Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ТЕМА № 10
Физическая химия поверхностных явлений
Теоретический материал к занятию:
К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз; они обусловлены особенностями состава и структуры поверх¬ностей.
Образование поверхности раздела фаз требует совер¬шения работы, следовательно, оно сопровождается увеличением свободной энергии системы. В поверхностном слое накапливается некоторый избыток энергии по¬верхностная энергия Гиббса Gs, пропорциональная пло¬щади поверхности раздела фаз S:
Gs = σS
где σ коэффициент поверхностного на¬тяжения, т. е. работа образования единицы поверх¬ности. Коэффициент поверхностного натяжения также численно равен силе, приложенной к единице длины кон¬тура, ограничивающего поверхность, и направленной вдоль этой поверхности перпендикулярно контуру; dim σ = МТ-2, единица измерения джоуль на квадратный метр (Дж/м2) или ньютон на метр (Н/м). Следует отметить, что коэффициент поверхностного на¬тяжения часто называют поверхностным натяжением.
Самопроизвольное уменьшение свободной поверхност¬ной энергии Gs в однокомпонентных системах возможно только за счет уменьшения площади поверхности разде¬ла фаз. В многокомпонентных системах уменьшение Gs возможно также за счет уменьшения величины поверх¬ностного натяжения в результате самопроизвольного перераспределения молекул компонента между объемом фазы и поверхностью раздела. Это явление называется адсорбцией.
Границы раздела фаз газ жидкость и жидкость жидкость принято называть подвижными, а границы газ твердое тело, жидкость твердое тело, твердое тело твердое тело неподвижными. Ниже будут рас¬смотрены адсорбционные процессы в таких системах, в которых жидкость представлена водным раствором.
В зависимости от природы растворенного вещества (компонента) возможно увеличение или уменьшение его концентрации в поверхностном слое.
Положительно адсорбирующиеся вещества умень¬шают коэффициент поверхностного натяжения водной фазы, их называют поверхностно-активными веществами (ПАВ).
Молекулы ПАВ имеют характерные черты строе¬ния: они дифильны, т. е. содержат гидрофобные и гидрофильные фрагменты, и асимметричны. К ПАВ относятся одноатомные спирты, однооснов¬ные карбоновые кислоты, амины, эфиры и др.
Поверхностно-неактивные вещества (адсорбирующие¬ся отрицательно) либо не изменяют коэффициент поверхностного натяжения водной фазы, либо незначительно его увеличи¬вают. К ним относится большин¬ство неорганических веществ (кислоты, щелочи, соли).
Количественной мерой адсорб¬ции служит величина адсорбции Г (гамма);dimГ = L-2N, единица измерения моль на квадрат¬ный метр (моль/м2). Связь меж¬ду величиной адсорбции в интер¬вале концентраций и коэффици¬ентом поверхностного натяжения устанавливает уравнение Гиббса:
сср d
Г = - ,
RT dc
где Δσ приращение коэффициента поверхностного на¬тяжения, соответствующее приращению концентрации Δc;
cср среднее значение концентрации раствора в ин-тервале концентраций.
Для ПАВ при увеличении концентрации (Δс > 0) наблюдается уменьшение коэффициента поверхностного натяжения (Δσ < 0). Величину - (dσ/dc) называют по-верхностной активностью; она характери¬зует способность вещества изменять величину поверх¬ностного натяжения раство¬ра. В соответствии с пра¬вилом Траубе увели¬чение длины цепи молекул ПАВ в данном гомологиче¬ском ряду (карбоновые кис¬лоты, спирты, амины) вызы¬вает увеличение поверхност¬ной активности в 33,5 раза при переходе к каждому последующему гомологу.
