У вас вопросы?
У нас ответы:) SamZan.net

В каждом конкретном случае точность измерения зависит от принципа действия конструкции прибора а также от

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.3.2025

Средства измерения

линейных и угловых

величин

Любой линейный размер может быть измерен различными измерительными средствами, обеспечивающими различную точность измерения. В каждом конкретном случае точность измерения зависит от принципа действия, конструкции прибора, а также от условий настройки и применения.

Принцип выбора средств измерения заключается в сравнении существующей предельной погрешности измерения конкретного средства измерения с расчетной допускаемой погрешностью измерения, регламентированной стандартами [2,3]. При этом предельная погрешность не должна превышать допускаемую, составляющую обычно 20 35% от величины допуска на размер.

В отдельных случаях допускаемая погрешность измерения может быть увеличена при уменьшении допуска размера, например, при разделении изделий на размерные группы при селективной сборке [4]. В этом случае часто размер группы (его принимают условно за допуск контролируемого изделия) берут близким или даже равным погрешности измерения с тем, чтобы в группах ограничить разноразмерность деталей. При селективной сборке нецелесообразно нормировать более жесткие требования к погрешности измерения.

Допускаемые значения случайной погрешности измерения (изм.), регламентированные стандартами СТ СЭВ 303-76 и ГОСТ 8.051-81, приняты при доверительной вероятности 0,95 (исходя из предположения, что закон распределения погрешностей – нормальный иизм. приравнивается зоне  ±2).

Значение предельной случайности погрешности (Lim) приравнивают зоне распределения ±3, (исходя из нормального закона распределения), т. е. доверительная вероятность составляет 0,9973. Для производственных измерений в массовом и крупносерийном производстве значение погрешности измерений принимают равной ±2.

Прежде чем перейти к рассмотрению существующих  методик выбора измерительных средств, остановимся на некоторых общих понятиях.

Классификация  приборов для  измерения линейных и угловых величин

Средства измерения - технические средства, предназначенные для измерений, имеющие нормированные метрологические свойства (характеристики).

Средства измерения (СИ) - это всевозможные меры, инструменты, приборы и  приспособления, с помощью которых производятся измерения.

Представленная в данном пособии классификация СИ относится к СИ, предназначенным для измерения геометрических параметров.

По виду все средства измерения делятся:

- на меры;

- измерительные инструменты;

- измерительные приборы.

Меры - средства измерения, предназначенные для воспроизведения физической величины заданного размера.

Для линейных и угловых измерений различают:

  1.  плоскопараллельные концевые меры длины;
  2.  угловые меры;

- специальные меры и эталоны, которые служат для настройки приборов.

Плоскопараллельные концевые меры длины представляют собой наборы параллелепипедов (пластин и брусков) из стали длиной до 1000 мм или твердого сплава длиной до 100 мм с двумя плоскими взаимно параллельными измерительными поверхностями (ГОСТ 9038-83). Они предназначены для непосредственного измерения линейных размеров, передачи размера единицы длины от первичного эталона концевым мерам меньшей точности, а также для поверки, градуировки и настройки измерительных приборов, инструментов, станков и др. Благодаря способности к притираемости (т.е. сцеплению), обусловленной действием межмолекулярных сил притяжения, концевые меры можно собирать в блоки нужных размеров, которые не распадаются при перемещениях. Наборы составляют из различного числа концевых мер (от 2 до 112 шт.). Концевые меры изготовляют следующих классов точности: 00; 01; 0; 1; 2; 3.

Различают разряды плиток в зависимости от параллельности рабочих граней: 1; 2; 3; 4; 5. Для 0 кл. изготовляются плитки 4; 5 разрядов; для  1 кл.-4; 5 разрядов; для 2 кл. - 3; 4; 5 разрядов; для Зкл.- 2; 3; 4 разрядов). Плитки 4, 5 классов промышленностью не выпускаются, это изношенные плитки для ремонтного производства и сельскохозяйственного машиностроения.

В таблице 2 пособия указаны классы и разряды плиток, рекомендуемые для настройки приборов.

Угловые меры служат для хранения и передачи единицы плоского угла, проверки и градуировки угловых приборов, для контроля угловых изделий. Их обычно изготавливают из стали в виде трех- и четырехгранных плиток. Измерительные поверхности плиток доводят, что позволяет составлять блоки из нескольких мер.

В соответствии со стандартом угловые меры выпускают в виде нескольких наборов 0, 1 и 2-го классов точности в зависимости от допускаемых отклонений рабочих углов. Так, для 0-го класса отклонения рабочих углов находятся в пределах ±3...5", первого ±10" и второго ±30".

Для контроля взаимной перпендикулярности применяют угольники с рабочим углом 90°. Угольники изготавливают пяти типов и четырех классов точности (0, 1, 2 и 3).

Измерение углов при помощи угловых мер основано на методе сравнения. Для отсчета разности углов используют световой просвет между сторонами измеряемого угла и меры (рис. 52).

Отклонение угла изделия от угла меры определяется по отношению просвета к длине стороны Н. Если просвет не более 30 мкм, то используют образцы просвета, если более 30 мкм — специальные щупы.

                   

Рис. 52. Измерение углов угольником.

Специальные меры - это коробочки с плоскопараллельными стеклянными пластинками, по которым проверяются микрометры на параллельность пяток. Калибры - это бесшкальные приборы, которые предназначены для контроля деталей в массовом производстве. Подробнее с классификацией калибров можно ознакомиться в любой справочной литературе, в т.ч. [5,16,17].

Инструмент - это средство измерения, имеющее одну механическую передачу. К инструментам относятся штангенциркули и другие штангенинструменты, микрометры гладкие и микрометрические инструменты (штихмасы, микрометрические головки, глубиномеры, все типы микрометрических трехточечных нутромеров).

Приборы - средства измерений, имеющие две или более механических передач или сочетание оптической и механической передач или сочетание одной или нескольких оптических передач.

Все приборы и инструменты по назначению  делятся на:

- специальные

       - универсальные.

Универсальные средства используют для измерения различных геометрических параметров либо непосредственно, либо в сочетании с предметными столиками, плитами, стойками, штативами, струбцинами и другими дополнительными приспособлениями. Специальные средства   позволяют осуществлять измерения или контроль параметров деталей определенного вида.

По типу передач приборы и инструменты делятся:

1. Инструменты и приборы с механическими передачами:

  1.   Прямая передача (штангенинструменты);
  2.   Винтовая передача (микрометрические инструменты);
  3.   Рычажная передача (миниметры);
  4.   Зубчатая передача (индикаторы часового типа);
  5.   Рычажно-зубчатая передача (рычажные скобы, рычажные микрометры);
  6.   Пружинная передача (микрокаторы, микаторы).

2. Оптические передачи (длиномеры, проекторы, микроскопы).

3. Оптико-механические передачи (оптиметры, оптикаторы, ультраоптиметры).

4. Электромеханические передачи (клугломеры, профилографы-профилометры).

К прибором  для измерения длин  и углов предъявляют следующие требования:

- точность;

- надежность;

- технологичность;

- экономичность;

- безопасность;

- эргономичность;

- эстетичность;

- инфицированность;

- активное воздействие на технологический процесс с целью получения только годных деталей.

2 Средства измерения бокового зазора в зубчатом зацеплении

Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных передач они должны иметь боковой зазор jn (между нерабочими профилями зубьев сопряженных колес). Этот зазор необходим также для компенсации погрешностей изготовления и монтажа передачи. Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам (рисунок 2.1 ). 



Рисунок 2.1

     Измерение бокового зазора в зацеплении можно осуществить двумя способами:

     1.С помощью индикатора :  установите на специальном кронштейне микрометр так, чтобы щуп его упирался в рабочую поверхность зуба ведомого колеса в с внешней стороны. При зафиксированном выходном вале с ведущей шестерней проверните ведомое колесо до упора влево и вправо. Разница показаний индикатора в крайних точках и есть боковой зазор.

     2. Для измерения бокового зазора свинцовой проволокой на зубья шестерни накладывают и закрепляют тавотом два равных по длине отрезка проволоки диаметром 1—3 мм и замеряют расстояние между проволоками. Затем, поворачивая от руки колесо, сплющивают проволоку. Полученные оттиски бокового и радиального зазоров будут представлять полоски с переменной толщиной. Меньшая толщина а соответствует зазору с рабочей стороны зуба, а большая — с нерабочей. Сумма толщин обоих оттисков, замеренная микрометром, равна боковому зазору зацепления.

  




1. тематика психология животных логика и философия
2. по теме MS CCESS Вариант ’36 Выполнил- студент ЭН11 группы инженерного факультета Иванов С
3. тематики Девиз дня- Считай смекай отгадывай
4. Реферат- Исследование и моделирование с помощью компьютера электрических полей
5. Основаниями к остановке транспортного средства сотрудником являются- установленные визуально или зафикс.
6. Петушок и солнышко 12
7. тема финансовой системы СОДЕРЖАНИЕ Введение
8. Товароведение продовольственных и непродовольственных товаров МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
9. Тема 7. Збір інформації за допомогою опитування
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата наук із фізичного виховання та спорту