Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

ТЕМА 10 Физическая химия поверхностных явлений Теоретический материал к занятию- К поверхностны1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

ТЕМА № 10

Физическая химия поверхностных явлений

 Теоретический материал  к занятию:

К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз; они обусловлены особенностями состава и структуры поверх¬ностей.

Образование поверхности раздела фаз требует совер¬шения работы, следовательно, оно сопровождается увеличением свободной энергии системы. В поверхностном слое накапливается некоторый избыток энергии — по¬верхностная энергия Гиббса Gs, пропорциональная пло¬щади поверхности раздела фаз S:

Gs = σS

где σ — коэффициент поверхностного на¬тяжения, т. е. работа образования единицы поверх¬ности. Коэффициент поверхностного натяжения также численно равен силе, приложенной к единице длины кон¬тура, ограничивающего поверхность, и направленной вдоль этой поверхности перпендикулярно контуру; dim σ = МТ-2, единица измерения — джоуль на квадратный метр (Дж/м2) или ньютон на метр (Н/м). Следует отметить, что коэффициент поверхностного на¬тяжения часто называют поверхностным натяжением.

Самопроизвольное уменьшение свободной поверхност¬ной энергии  Gs в однокомпонентных системах возможно только за счет уменьшения площади поверхности разде¬ла фаз. В многокомпонентных системах уменьшение Gs возможно также за счет уменьшения величины поверх¬ностного натяжения в результате самопроизвольного перераспределения молекул компонента между объемом фазы и поверхностью раздела. Это явление называется адсорбцией.

Границы раздела фаз газ — жидкость и жидкость — жидкость принято называть подвижными, а границы газ — твердое тело, жидкость — твердое тело, твердое тело — твердое тело — неподвижными. Ниже будут рас¬смотрены адсорбционные процессы в таких системах, в которых жидкость представлена водным раствором.

В зависимости от природы растворенного вещества (компонента) возможно увеличение или уменьшение его концентрации в поверхностном слое.

Положительно адсорбирующиеся вещества умень¬шают коэффициент поверхностного натяжения водной фазы, их называют поверхностно-активными веществами (ПАВ).       

Молекулы ПАВ имеют характерные черты строе¬ния: они дифильны,  т. е. содержат гидрофобные и гидрофильные фрагменты, и асимметричны.  К ПАВ относятся одноатомные спирты, однооснов¬ные карбоновые кислоты, амины, эфиры и др.

Поверхностно-неактивные вещества (адсорбирующие¬ся отрицательно) либо не изменяют коэффициент поверхностного натяжения водной фазы, либо незначительно его увеличи¬вают. К ним относится большин¬ство неорганических веществ  (кислоты, щелочи, соли).    

Количественной мерой адсорб¬ции служит величина адсорбции Г (гамма);dimГ = L-2N, единица измерения — моль на квадрат¬ный метр (моль/м2). Связь меж¬ду величиной адсорбции в интер¬вале концентраций и коэффици¬ентом поверхностного натяжения устанавливает уравнение Гиббса:

       сср    d

Г = -    ,

   RT    dc

где  Δσ — приращение коэффициента поверхностного на¬тяжения, соответствующее приращению концентрации Δc;

cср — среднее значение концентрации раствора в ин-тервале концентраций.

Для ПАВ при увеличении концентрации (Δс > 0) наблюдается уменьшение коэффициента поверхностного натяжения (Δσ < 0). Величину - (dσ/dc)  называют   по-верхностной активностью; она характери¬зует способность вещества изменять величину поверх¬ностного натяжения раство¬ра. В соответствии с пра¬вилом Траубе увели¬чение длины цепи молекул ПАВ в данном гомологиче¬ском ряду (карбоновые кис¬лоты, спирты, амины) вызы¬вает увеличение поверхност¬ной активности в 3—3,5 раза при переходе к каждому последующему гомологу.  