Величина адсорбции зависит от природы соприкасаю¬щихся фаз, природы и концентрации растворенного ве¬щества. С увеличением концентрации ПАВ величина адсорбции сначала резко возрастает, но затем дальней¬шее увеличение концентрации ПАВ вызывает незначи¬тельное увеличение этой величины и в конце концов ве¬личина адсорбции перестает зависеть от концентрации ПАВ
По теории Лэнгмюра предельной адсорбции Гмакс соответствует образование насыщенного (мономолекулярного) адсорбционного слоя, что позволяет рассчитать площадь S поперечного сечения, занимаемую одной молекулой, и ее длину l :
1
S = ,
ГмаксNA
ГмаксМ
l =
где NA - постоянная Авогадро,
- плотность растворенного вещества,
М молярная масса.
Величина адсорбции уменьшается при увеличении температуры, что обусловлено усилением интенсивности теплового движения молекул и разупорядочиванием структуры поверхностного слоя.
Причиной адсорбции на поверхности твердых тел является нескомпенсированность силовых полей молекул, находящихся в зонах деформации регулярно устроенной поверхности. Такие зоны называют активными центрами; адсорбцию, проходящую на них, разделяют на физиче¬скую и химическую (хемосорбция). Любая поверхность, даже хорошо отшлифованная, имеет свой микрорель¬еф совокупность впадин и выступов. Физическая адсорбция обусловлена межмолекулярным взаимо¬действием (ван-дер-ваальсовым; в ряде случаев за счет образования водородных связей) и проходит, как правило, на активных центрах, находящихся во впади¬нах микрорельефа поверхности. Центры химической адсорбции находятся в основном на выступах микрорельефа; при хемосорбции устанавливаются химические связи между атомами, вхо¬дящими в состав активного центра, и атомами адсорби¬рующегося вещества.
Различия между физической адсорбцией и хемосорбцией заключаются в следующем:
1) значения стандартных энтальпий хемосорбции (порядка 80800 кДж/моль) значительно выше тако¬вых величин физической адсорбции (820 кДж/моль), значения стандартных энтальпий хемосорбции близки ΔH° химических реакций;
Классический пример адсорбции на твердом теле поглощение различных газов активированным углем. Твердое тело, на поверхности которого происходит адсорбция, называют адсорбентом, а само адсорбирую¬щееся вещество адсорбтивом. Практически процесс поглощения вещества поверхностным слоем часто допол¬няется поглощением адсорбтива всем объемом твердого тела абсорбцией, суммарный процесс (адсорб¬ция + абсорбция) называют в таком случае просто сорбцией. Сорбция обратимый процесс. Удаление сорбированного вещества называют десорбцией.
Количественно адсорбция на подвижной (Г) и непо¬движной (a) границах раздела описывается уравнением Ленгмюра:
c
a = aмакс
+ с
где амакс - величина предельной ад¬сорбции, она достигается при занятии всех активных центров адсорбента; dim a = М-1N, единица измере¬ния - моль/г; - постоянная величина, равная отношению кон¬стант скоростей десорбции и адсорбции, имеющая раз¬мерность концентрации.
В некоторых случаях для описания адсорбции используют эмпирическое уравнение Фрейндлиха:
a = Kcn
где n и K - константы, определяемые экспериментально.
Величину адсорбции из раствора на твердом адсор¬бенте экспериментально определяют по изменению кон¬центрации растворенного вещества после завершения адсорбции, т. е. установления адсорбционного равнове¬сия по формуле:
(co-c)V
a =
m
где co и с исходная и равновесная концентрация рас¬твора соответственно, моль/л;
V - объем раствора, из которого производилась адсорбция, л; m масса адсор¬бента, г.
Константы уравнения Ленгмюра опреде¬ляются экспериментально по графику 1/a = f(1/c).
Величина адсорбции значительно зависит от удель¬ной поверхности адсорбента. Удельная поверх¬ность адсорбента Sуд равна отношению площади его по¬верхности к объему. Она обратно пропорциональна раз¬меру частиц и зависит от их формы. При дроблении и измельчении твердых тел величина их удельной поверхности увеличивается вплоть до зна¬чений, достигающих тысячи квадратных метров на куби-ческий сантиметр твердого тела. Чем больше удельная поверхность адсорбента, тем больше имеется активных центров и, следовательно, больше величина адсорбции.
Величина адсорбции зависит от природы адсорбента и адсорбтива: чем ближе по полярности адсорбент и адсорбтив, тем полнее происходит адсорбция.
При адсорбции из растворов большое значение имеет и полярность растворителя. Наибольшей склонностью к адсорбции обладают вещества с полярностью, промежу-точной между полярностями контактирующих фаз. Из водных растворов ПАВ хорошо адсорбируются неполяр¬ными адсорбентами (в том числе активированным уг¬лем), а на полярных адсорбентах (карбонаты, алюмосиликаты, оксиды) ПАВ хорошо адсорбируются из непо¬лярных сред. В основе этих явлений лежит конкуренция между молекулами адсорбтива и растворителя за актив¬ные центры адсорбента.
В соответствии с правилом Ребиндера адсорбция идет в сторону выравнивания полярностей контактирую¬щих фаз и тем сильнее, чем больше начальная разность полярностей.
Адсорбция из растворов электролитов осложняется ярко выраженным характером электростатических взаи¬модействий, приводящих к образованию на поверхности адсорбента двойного электрического слоя (ДЭС).
Различают следующие разновидности адсорбции из растворов электролитов:
1) эквивалентную;
2) обменную;
3) избирательную.
При эквивалентной адсорбции катионы и анионы адсорбируются в таких количествах, которые соответствуют нулевому суммарному заряду. Эквивалент¬ную адсорбцию формально можно рассматривать как ад¬сорбцию неэлектролита, так как при этом не возникают отрицательно или положительно заряженные поверх¬ности.
Обменная адсорбция заключается в обмене ионами между адсорбентом и раствором: адсорбенты, способные к обмену катионов, называются катионитами;
анионов анионитами.
При избирательной адсорбции на по¬верхности адсорбента накапливаются либо катионы, либо анионы. Ионы противоположного заряда сохраняют при этом относительную подвижность в растворе. Таким об¬разом, в результате избирательной адсорбции возникают заряженные поверхности. В соответствии с правилом Панета Фаянса из рас¬твора преимущественно адсорбируются ионы, которые входят в состав кристаллической решетки твердой фазы, или им изоморфные. Так, например, из раствора, содер¬жащего хлорид бария и нитрат стронция, на поверхнос¬ти кристаллов сульфата бария адсорбируются ионы ба¬рия (входят в кристаллическую решетку) и ионы строн¬ция (изоморфны ионам бария); поверхность твердой фазы сульфата бария приобретает положительный заряд. Если тот же адсорбент контактирует с раствором сульфата натрия и перманганата калия, то избирательно на его поверхности адсорбируются сульфат-ионы (входят в кристаллическую решетку) и перманганат-ионы (изо¬морфны сульфат-ионам). Поверхность твердой фазы при¬обретает отрицательный заряд. Адсорбция ионов зависит от радиуса иона (она тем больше, чем больше радиус иона) и величины его заряда (многозарядные ионы адсорбируются лучше).
До решения задач необходимо:
I. Выучить определения основных понятий:
1) адсорбция, предельная адсорбция;
2) поверхностное натяжение;
3) коэффициент поверхностного натяжения;
4) поверхностно-активные и поверхностно-неактивные вещества;
5) поверхностная активность;
6) адсорбент, адсорбтив;
7) правило выравнивания полярностей Ребиндера.
II. Разобрать следующие вопросы:
1) подвижная и неподвижная поверхность раздела фаз;
2) связь между величиной адсорбции и коэффициентом поверхностного натяжения (уравнение Гиббса);
3) изменение величины поверхностной активности в гомологическом ряду (правило Траубе);
4) связь величины предельной адсорбции с площадью поперечного сечения и осевой длины молекулы;
5) уравнение изотермы адсорбции Ленгмюра.
