Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
СОДЕРЖАНИЕ
Введение
. Постановка задачи
2. Математические и алгоритмические основы решения задачи
2.1 Понятие гамма-функции
.2 Вычисление гамма функции
. Функциональные модели и блок-схемы решения задачи
4. Программная реализация решения задачи
5. Пример выполнения программы
Заключение
Список использованных источников и литературы
ВВЕДЕНИЕ
Выделяют особый класс функций, представимых в виде собственного либо несобственного интеграла, который зависит не только от формальной переменной, а и от параметра.
Такие функции называются интегралами зависящими от параметра. К их числу относится гамма функции Эйлера.
Гамма функция представляется интегралом Эйлера второго рода:
.
Гамма-функция расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z).
Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Через гамма-функции выражается большое число определённых интегралов, бесконечных произведений и сумм рядов.
1. Постановка задачи
Требуется реализовать основные способы вычисления гамма-функции:
1. Гамма-функции для целых положительных n равна
Г (n) = (n - 1)! = 1·2... (n - 1). (1)
2. Для x>0 гамма-функция получается из ее логарифма взятием экспоненты.
. (2)
3. Гамма-функции для ряда точек:
(3)
Пример 1.
Вычислить гамма-функции Г(6).
Решение:
Так как 6 положительное целое число, воспользуемся формулой (1):
Г(6) =(6-1)! = 5! = 120
Ответ: 120.
Пример 2.
Вычислить гамма-функции Г(0,5).
Решение:
Воспользуемся формулой (2):
.
.
Ответ: .
Пример 3.
Вычислить гамма-функции Г(1,5).
Решение:
Воспользуемся формулой (3):
y = 1.5 + 2 = 3.5.
.
Ответ: .
2. Математические и алгоритмические основы решения задачи
2.1 Понятие гамма-функции
Гамма функцию определяет интеграл Эйлера второго рода
(a) = (2.1)
сходящийся при .
Рисунок 1. График гамма-функции действительного переменного
Положим =ty, t > 0 , имеем
(a) =
и после замены , через и t через 1+t ,получим
Умножая это равенство и интегрируя по t и пределах от 0 до , имеем:
или после изменения в правой части порядка интегрирования ,получаем:
откуда
(2.2)
заменяя в (2,1) , на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
Рисунок 2. График модуля гамма-функции на комплексной плоскости
При целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал, порядок которого на единицу меньше взятого значения аргумента. При n=1 в (2.4) имеем
2.2 Вычисление гамма функции
Для вычисления гамма-функции используется аппроксимация логарифма гамма-функции. Сама же гамма вычисляется через него.
Для аппроксимации гамма-функции на интервале x>0 используется формула (для комплексных z) такого вида:
.
Она похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности eps не превышает . Кроме того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: Re z > 0.
Для получения действительной гамма-функции на интервале x>0 используется рекуррентная формула Gam(z+1)=z*Gam(z) и вышеприведенная аппроксимация Gam(z+1). Также можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму.
Во-первых, при этом потребуется вызов только одной математической функции логарифма, а не двух экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.
Для аппроксимации LnGam() логарифма гамма-функции получается формула:
Значения коэффициентов Ck являются табличными данными (Таблица 1).
k |
C |
1 |
2.5066282746310005 |
2 |
1.0000000000190015 |
3 |
76.18009172947146 |
4 |
-86.50532032941677 |
5 |
24.01409824083091 |
6 |
-1.231739572450155 |
7 |
0.1208650973866179e-2 |
8 |
-0.5395239384953e-5 |
Таблица 1. Значения коэффициентов Ck
Сама гамма-функция получается из ее логарифма взятием экспоненты. .
3 Функциональные модели и блок-схемы решения задачи
Функциональные модели и блок-схемы решения задачи представлены на рисунке 3, 4, 5, 6.
Условные обозначения:
Рисунок 3 Функциональная модель решения задачи для функции GAMMA
Рисунок 4 Функциональная модель решения задачи для функции GAMMA_ WHOLE
Рисунок 5 Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_LN
Рисунок 6 Блок-схема решения задачи для поиска логарифма гамма-функции GAMMA_POINT
4. Программная реализация решения задачи
;СПИСОК КОЭФФИЦИЕНТОВ
(SETQ CN '(2.5066282746310005 1.0000000000190015 76.18009172947146 -86.50532032941677 24.01409824083091
-1.231739572450155 0.1208650973866179e-2 -0.5395239384953e-5))
;ЛОГАРИФМ ГАММА ФУНКЦИИ
(DEFUN GAMMA_LN (X)
(SETQ SER (CADR CN))
(SETQ L (CDDR CN))
(SETQ Y X)
(DO
((J 2))
((>= J 8))
(SETQ Y (+ Y 1))
(SETQ CO (CAR L))
(SETQ SER (+ SER (/ CO Y)))
(SETQ L (CDR L))
(SETQ J (+ J 1))
)
(SETQ Y (+ X 5.5))
(SETQ Y (- Y (* (+ X 0.5) (LOG Y))))
(SETQ Y (+ (* -1 Y) (LOG (* (CAR CN) (/ SER X)))))
)
;ВЫЧИСЛЕНИЕ ГАММА-ФУНКЦИИ ЧЕРЕЗ ЕЕ ЛОГАРИФМ
;ГАММА ДЛЯ ПОЛОЖИТЕЛЬНЫХ АРГУМЕНТОВ
(DEFUN GAMMA (X)
(EXP (GAMMA_LN X))
)
;ГАММА ДЛЯ ЦЕЛЫХ ЧИСЕЛ
(DEFUN GAMMA_WHOLE (X)
(SETQ X (- X 1))
(DO
((RES 1) (RS 1))
((EQL X 0) RS)
(SETQ RS (* RES RS))
(SETQ X (- X 1))
(SETQ RES (+ RES 1))
)
)
;ГАММА ДЛЯ МНОЖЕСТВА ТОЧЕК
(DEFUN GAMMA_POINT (X)
(IF (> X 0)
(PROGN
(SETQ Y (+ X 2))
(SETQ GAM (* (SQRT (* 2 (/ PI Y))) (EXP (+ (* Y (LOG Y)) (- (/ (- 1 (/ 1 (* 30 Y Y))) (* 12 Y)) Y)))))
(SETQ RES (/ GAM (* X (+ X 1))))
)
;ИНАЧЕ
(PROGN
(SETQ J 0)
(SETQ Y X)
(DO
(())
((>= Y 0))
(SETQ J (+ J 1))
(SETQ Y (+ Y 1))
)
(SETQ GAM (GAMMA_POINT Y))
(DO
((I 0))
((>= I (- J 1)))
(SETQ GAM (/ GAM (+ X I)))
(SETQ I (+ I 1))
)
(SETQ RES GAM)
)
)
RES)
;ПОЛУЧАЕМ ЭЛЕМЕНТ ФУНКЦИИ
(SETQ FUNC 0)
(SETQ INPUT_STREAM (OPEN " D:\GAMMA.TXT" :DIRECTION :INPUT))
(SETQ FUNC (READ INPUT_STREAM))
(CLOSE INPUT_STREAM)
;РЕЗУЛЬТАТ ГАММА-ФУНКЦИИ
(SETQ OUTPUT_STREAM (OPEN "D:\RESULT.TXT" :DIRECTION :OUTPUT))
(PRINT 'RESULT_OF_GAMMA_FUNCTION OUTPUT_STREAM)
;ПРИМЕНЯЕМ ДЛЯ ПОЛОЖИТЕЛЬНЫХ ЧИСЕЛ
(PRINT (MAPCAR 'GAMMA FUNC) OUTPUT_STREAM)
;ПРИМЕНЯЕМ ДЛЯ ПОЛОЖИТЕЛЬНЫХ ЦЕЛЫХ ЧИСЕЛ
(PRINT (MAPCAR 'GAMMA_WHOLE FUNC) OUTPUT_STREAM)
;ПРИМЕНЯЕМ ДЛЯ ЛЮБЫХ ЧИСЕЛ
(PRINT (MAPCAR 'GAMMA_POINT FUNC) OUTPUT_STREAM)
(TERPRI OUTPUT_STREAM)
(CLOSE OUTPUT_STREAM)
;END
5 Пример выполнения программы
Пример 1.
Рисунок 7 Входные данные. Вычисление гамма-функции для положительных целых чисел
Рисунок 8 Выходные данные. Вычисление гамма-функции для положительных целых чисел
Пример 2.
Рисунок 9 Входные данные. Вычисление гамма-функции для положительных чисел
Рисунок 10 Выходные данные. Вычисление гамма-функции для положительных чисел
Пример 3.
Рисунок 11 Входные данные. Вычисление гамма-функции для множества чисел
Рисунок 12 Выходные данные. Вычисление гамма-функции для множества чисел
ЗАКЛЮЧЕНИЕ
Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях. Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Итогом работы можно считать созданную функциональную модель реализации основных способов вычисления гамма функции. Данная модель применима к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы