У вас вопросы?
У нас ответы:) SamZan.net

Тема 3- Задачи сводимые к рациональным уравнениям

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.2.2025

Тема 3: « Задачи, сводимые к рациональным уравнениям».

Теоретическая справка.

1. Движение по окружности.

2. Движение протяженных тел.

3. Арифметическая прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа  (шага или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Сумма первых  членов арифметической прогрессии  может быть найдена по формулам

 , где  — первый член прогрессии,  — член с номером  — количество суммируемых членов.

 , где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

4. Геометрическая прогрессия.

Геометри́ческая прогре́ссия — последовательность чисел (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число (знаменатель прогрессии), .

Любой член геометрической прогрессии может быть вычислен по формуле:

Сумма геометрической прогрессии

 

Задача 1. Из одной точки круговой трассы, длина которой равна 15 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, скорость второго равна 60 км/ ч. Сколько минут с момента старта пройдет, прежде чем первый автомобиль будет опережать второй ровно на 1 круг?

Задача 2. Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 20 км. Через сколько минут мотоциклы поравняются в первый раз, если скорость одного из них на 12 км/ч больше скорости другого?

Задача 3. Две точки равномерно вращаются по окружности. Первая совершает оборот на 5 секунд быстрее второй и делает за минуту на 2 оборота больше, чем вторая. Сколько оборотов минуту совершает вторая точка?

Задача 4. Из пункта А круговой трассы выехал велосипедист, а через 20 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через полчаса после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 24 км. Ответ дайте в км/ч.

Задача 5. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 30 секунд. Найдите длину поезда в метрах.

Задача 6. Человек в купе идущего со скоростью 60 км/ч пассажирского поезда, увидев идущий навстречу по параллельной колее товарный состав, засек время, за которое тот прошёл мимо него. Найдите длину товарного состава, если это время равно 20 секундам, а скорость товарного состава равна 30 км/ч. Ответ дайте в метрах.

Задача 7. Лида спустилась по движущемуся эскалатору за 24 секунды. По неподвижному эскалатору с той же скоростью относительно него она спустилась за 42 секунды. За сколько секунд она спустится, стоя на ступеньках движущегося эскалатора.

Задача 8. Вычислите

1. если

2. , если

3. , если

4. , если

5.  если

Задача 9. Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.

Задача 10. Васе надо решить 288 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 6 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 10 дней.

Задача 11. Вере надо подписать 640 открыток. Ежедневно она подписывает  на одно и тоже количество открыток больше по сравнению с предыдущим днем. Известно, что за первый день Вера подписала 10 открыток. Определите, сколько открыток было подписано за четвертый день, если вся работа была выполнена за 16 дней.

Задача 12. Вычислите

1. если

2.  если

3. если

4.  если

Задача 13. Бизнесмен Бубликов получил в 2000 году прибыль в размере 5000р. Каждый следующий год его прибыль увеличивалась на 300% по сравнению с предыдущим годом. Сколько рублей заработал Бубликов за 2003 год?

Задача 14. У гражданина Лукина 5 марта 2003 года родился сын. По этому случаю он открыл в некотором банке вклад в 1000 рублей. Каждый следующий год 5 марта он пополнял вклад на 1000 рублей. По условию договора банк ежегодно 4 марта начислял 10 % на сумму вклада. Через 5 лет у гражданина Лукина родился еще один сын, и он открыл в другом банке еще один вклад, уже в 2100 рублей, и каждый следующий год пополнял этот вклад на 2100 рублей, а банк ежегодно начислял 21% на сумму вклада. Через сколько лет после рождения первого сына суммы на вкладах сравняются, если деньги из вкладов не изымаются?

Домашнее задание

Задача 1. Из одной точки круговой трассы, длина которой равна 10 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 90 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Задача 2. Лыжные соревнования проходят на круговой лыжне. Первый лыжник проходит один круг на 2 минуты быстрее второго и через час опережает второго ровно на один круг. За сколько минут второй лыжник проходит один круг?

Задача 3. Часы со стрелками показывают 9 часов 00 минут. Через сколько минут минутная стрелка в третий раз поравняется с часовой?

Задача 4. Из точки А круговой трассы одновременно начинают равномерное движение в противоположных направлениях два тела. Первое тело к моменту их встречи проходит на 100 метров больше, чем второе, и возвращается в точку А через 9 минут после встречи. Найдите длину трассы в метрах, если второе тело возвращается в точку А через 16 минут после встречи.

Задача 5. Поезд, двигаясь равномерно со скоростью 54 км/ч, проезжает мимо идущего параллельно путям со скоростью 6 км/ч навстречу ему пешехода за 30 секунд. Найдите длину поезда в метрах.

Задача 6. Поезд, двигаясь равномерно со скоростью 90 км/ ч, проезжает мимо лесополосы, длина которой равна 800 метрам, за 1 минуту. Найдите длину поезда в метрах.