Величина адсорбции зависит от природы соприкасаю¬щихся фаз, природы и концентрации растворенного ве¬щества. С увеличением концентрации ПАВ величина адсорбции сначала резко возрастает, но затем дальней¬шее увеличение концентрации ПАВ вызывает незначи¬тельное увеличение этой величины и в конце концов ве¬личина адсорбции перестает зависеть от концентрации ПАВ

По теории Лэнгмюра предельной адсорбции Гмакс соответствует образование насыщенного (мономолекулярного) адсорбционного слоя, что позволяет рассчитать площадь S поперечного сечения, занимаемую одной молекулой, и ее длину l :

    1

S =  ,

      ГмаксNA

               ГмаксМ

        l =                  

                  

где  NA - постоянная Авогадро,

- плотность растворенного вещества,

М – молярная масса.

Величина адсорбции уменьшается при увеличении температуры, что обусловлено усилением интенсивности теплового движения молекул и разупорядочиванием структуры поверхностного слоя.

Причиной адсорбции на поверхности твердых тел является нескомпенсированность силовых полей молекул, находящихся в зонах деформации регулярно устроенной поверхности. Такие зоны называют активными центрами; адсорбцию, проходящую на них, разделяют на физиче¬скую и химическую (хемосорбция). Любая поверхность, даже хорошо отшлифованная, имеет свой микрорель¬еф — совокупность впадин и выступов. Физическая адсорбция обусловлена межмолекулярным взаимо¬действием (ван-дер-ваальсовым; в ряде случаев — за счет образования водородных связей) и проходит, как правило, на активных центрах, находящихся во впади¬нах микрорельефа поверхности. Центры химической адсорбции находятся в основном на выступах микрорельефа; при хемосорбции устанавливаются химические связи между атомами, вхо¬дящими в состав активного центра, и атомами адсорби¬рующегося вещества.

Различия между физической адсорбцией и хемосорбцией заключаются в следующем:

1) значения стандартных энтальпий хемосорбции (порядка 80—800 кДж/моль) значительно выше тако¬вых величин физической адсорбции (8—20 кДж/моль), значения стандартных энтальпий хемосорбции близки  ΔH° химических реакций;

Классический пример адсорбции на твердом теле — поглощение различных газов активированным углем. Твердое тело, на поверхности которого происходит адсорбция, называют адсорбентом, а само адсорбирую¬щееся вещество — адсорбтивом. Практически процесс поглощения вещества поверхностным слоем часто допол¬няется поглощением адсорбтива всем объемом твердого тела — абсорбцией, суммарный процесс (адсорб¬ция + абсорбция) называют в таком случае просто сорбцией. Сорбция — обратимый процесс. Удаление сорбированного вещества называют десорбцией.

Количественно адсорбция на подвижной (Г) и непо¬движной (a) границах раздела описывается уравнением Ленгмюра:

            c

a = aмакс

               + с

где амакс - величина предельной ад¬сорбции, она достигается при занятии всех активных центров адсорбента;  dim a = М-1N, единица измере¬ния - моль/г;  - постоянная величина, равная отношению кон¬стант скоростей десорбции и адсорбции, имеющая раз¬мерность концентрации.

В некоторых случаях для описания адсорбции используют эмпирическое уравнение Фрейндлиха:

a = Kcn

  где  n и K -  константы, определяемые экспериментально.

Величину адсорбции из раствора на твердом адсор¬бенте экспериментально определяют по изменению кон¬центрации растворенного вещества после завершения адсорбции, т. е. установления адсорбционного равнове¬сия по формуле:

     (co-c)V

a = ———

  m

где  co и с — исходная и равновесная концентрация рас¬твора соответственно, моль/л;

V - объем раствора, из которого производилась адсорбция, л; m — масса адсор¬бента, г.

Константы уравнения Ленгмюра опреде¬ляются экспериментально по графику 1/a = f(1/c).

Величина адсорбции значительно зависит от удель¬ной поверхности адсорбента. Удельная поверх¬ность адсорбента Sуд равна отношению площади его по¬верхности к объему. Она обратно пропорциональна раз¬меру частиц и зависит от их формы. При дроблении и измельчении твердых тел величина их удельной поверхности увеличивается вплоть до зна¬чений, достигающих тысячи квадратных метров на куби-ческий сантиметр твердого тела. Чем больше удельная поверхность адсорбента, тем больше имеется активных центров и, следовательно, больше величина адсорбции.

Величина адсорбции зависит от природы адсорбента и адсорбтива: чем ближе по полярности адсорбент и адсорбтив, тем полнее происходит адсорбция.