III. Обратить внимание на:
1) размерность величин адсорбции на подвижной границе фаз и на твердых адсорбентах.
Примеры решения типовых задач
Пример 1
Расчет величины поверхностной активности ПАВ по изменению поверхностного натяжения; расчет величины поверхностной активности гомолога по правилу Траубе, расчет величины адсорбции ПАВ в заданном интервале концентраций.
Поверхностное натяжение водного раствора пентанола с концентрацией 0,030 моль/дм3 равно 55,3 10-3 Н/м при 298 К. Оцените величину адсорбции бутанола из раствора с концентрацией 0,015 моль/дм3 при той же температуре.
Решение. Найдем поверхностную активность пентанола g(С5Н11OН) в интервале концентраций C1 = 0 (т.е. чистый растворитель) - C2 = 0,030 моль/дм3 :
g(С5Н11OН) = -
- коэффициент поверхностного натяжения воды, справочная величина (табл.11.02.).
В соответствии с правилом Траубе поверхностная активность бутанола, предшествующего члена гомологического ряда предельных одноатомных спиртов, будет в тех же условиях примерно в 3,2 раза меньше:
g(С4Н9OН) =
Поскольку концентрация раствора бутанола равна 0,015 моль/дм3 является серединой интервала, в котором рассчитывалась поверхностная активность, величина адсорбции из этого раствора рассчитывается по уравнению Гиббса:
Г(C4H9OH) =
g(С5Н11OН) =
g(С4Н9OН) =
Г(С4Н9OН) =
Ответ: величина адсорбции бутанола приблизительно равна 1 10-6 моль/м2.
Пример 2
Расчет длины и площади поперечного сечения молекулы по величине предельной адсорбции.
Площадь поперечного сечения молекулы пальмитиновой кислоты равна 2,110-19м2. Определите величину предельной адсорбции пальмитиновой кислоты на границе бензольный раствор-воздух. Вычислите объем раствора, содержащего 4,24 г кислоты в 1 л бензола, требуемый для покрытия монослоем (после испарения бензола) 1,5 м2 водной поверхности.
Решение. Величину предельной адсорбции данного вещества рассчитывают по уравнению:
Гmax =
Для покрытия площади S монослоем молекул с площадью поперечного сечения S мол требуется S/S мол молекул. Количество вещества, соответствующее этому числу молекул, рассчитывают по соотношению:
n = : NA
Молярная концентрация имеющего раствора пальмитиновой кислоты равна:
С(к-ты) =
Требуемый объем раствора равен: Vp = /с
Г max = = 7,9 10-6 моль/м2
n = = 1,19 10-5 моль
с (к-ты) = = 1,66 10-2 моль/дм3
V =
Ответ: Г max = 7,9 10-6 моль/м2 Vр = 0,715 мл
__________________________________________________________________________________
Пример 3
Расчет величины адсорбции по уравнению Ленгмюра при заданных константах.
Экспериментально установлено, что максимальная величина адсорбции ПАВ (Mr = 60) некоторым адсорбентом составляет 5,010-3 моль/г; величина равна 0,06 моль/дм3. Сколько граммов вещества адсорбировалось из раствора с равновесной концентрацией 0,1 моль/дм3 двумя граммами данного адсорбента?
Решение. По уравнению Ленгмюра рассчитывают величину адсорбции ПАВ:
а = a max
Количество адсорбированного вещества на адсорбенте массой 2 г будет в 2 раза больше.
Масса адсорбированного вещества будет равна:
m (ПАВ) = n (ПАВ) М(ПАВ)
а = = 3,1 10-3 моль/г
(ПАВ) = 3,110-3 моль/г 2 г = 6,2 10-3 моль
m(ПАВ) = 6,210-3 моль 60 г/моль = 0,37 г
Ответ: масса адсорбированного вещества равна 0,37 г.
