У вас вопросы?
У нас ответы:) SamZan.net

ия С помощью точек разобьем его на элементарных отрезков причем на каждом из этих отрезков выберем прои

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2025

9. Задача численного интегрирования. Формула Симпсона.

Пусть на [a,b] задана ф-ия  С помощью точек  разобьем его на  элементарных отрезков  причем  на каждом из этих отрезков выберем произвольную точку  и найдем произведение  значения ф-ии в этой точке  на длину элементарного отрезка

Составим сумму всех этих произведений:

Сумма  называется интегральной суммой. Определенным интегралом от ф-ии  на [a,b] наз-ся предел:

Если ф-ия  на [a,b] непрерывна, то предел интегральной суммы существет и не зависит ни от выбора точек ни от способа разбиения отрезка [a,b] на элементарные отрезки.

Обычно интеграл считают по ф-ле Ньютона-Лейбница:

На практике этой ф-лой часто не пользуются из-за:

  1. Первообразную нельзя выразить в элементраных ф-иях
  2. Значения ф-ии  заданы только на фиксированном конечном множестве точек , т.е. ф-ия задана в виде таблицы.

В этих случаях используют методы численного интегрирования. Они основаны на аппроксимации подынтегральной ф-ии некоторыми более простыми выражениями, например многочленами.

Один из способов – представление подынтегральной ф-ии в виде степенного ряда (ряда Тейлора). Это позволяет свести вычисление интеграла от сложной ф-ии к интегрированию многочлена, представляющего первые несколько членов ряда. Но более универсальными методами, пригодными для обоих случаев, являются методы численного интегрирования, основанные на аппроксимации подынтегральной ф-ии с помощью интерполяционных многочленов. Это позволит приближенно заменить определенный интеграл интегральной суммой (24). В зависимости от способа ее вычисления получаются разные методы численного интегрирования (прямоугольников, трапеций, парабол, и др.).

Разобьем отрезок интегрирования на четное число  равных частей с шагом . На каждом отрезке  подынтегральную ф-ию  заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена в точках  соответствующим табличным данным  . В качестве  можно принять интерполяционный многочлен лагранжа 2й степени, проходящий ч/з точки :

Элементарная площадь  может быть вычислена с помощью определенного интеграла. Учитывая

Равенства получаем

Проведя такие вычисления для каждого элементарного отрезка [], просуммируем полученные выражения:

Данное выражение для  принимается в качестве значения определенного интеграла:

(34) называется формулой Симпсона. Метод Симпсона обладает более высокой точностью чем метод прямоугольников и трапеций. Главный член погрешности метода Симпсона имеет вид:

Отличие ф-лы Симпсона от методов прямоуг. и трапеции, в том что для метода симпсона нужно почти вдвое меньше табличных значений ф-ии, поскольку для метода прямоугольников нужны дополнительные данные в полуцелых точках.

  1. Задаем границы отрезка интегрирования a,b,погрешность а также ф-ла для вычисления значений подынтегральной ф-ии
  2. Отрезок [a,b] разбиваем на 4 части с шагом  
  3. Вычисляем значение интеграла Потом число шагов удваивается, вычисляется значение  с шагом
  4. Условие окончания счета принимается в виде  Если это условие не выполнено, то происходит новое деление шага пополам и т.д.



1. Курсовая работа- Вплив процесів деформування на поверхневий шар металів
2. путь по которому она идет в наши дни
3. Анджелеса расположенный к северозападу от центра города
4. Отношения между государством и правом должны рассматривается по аналогии с отношениями между правом и инди
5. Основи філософських знань Сутність і предмет вивчення філософії
6. Чудодерево украшенное разнообразными башмачками сапожками вырезанными ранее детьми из цветной бума
7. то взгляд он просто плыл дорогой рвало на части краешки невиданных раньше просторов добро и зло в нем село з
8. П.РачковГ.А.НовичковаЕ.html
9. 28 Работа 501 ИЗУЧЕНИЕ ПРЕЛОМЛЕНИЯ СВЕТА И ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПРОЗРА
10. Лабораторна робота 6 ПРОЕКТУВАННЯ ШТАМПОВАНОЇ ЗАГОТОВКИ 6