Задача 7. По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно  70 км/ ч и 50 км/ч. Длина пассажирского поезда равна 600 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо товарного поезда, равно 30 секундам. Ответ дайте в метрах.

Задача 8. Петя сбежал вниз по движущемуся эскалатору и насчитал 30 ступенек. Затем он пробежал вверх по тому же эскалатору с той же скоростью относительно эскалатора и насчитал 70 ступенек. Сколько ступенек он насчитал бы, спустившись по неподвижному эскалатору?

Задача 9. Вычислите

1. если

2. , если

3. , если

5.  если

Задача 10. Рабочие прокладываю туннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.

Задача 11. Турист идет из одного города в другой, каждый день проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно, что за первый день турист прошел 10 километров. Определите, сколько километров прошел турист за третий день, если весь путь он прошел за 6 дней, а расстояние между городами составляет 120 километров.

Задача 12. Строители строят телебашню высотой 200 метров. Известно, что каждая секция башни длиннее предыдущей на одно и то же число метров, а сумма длин первой и последней секций равна 40 метрам. Определите, из скольких секций состоит телебашня.

Задача 13. Вычислите

1. если

2.  если

3. если

4.  если

Задача 14. Инженер Иванов после открытия своего дела получил в 2000 году прибыль в размере 7000 рублей. Каждый следующий год его прибыль увеличивалась на 400% по сравнению с предыдущим годом. Сколько рублей заработал Иванов в период с 2000 по 2003 год?

Задача 15. Компания «Альфа» начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 5000 долларов. Каждый год начиная с 2002 года она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Бета» начала инвестировать средства в другую отрасль в 2003 году, имея капитал в размере 10000 долларов, начиная с 2004 года ежегодно получала прибыль, составляющую 400% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2006 года, если прибыль из оборота не изымалась?

Ответы. 1) 75. 2) 12. 3) 180. 4) 700. 5) 500. 6) 700. 7) 400. 8) 42. 9) 8; 0,6; 21; 8.

10) 97. 11) 18. 12) 10. 13) 0,02; 512; 15,5; 0,4. 14) 109200. 15) 35000.  

Тема 4. « Задачи, сводимые к рациональным уравнениям»

Задача 1. Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?

Задача 2. На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей за час делает первый рабочий?

Задача 3. Даша и Маша пропалывают грядку за 12 минут, а одна Маша — за 20 минут. За сколько минут пропалывает грядку одна Даша?

Задача 4. Игорь и Паша красят забор за 9 часов. Паша и Володя красят этот же забор за 12 часов, а Володя и Игорь — за 18 часов. За сколько часов мальчики покрасят забор, работая втроем?

Задача 5. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объемом 375 литров она заполняет на 10 минут быстрее, чем первая труба заполняет резервуар объемом 500 литров?

Задача 6. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Задача 7. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 8. Первый сплав содержит 10% меди, второй  — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Задача 9. Виноград содержит 90% влаги, а изюм-5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Задача 10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Домашнее задание.

Задача 1. Заказ на 156 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает первый рабочий, если известно, что он за час делает на 1 деталь больше?

Задача 2. На изготовление 99 деталей первый рабочий тратит на 2 часа меньше, чем второй рабочий на изготовление 110 таких же деталей. Известно, что первый рабочий за час делает на 1 деталь больше, чем второй. Сколько деталей за час делает второй рабочий?

Задача 3. Один мастер может выполнить заказ за 12 часов, а другой — за 6 часов. За сколько часов выполнят заказ оба мастера, работая вместе?

Задача 4. Двое рабочих, работая вместе, могут выполнить работу за 12 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?

Задача 5. В помощь садовому насосу, перекачивающему 5 литров воды за 2 минуты, подключили второй насос, перекачивающий тот же объем воды за 3 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 25 литров воды?

Задача 6. Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов. Через 3 часа после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Задача 7. Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба?

Задача 8. Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?

Задача 9. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 10. Имеется два сплава. Первый содержит 10% никеля, второй  — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Задача 11. Имеется два сосуда. Первый содержит 30 кг, а второй  — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Ответы. 1) 12. 2) 11. 3) 4. 4) 20. 5) 6. 6) 9. 7) 10. 8) 6. 9) 17. 10) 100. 11) 18.




1. Формування маркетингової товарної політики підприємства (на прикладі ВАТ Рівне-Льон)
2. Тема 8. Организация заработной платы.html
3. Судимість- строки погашення та умови її зняття
4. . какая социальная группа выделена по территориальному поселенческому признаку 1
5. добыче газа 4 Собственный корреспондент журнала в странах Ближнего Востока Египет не относится к числу
6. Советская молодежь ~ газета о жизни молодежи Курсовая работа по истории отечественной журналистики
7. Целевые группы клиентов и их интересы
8. тема зародження некласичної Європейської філософії
9. Государственное управление предприятием в переходной экономике.html
10. Лекция 28 5.html