Пример 4
Расчет величины адсорбции на твердом адсорбенте по изменению концентрации адсорбтива.
Раствор уксусной кислоты объемом 60 см3 раствора уксусной кислоты с концентрацией 0,1 моль/дм3 взболтали с 2 г адсорбента. После достижения равновесия пробу раствора объемом 10 см3 оттитровали раствором гидроксида натрия с = 0,05 моль/дм3. На титрование затрачено 15,0 см3 титранта. Вычислите величину адсорбции уксусной кислоты.
Решение. Равновесная концентрация уксусной кислоты равна (по результатам титрования):
(СН3СООН) =
Величину адсорбции рассчитывают по:
а =
с(СН3СООН) = = 0,075 моль/см3
а =
Ответ: а (СН3СООН) = 6,25 10-4 моль/г
Задания для самостоятельной работы из «Сборника задач и упражнений по общей химии».
10.31; 10.35; 10.40; 10.46,10.52; 10.54
Лабораторная работа 9.3
Влияние различных факторов на адсорбцию из растворов
Цель: Определить влияние удельной поверхности адсорбента, природы адсорбента, адсорбтива и растворителя на адсорбцию красителей из растворов.
Задание: Выяснить влияние на величину адсорбции перечисленных выше факторов.
Оборудование и реактивы: Штатив с пробирками, воронки. Водные р-ры метиленового синего, фуксина, эозина, р-р метиленового синего в этаноле, уголь активированный, каолин, кремниевая кислота, фильтровальная бумага.
Сущность работы: Визуальное наблюдение: 1) окраски адсорбента; 2) окраски фильтратов
после проведения адсорбции.
Выполнение эксперимента:
Определениие знака заряда окрашенных ионов красителей капиллярным методом на фильтровальной бумаге.
Перед проведением основных опытов устанавливают по степени растекания пятна водного раствора красителя, к каким классам (кислотным или основным красителям) относятся объекты анализа
Метиленовый синий
Эозин
Фуксин
Наблюдения:
Вывод:
Опыт 1. Влияние природы адсорбента и адсорбтива на адсорбцию.
Адсорбент
Адсорбтив
Растворитель
Наблюдения:
Вывод:
Опыт 2. Влияние природы растворителя на адсорбцию.
Адсорбент Адсорбент
Адсорбтив Адсорбтив
Растворитель- Растворитель
Наблюдения:
Наблюдения:
Вывод:
Опыт 3. Влияние удельной поверхности адсорбента на адсорбцию.
Адсорбент
Адсорбтив
Растворитель
Наблюдения:
Вывод:
Лабораторная работа 9.5
Хроматография
Цель: Приобрести навыки разделения смеси веществ с помощью тонкослойной и бумажной хроматографии.
Задание: Разделить смесь катионов меди (П) и железа (Ш) хроматографическим методом.
Оборудование и реактивы: Чашка Петри, химический стакан, стеклянные палочки,
капилляры, хроматографическая бумага. Р-р гксацианоферрата (П) калия(с=0,05 моль/л), насыщенный р-р сульфата меди (П) и нитрата железа (Ш).
Сущность работы: Для разделения смеси ионов меди(П) и железа (Ш) используется адсорбционная хроматография на бумаге.Различная скорость перемещения ионов обусловлена различием их адсорбционной способности. Разделенные хроматографические зоны обнаруживаются цветной реакцией с гексацианоферратом (П) калия.
Выполнение эксперимента:
1.Наносят разделяемую смесь катионов меди(П) и железа (Ш) на бумагу.
2. Проводят хроматографическое разделение.
3. Обнаруживают разделенные зоны.
4. Описывают полученную хроматограмму.
Рисунок:
Уравнения реакций:
*В выводе указывают вид хроматографии по технике выполнения и доминирующему механизму.
Объясняют расположение окрашенных зон.
Вывод: