Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тема разрешима Существует несколько методов сократить число уравнений в системе

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

11. Метод  контурных  токов.

Любая электрическая цепь, состоящая из Р рёбер (ветвей, участков, звеньев) и У узлов, может быть описана системой уравнений в соответствии с 1-м и 2-м правилами Кирхгофа. Число уравнений в такой системе равно Р, из них У–1 уравнений составляется по 1-му закону Кирхгофа для всех узлов, кроме одного; а остальные РУ+1 уравнений – по 2-му закону Кирхгофа для всех независимых контуров. Поскольку независимыми переменными в цепи считаются токи рёбер, число независимых переменных равно числу уравнений, и система разрешима.

Существует несколько методов сократить число уравнений в системе. Одним из таких методов является метод контурных токов.

Метод использует тот факт, что не все токи в рёбрах цепи являются независимыми. Наличие в системе У–1 уравнений для узлов означает, что зависимы У–1 токов. Если выделить в цепи РУ+1 независимых токов, то систему можно сократить до РУ+1 уравнений. Метод контурных токов основан на очень простом и удобном способе выделения в цепи РУ+1 независимых токов.

Метод контурных токов основан на допущении, что в каждом из РУ+1 независимых контуров схемы циркулирует некоторый виртуальный контурный ток. Если некоторое ребро принадлежит только одному контуру, реальный ток в нём равен контурному. Если же ребро принадлежит нескольким контурам, ток в нём равен сумме соответствующих контурных токов (с учётом направления обхода контуров). Поскольку независимые контура покрывают собой всю схему (т.е. любое ребро принадлежит хотя бы одному контуру), то ток в любом ребре можно выразить через контурные токи, и контурные токи составляют полную систему токов.

12. Падение  напряжения  и  потери  в  электрических  цепях.

В линиях переменного тока следует различать падение и потерю напряжения. Потерей напряжения называется алгебраическая разность между напряжениями в начале и в конце линии. По допустимой потере напряжения выбирают площадь поперечного сечения проводов линии. Падением напряжения называется векторная разность между напряжениями в начале и в конце линий, численно равная произведению действующего значения тока в линии на ее полное сопротивление.

Мощность потерь в линии можно определить: Pi=Ui*I=(U1-U2)*I 

Уменьшить потери напряжения и потери мощности в линии электропередачи можно уменьшая силу тока в  проводах либо увеличивая сечение  проводов с целью уменьшения их сопротивления. Силу тока в проводах можно уменьшить увеличивая напряжение в начале линии.

13. Магнитное  поле  и  магнитная  цепь.

Магнитная цепь (МЦ) – часть электротехнического устройства, предназначенного для создания в определенном месте пространства магнитного поля требуемой интенсивности и направленности. Магнитные цепи составляют основу практически всех электротехнических устройств и многих измерительных приборов.

В составе МЦ имеются элементы, возбуждающие магнитное поле (одна или несколько намагничивающих обмоток или постоянные магниты) и магнитопровод, выполненный в основном из ферромагнитных материалов. Использование ферромагнетиков обусловлено их способностью многократно усиливать внешнее (по отношению к ним) магнитное поле, создаваемое намагничивающими обмотками или постоянными магнитами. Ферромагнетики отличает высокая магнитная проницаемость по сравнению с окружающей средой, что дает возможность концентрировать и направлять магнитные поля.

При анализе и расчете магнитных цепей пользуются следующими величинами, характеризующими магнитное поле:

– вектор магнитной индукции. Характеризует интенсивность и направленность магнитного поля в данной точке пространства. Единица измерения – тесла.

– вектор напряженности магнитного поля в данной точке. Единица измерения – ампер на метр.

Отношение – абсолютная магнитная проницаемость.

Магнитная цепь - последовательность магнетиков, по которым проходит магнитный поток. Понятием М. ц. широко пользуются при расчётах электрических машин, трансформаторов, постоянных магнитов, электромагнитов, реле, магнитных усилителей, электроизмерительных и других приборов. В технике распространены как М. ц., в которых магнитный поток практически полностью проходит в ферромагнитных телах (замкнутые М. ц.), так и М. ц., включающие помимо ферромагнетиков, диамагнитные среды (например, воздушные зазоры). Если магнитный поток возбуждается в М. ц. постоянными магнитами, то такую цепь называют поляризованной. М. ц. без постоянных магнитов называют нейтральной, магнитный поток в ней возбуждается током, протекающим в обмотках, охватывающих часть или всю М. ц. В зависимости от характера тока возбуждения различают М. ц. постоянного, переменного и импульсного магнитных потоков. Вследствие полной формальной аналогии электрических и магнитных цепей к ним применим общий математический аппарат. Например, для М. ц. аналогом Ома закона служит формула F = Ф · Rm, где Ф — магнитный поток, Rm — магнитное сопротивление, F — магнитодвижущая сила. К М. ц. применимы Кирхгофа правила и т.д. Существует, однако, и принципиальное различие между М. ц. и электрической цепью: в М. ц. с неизменным во времени потоком Ф не выделяется Джоулево тепло, то есть нет рассеяния электромагнитной энергии.

14. Основные  характеристики  магнитного  поля.

Магнитная индукция - интенсивность магнитного поля, т. е.способность его производить работу. Чем сильнее магнитное поле, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м2.

Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность. Следовательно, в однородном магнитном поле: Ф = BS
где  S — площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна: B = Ф/S .

Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость μа (1 Гн/м = 1 Ом*с/м). Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов, имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной,  μо= 4π * 10-7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ.

Относительная  магнитная проницаемость: μr= μa/ μо .

Напряженность магнитного поля H (э) не зависит от магнитных свойств  среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением: Нr = В/μо μ
                            

Следовательно, в среде с  неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
           Ферромагнетизм. Когда ферромагнитный материал помещается около магнита, он начинает притягиваться по направлению к области с наибольшим магнитным полем.
           Диамагнетизм. Когда диамагнитный материал помещается около магнита, он отталкивается от области наибольшего магнитного поля, в отличие от ферромагнитного материала.
           Парамагнетизм. Когда парамагнитный материал помещается около магнита, он начинает притягиваться по направлению к области с наибольшим магнитным полем, подобно ферромагнитному материалу. Отличие только в том, что притяжение это слабое.

15.  Ферромагнитные  материалы  в  магнитном  поле

К ферромагнетикам (ferrum – железо) относятся вещества, магнитная восприимчивость которых положительна и достигает значений . Намагниченность  и магнитная индукция  ферромагнетиков растут с увеличением напряженности магнитного поля  нелинейно, и в полях  намагниченность ферромагнетиков достигает предельного значения , а вектор магнитной индукции растет линейно с :

Ферромагнитные свойства материалов проявляются только у веществ в твердом состоянии, атомы которых обладают постоянным спиновым, или орбитальным, магнитным моментом, в частности у атомов с недостроенными внутренними электронными оболочками. Типичными ферромагнетиками являются переходные металлы. В ферромагнетиках происходит резкое усиление внешних магнитных полей. Причем для ферромагнетиков  сложным образом зависит от величины магнитного поля. Типичными ферромагнетиками являются Fe, Co, Ni, Gd, Tb, Dy, Ho, Er, Tm, а также соединения ферромагнитных материалов с неферромагнитными: , ,  и др.

 Существенным отличием ферромагнетиков от диа- и парамагнетиков является наличие у ферромагнетиков самопроизвольной (спонтанной) намагниченности в отсутствие внешнего магнитного поля. Наличие у ферромагнетиков самопроизвольного магнитного момента  в отсутствие внешнего магнитного поля означает, что электронные спины и магнитные моменты атомных носителей магнетизма ориентированы в веществе упорядоченным образом.

Ферромагнетики –  это вещества, обладающие самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, температуры.

Ферромагнетики, в отличие от слабо магнитных диа- и парамагнетиков, являются сильно магнитными веществами: внутреннее магнитное поле в них может в сотни раз превосходить внешнее поле.

   Основные отличия магнитных свойств ферромагнетиков:

  1. Нелинейная зависимость намагниченности от напряженности магнитного поля Н.
  2. При  зависимость магнитной индукции В от Н нелинейная, а при  – линейная (рис. 6.6).
  3. У каждого ферромагнетика имеется такая температура, называемая точкой Кюри ( ), выше которой это вещество теряет свои особые магнитные свойства.
  4. Существование магнитного гистерезиса.




1. Ценообразование на рынке государственных ценных бумаг
2. на тему Удосконалення маркетингової діяльності підприємства на прикладі ФКОболоньБровар
3. Надежда Петровна Ламанова
4. Статья АЮНизовский Сто великих археологических открытий http---wordweb
5. Долой самодержавие Долой войну
6. Ближайшие предки человека
7. тема сбора обобщения информации для определения налоговой базы на основе данных первичных документов сгруп
8. Объект Recordset и текстовые файлы (ASP)
9. Контрольная работа- Информационные системы в бухгалтерском учете.html
10. RO
11. реферат дисертації на здобуття наукового ступеня кандидата хімічних наук Дніпроп
12. реферат дисертації на здобуття наукового ступеня кандидата філологічних наук Харків ~ Ди
13. Лекция 1. Определение задачи и история развития нанотрибологии как науки Трибология и краткая история е.
14.  Официальный анамнез Ф
15. політичного устрою Скіфської держави.html
16. Контрольная работа- Критерии оценки эффективности инвестиционных проектов
17. Использование виртуальных экскурсий для помощи людям с ограниченными возможностями здоровья
18. на тему- Неотомизм
19. ЛАБОРАТОРНАЯ РАБОТА 4 АВТОМАТИЗИРОВАННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ НАДЁЖНОСТИ И КАЧЕСТВА АППАРАТУР
20.  Общая готовность детей к уроку