У вас вопросы?
У нас ответы:) SamZan.net

Лекция 10 Дифференцирование функций

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 1.7.2025

Лекция 10. Дифференцирование функций.

  1.  Дифференцирование функции заданной параметрически.

Пусть функция задана параметрически на множестве Х посредством переменной t, называемой параметром:

Предположим, что функции х=(t) и у=(t) имеют производные ((t)0).

Тогда первая производная функции выражается формулой:

так как функцию у=f(х) можно рассматривать, как сложную функцию , а по правилам дифференцирования сложной и обратной функций получаем:

Вторая производная функции выражается формулами:

I способ

II способ

Замечание: II способ вычисления второй производной функции заданной параметрически применим в том случае, если первая производная компактно упрощена и от полученного выражения легко считается производная, в противном случае применим I способ.

Например: Вычислить первую и вторую производные функции:

Например: Вычислить первую и вторую производные функции:

  1.  


  1.  Логарифмическое дифференцирование.

При дифференцировании выражений, имеющих вид, удобный для логарифмирования, можно предварительно выполнить логарифмирование.

Замечание: Если в качестве переменной дифференцирования выступает у (переменная, которая является не аргументом, а функцией), необходимо вычислять производную согласно рассмотренным правилам, обязательно умножая на у (на производную внутренней функции).

  1.  Продифференцировать функцию: .

Заметим, что данная функция является степенно-показательной функцией и её производную находят только лишь логарифмическим дифференцированием.

Логарифмируя по основанию е находим:

Применим основное свойство логарифма:

Дифференцируем обе части равенства:

  1.  Продифференцировать функцию: .

  1.  Продифференцировать функцию: .

 

  1.  


  1.  Дифференцирование неявной функции.

Пусть уравнение, связывающее х и у, определяет у, как неявную функцию х. Для нахождения производной , в точке х=х0, у=у0 не нужно искать явное выражение функции. Достаточно приравнять дифференциалы обеих частей уравнения и из полученного равенства найти производную.

Замечание: Если в качестве переменной дифференцирования выступает у (переменная, которая является не аргументом, а функцией), необходимо вычислять производную согласно рассмотренным правила, обязательно  умножая на у (на производную внутренней функции).

Найти первую и вторую производные неявной функции: .

Дифференцируя обе части уравнения получаем:

Для вычисления второй производной, дифференцируем обе части уравнения, получаем:


  1.  Правило Лопиталя.

Теорема (правило Лопиталя): Пусть функции f(x) и g(x) определены и дифференцируемы в некоторой окрестности точки а, за исключением, быть может, самой точки а и g(х)0. Пусть  в указанной окрестности точки а. Тогда, если существует предел отношения производных  (конечный или бесконечный), то существует и предел , причём  справедлива формула:

Замечание 1: Правило Лопиталя раскрывает неопределённости типа  и .

Замечание 2: Правило Лопиталя может применяться многократно

Замечание 3: Правило Лопиталя применяется и для х, х+, х-, хх0-0, хх0+0.

PAGE  5




1. Воробьи
2. Вам следует необходимо провести отпуск на севере Шотландии.
3. Курсовая работа- Отображение событий после отчетной даты в бухгалтерской отчетности
4. Тема- Формы и средства процесса воспитания
5. Машинные коды Форматы представления данных в памяти ЭВМ
6. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата політичних наук Київ
7. Антонов Юрий Михайлович
8. тематического неисполнения работником без уважительных причин возложенных на него трудовых обязанностей
9. Этуш Владимир Абрамович
10. тема система искусственного интеллекта кот