При адсорбции из растворов большое значение имеет и полярность растворителя. Наибольшей склонностью к адсорбции обладают вещества с полярностью, промежу-точной между полярностями контактирующих фаз. Из водных растворов ПАВ хорошо адсорбируются неполяр¬ными адсорбентами (в том числе активированным уг¬лем), а на полярных адсорбентах (карбонаты, алюмосиликаты, оксиды) ПАВ хорошо адсорбируются из непо¬лярных сред. В основе этих явлений лежит конкуренция между молекулами адсорбтива и растворителя за актив¬ные центры адсорбента.

В соответствии с правилом Ребиндера адсорбция идет в сторону выравнивания полярностей контактирую¬щих фаз и тем сильнее, чем больше начальная разность полярностей.

Адсорбция из растворов электролитов осложняется ярко выраженным характером электростатических взаи¬модействий, приводящих к образованию на поверхности адсорбента двойного электрического слоя (ДЭС).

Различают следующие разновидности адсорбции из растворов электролитов:

1) эквивалентную;

2) обменную;

3) избирательную.

При эквивалентной адсорбции катионы и анионы адсорбируются в таких количествах, которые соответствуют нулевому суммарному заряду. Эквивалент¬ную адсорбцию формально можно рассматривать как ад¬сорбцию неэлектролита, так как при этом не возникают отрицательно или положительно заряженные поверх¬ности.

Обменная адсорбция заключается в обмене ионами между адсорбентом и раствором: адсорбенты, способные к обмену катионов, называются катионитами;

анионов — анионитами.

При избирательной адсорбции на по¬верхности адсорбента накапливаются либо катионы, либо анионы. Ионы противоположного заряда сохраняют при этом относительную подвижность в растворе. Таким об¬разом, в результате избирательной адсорбции возникают заряженные поверхности. В соответствии с правилом Панета — Фаянса из рас¬твора преимущественно адсорбируются ионы, которые входят в состав кристаллической решетки твердой фазы, или им изоморфные. Так, например, из раствора, содер¬жащего хлорид бария и нитрат стронция, на поверхнос¬ти кристаллов сульфата бария адсорбируются ионы ба¬рия (входят в кристаллическую решетку) и ионы строн¬ция (изоморфны ионам бария); поверхность твердой фазы сульфата бария приобретает положительный заряд. Если тот же адсорбент контактирует с раствором сульфата натрия и перманганата калия, то избирательно на его поверхности адсорбируются сульфат-ионы (входят в кристаллическую решетку) и перманганат-ионы (изо¬морфны сульфат-ионам). Поверхность твердой фазы при¬обретает отрицательный заряд.  Адсорбция ионов зависит от радиуса иона (она тем больше, чем больше радиус иона) и величины его заряда (многозарядные ионы адсорбируются лучше).

 

До решения задач необходимо:

I. Выучить определения основных понятий:

1) адсорбция, предельная адсорбция;

2) поверхностное натяжение;

3) коэффициент поверхностного натяжения;

4) поверхностно-активные и поверхностно-неактивные вещества;

5) поверхностная активность;

6) адсорбент, адсорбтив;

7) правило выравнивания полярностей Ребиндера.

II. Разобрать следующие вопросы:

1) подвижная и неподвижная поверхность раздела фаз;

2) связь между величиной адсорбции и коэффициентом поверхностного натяжения (уравнение Гиббса);

3) изменение величины поверхностной активности в гомологическом ряду (правило Траубе);

4) связь величины предельной адсорбции с площадью поперечного сечения и осевой длины молекулы;

5) уравнение изотермы адсорбции Ленгмюра.

III. Обратить внимание на:

1) размерность величин адсорбции на подвижной границе фаз и на твердых адсорбентах.

Примеры решения типовых задач

Пример 1

Расчет величины поверхностной активности ПАВ по изменению поверхностного натяжения; расчет величины поверхностной активности гомолога по правилу Траубе, расчет величины адсорбции ПАВ в заданном интервале концентраций.

Поверхностное натяжение водного раствора пентанола с концентрацией 0,030 моль/дм3 равно 55,3 10-3 Н/м при 298 К. Оцените величину адсорбции бутанола из раствора с концентрацией 0,015 моль/дм3 при той же температуре.

