для t= (11)

Вопрос 23 Динамич. модели МОБ.

Они явл-ся 1-м из наиб. эфф-ных методов изуч-я эк.динамики. Это обобщ-е статич. модели ”затраты-выпуск”. Они отражают разв-е Э во времени, взаимосвязь м/у предыдущ. и послед. этапами разв-я. Их отлич. черта – выд-е производст. капиталовл-й (J) из прод-и конеч. исп-я, изуч-е их влияния на рост пр-ва.

Мат. зав-ть м/у величиной капиталовл-й и прироста прод-и – основа для постр-я динам. моделей.

Время t изм-ся дискретно

t = 1, 2 … T  T – горизонт прогноз-я

Для кажд. года t – матрица межотрасл. текущ. потоков , ее эл-ты – к-во прод-и i-й отрасли, исп-мой j-й отраслью в году t.

Матрица межотр. приростов - к-во прод-и i-й отрасли, направл-й как J на обн-е осн. ф-в в j-ю отр. в году t.

- конеч. исп-е i-й отраслью в году t

- произв. J для i-й отрасли

- конеч. продукт, идущий на потр-е и экспорт (конечн. спрос)

- капиталовл-я i-й отраслью

- вал. выпуск i-й отраслью в году t

(1) i = 1, 2, …, n

2 основ. предполож-я:

1. Объемы прод-и i-й отрасли, потребл-е j-й отраслью, прямо проп-но выпуску прод-и j-й отр-ю в году t

2. ;

,  - коэф-ты прямых затрат

- прирост прод-и в году t

к-во прод-и i-й отр. напр-мой в j-ю отр. как J для увел-я выпуска j-й отрасли на 1. Подставим в (1):

(2)

2)  для непр. ф-и

 i = 1, 2, …, n

Система линейн. ДУ

в векторно-матр. виде – матрица коэф-в прям затрат

вектор конеч. спроса - конеч. D i-й отр. в году t

x(t) – вектор столбец ВВ в году t

С-ма (2):

x(t) = (A(t) + B(t))x(t) + c(t) – B(t)x(t-1) (3)

(E – A(t) – B(t))x(t) = C(t) – B(t)x(t-1)

для любого t сущ. обратная матрица

Ф-ла для выч-я вектора ВВ:

ВВ для начальн. периода:

При t=1:

Для года t=2 – на основе знач-я x(1)

Если , с-ма не имеет решений или им. беск. мн-во реш-й

Вектор стр-ры  подставим в (3):

(5)

огранич. на труд рес-сы, классич вар-т

- труд рес-сы, исп-мые в году t при пр-ве прод-и

l(t)- вектор труд-ти для года t

динамич. моель с учетом тр. р-сов (5,6)

Недостаток: м/у выд-ем ср-в для приобр-я осн. ф-в и их вводом в пр-во сущ. времен. лаг.

На осн. клас. вар-та б. разр-ны более подробн. модели.




1. I Воображение ~ создание образов таких предметов и явлений которые никогда не воспринимались человеком рань
2. 15.1. Теоретические основы воспитания- закономерности цели принципы
3. Мизантроп была написана в 1666 году
4. справедливість благо доброчесність у поглядах Сократа Платона та Аристотеля
5. ТЕМА 1 1.Что является границею между большим и малым тазом.html
6. і Моральні цінності і норми що мають відношення до політичного миру до її інститутів відносин політичному
7. Американская модель социальной защиты
8. Искусство Греции не проходящая ценность культуры
9. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Київ 1998.
10. Обліковий запис користувача PostgreSQL Як і з будьяким демоном сервера що є доступним ззовні рекомендовано з