Решение.  Найдем поверхностную активность пентанола g(С5Н11OН) в интервале концентраций C1 = 0 (т.е. чистый растворитель) - C2 = 0,030 моль/дм3 :

g(С5Н11OН) = -

- коэффициент поверхностного натяжения воды, справочная величина (табл.11.02.).

В соответствии с правилом Траубе поверхностная активность бутанола, предшествующего члена гомологического ряда предельных одноатомных спиртов, будет в тех же условиях примерно в 3,2 раза меньше:

g(С4Н9OН) =

Поскольку концентрация раствора бутанола равна 0,015 моль/дм3 является серединой интервала, в котором рассчитывалась поверхностная активность, величина адсорбции из этого раствора рассчитывается по уравнению Гиббса:

Г(C4H9OH) =

g(С5Н11OН) =

g(С4Н9OН) =

Г(С4Н9OН) =

Ответ: величина адсорбции бутанола приблизительно равна 1 10-6 моль/м2.

Пример 2

Расчет длины и площади поперечного сечения молекулы  по величине предельной адсорбции.

Площадь поперечного сечения молекулы пальмитиновой кислоты равна 2,110-19м2. Определите величину предельной адсорбции пальмитиновой кислоты на границе бензольный раствор-воздух. Вычислите объем раствора, содержащего 4,24 г кислоты в 1 л бензола, требуемый для покрытия монослоем (после испарения бензола) 1,5 м2 водной поверхности.

Решение.  Величину предельной адсорбции данного вещества рассчитывают по уравнению:

Гmax =

  Для покрытия площади S монослоем молекул с площадью поперечного сечения S мол требуется S/S мол молекул. Количество вещества, соответствующее этому числу молекул, рассчитывают по соотношению:

n = : NA

Молярная концентрация имеющего раствора пальмитиновой кислоты равна:

С(к-ты) =

Требуемый объем раствора равен: Vp =

Г max = = 7,9 10-6 моль/м2

n = = 1,19 10-5 моль

с (к-ты) = = 1,66  10-2 моль/дм3

V =

Ответ: Г max = 7,9 10-6 моль/м2 Vр = 0,715 мл

__________________________________________________________________________________

 Пример 3

Расчет величины адсорбции по уравнению Ленгмюра при заданных константах.

Экспериментально установлено, что максимальная величина адсорбции ПАВ (Mr = 60) некоторым адсорбентом составляет 5,010-3 моль/г; величина  равна 0,06 моль/дм3. Сколько граммов вещества адсорбировалось из раствора с равновесной концентрацией 0,1 моль/дм3 двумя граммами данного адсорбента?

Решение.  По уравнению Ленгмюра рассчитывают величину адсорбции ПАВ:

а = a max

Количество адсорбированного вещества на адсорбенте массой 2 г будет в 2 раза больше.

Масса адсорбированного вещества будет равна:

m (ПАВ) = n (ПАВ)  М(ПАВ)

а = = 3,1  10-3 моль/г

(ПАВ) = 3,110-3 моль/г   2 г = 6,2 10-3 моль

m(ПАВ) = 6,210-3 моль  60 г/моль = 0,37 г

Ответ: масса адсорбированного вещества равна 0,37 г.

Пример 4

Расчет величины адсорбции на твердом адсорбенте по изменению концентрации адсорбтива.

Раствор уксусной кислоты  объемом 60 см3 раствора уксусной кислоты с концентрацией 0,1 моль/дм3 взболтали с 2 г адсорбента. После достижения равновесия пробу раствора объемом 10 см3 оттитровали раствором гидроксида натрия с = 0,05 моль/дм3. На титрование затрачено 15,0 см3 титранта. Вычислите величину адсорбции уксусной кислоты.

Решение.  Равновесная концентрация уксусной кислоты равна (по результатам титрования):

(СН3СООН) =

Величину адсорбции рассчитывают по:

а =

с(СН3СООН) = = 0,075 моль/см3

а =

Ответ: а (СН3СООН) = 6,25 10-4 моль/г

 

 Задания для самостоятельной работы из  «Сборника задач и упражнений по общей химии».

10.31; 10.35; 10.40; 10.46,10.52; 10.54

 Лабораторная работа 9.3

Влияние различных факторов на адсорбцию из растворов

Цель: Определить влияние удельной поверхности адсорбента, природы адсорбента, адсорбтива и растворителя на адсорбцию красителей из растворов.

Задание: Выяснить влияние на величину адсорбции перечисленных выше факторов.

Оборудование и реактивы: Штатив с пробирками, воронки. Водные р-ры метиленового синего, фуксина, эозина, р-р метиленового синего в этаноле, уголь активированный, каолин, кремниевая кислота, фильтровальная бумага.

Сущность работы: Визуальное наблюдение: 1) окраски адсорбента; 2) окраски фильтратов

после проведения адсорбции.  

Выполнение эксперимента:

Определениие знака  заряда окрашенных ионов красителей капиллярным методом на фильтровальной бумаге.

Перед проведением основных опытов устанавливают по степени растекания пятна водного раствора красителя, к каким классам (кислотным или основным красителям) относятся объекты анализа

Метиленовый синий –

Эозин –

Фуксин –

Наблюдения:

Вывод:

Опыт 1. Влияние природы адсорбента  и адсорбтива на адсорбцию.

Адсорбент –

Адсорбтив –

Растворитель –

Наблюдения:

Вывод:

Опыт 2. Влияние природы растворителя на адсорбцию.

Адсорбент –                                                                             Адсорбент –

Адсорбтив –                                                                             Адсорбтив –

Растворитель-                                                                           Растворитель –

Наблюдения:

Наблюдения:

Вывод:

Опыт 3. Влияние удельной поверхности адсорбента на адсорбцию.

Адсорбент –

Адсорбтив –

Растворитель –

Наблюдения:

Вывод:

Лабораторная работа 9.5

Хроматография

Цель: Приобрести навыки разделения смеси веществ с помощью тонкослойной и бумажной хроматографии.

Задание: Разделить смесь катионов меди (П) и железа (Ш) хроматографическим методом.

Оборудование и реактивы: Чашка Петри, химический стакан, стеклянные палочки,

капилляры, хроматографическая бумага. Р-р гксацианоферрата (П) калия(с=0,05 моль/л), насыщенный р-р сульфата меди (П) и нитрата железа (Ш).

Сущность работы: Для разделения смеси ионов меди(П) и железа (Ш) используется адсорбционная хроматография на бумаге.Различная скорость перемещения ионов обусловлена различием их адсорбционной способности. Разделенные хроматографические зоны обнаруживаются цветной реакцией с гексацианоферратом (П) калия.

Выполнение эксперимента:

1.Наносят разделяемую смесь катионов меди(П) и железа (Ш) на бумагу.

2. Проводят хроматографическое разделение.

3. Обнаруживают разделенные зоны.

4. Описывают полученную хроматограмму.

Рисунок:

Уравнения реакций:

*В выводе указывают вид хроматографии по технике выполнения и доминирующему механизму.

Объясняют расположение окрашенных зон.

Вывод:




1. Исполнительное производство
2. тема совокупность элементов находящихся в отношениях и связях которые образуют целостность единство.html
3. принудительных мер имущественного характера
4. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Льв
5. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата юридичних наук Одеса ~ Дис
6. Программная реализация модального управления для линейных стационарных систем
7. I. Произведенія литературныя.
8. Балалар аурулары п~ні бойынша интернні~ ~Ж ж~не т~жірбиелік саба~ты~ та~ырыпты~ жоспары
9. книжника і філософа якого ще не було в руській землі
10. Пути преодоления религии
11. Задание 1 1Виды БУ- Финансовый учёт формирует инфию кот харакет текущее финансовое состояние предпр
12. но фиксированные номинальные доходыт
13. Понятие, предмет, метод и система трудового права
14. Российская экономика переходного период
15. Боярский Михаил Сергеевич
16. Формирование инновационных систем управления производством
17. і Тілге жа~сы немесе жаман норма~а жатады не жатпайды деген сынды ~~ымдарды ~олдану~а болмайды
18. 11 Циклы
19. Взыскание алиментов на ребенка
20. СОЦИАЛЬНАЯ ХАРТИЯ МЕДИЦИНСКИХ СЕСТЁР РОССИЙСКОЙ ФЕДЕРАЦИИ Декларация медицинских сестёр России Мы