У вас вопросы?
У нас ответы:) SamZan.net

тематика Специальность 240 01 01 Программное обеспечение информационных технологий Группа Препод1

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2025

План учебного занятия № 63.

дисциплины «Высшая математика»

Специальность  2-40 01 01 Программное обеспечение информационных технологий

Группа     

Преподаватель Моисеева Т.И.

Раздел программы   Дифференциальное исчисление функции одной переменной.

Тема: Различные виды остаточного члена в формуле Тейлора. Исследование функции с помощью производной.

Цель обучения: Научить применять различные виды остаточного члена  при выполнении приближенных вычислений.

Цель развития: Показать возможные  способы применения нахождения значений функции в приближенных вычислениях.

Цель воспитания: Способствовать воспитанию аккуратности, четкости мышления и восприятия незнакомых образов.

Тип занятия: Урок изучения нового материала.

Вид занятия:  Урок-лекция.

Межпредметные связи: Науки, изучающие пределы,  исследующие поведение функций на отрезке.

Ход занятия:

  1.                                   Исследование функций с помощью производной.

Возрастание и убывание функций.

 Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f(x) 0.

                             2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 Доказательство. 

  1.  Если функция f(x) возрастает, то f(x + x) > f(x) при x>0 и f(x + x) < f(x) при х<0,

тогда:

2) Пусть f(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

 

Тогда по теореме Лагранжа: f(x2) – f(x1) = f()(x2x1),   x1 < < x2

По условию f()>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

Теорема доказана.

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f(x)0 на этом отрезке. Если f(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

Доказанную выше теорему можно проиллюстрировать геометрически:

    y                y

                                                                                                                               

        x       x

  1.                                                            Точки экстремума.

 Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +x) > f(x2) при любом х (х может быть и отрицательным).

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 Определение. Точки максимума и минимума функции называются точками экстремума. 

 Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то  производная функции обращается в нуль в этой точке.

 Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Тогда при достаточно малых положительных х>0 верно неравенство:

, т.е.

Тогда

 По определению:

Т.е. если х0, но х<0, то f(x1) 0, а если х0, но х>0, то f(x1) 0.

 

А возможно это только в том случае, если при х0  f(x1) = 0.

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.

Теорема доказана.

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция  у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

  1.                                                            Критические точки.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

Пример: f(x) = x                                               Пример: f(x) =   

       y                                                                             y

             x

          x

     

В точке х = 0 функция имеет минимум, но           В точке х = 0 функция не имеет ни

не имеет производной.                                            максимума, ни минимума, ни произ-

      водной.

Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

 Теорема. (Достаточные условия существования экстремума)

 Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

 Доказательство.  

Пусть

По теореме Лагранжа:           f(x) – f(x1) = f()(xx1),     где x < < x1.

Тогда: 1) Если х < x1, то < x1;      f()>0;    f()(xx1)<0, следовательно

f(x) – f(x1)<0  или   f(x) < f(x1).

 2) Если х > x1, то > x1   f()<0;    f()(xx1)<0, следовательно

f(x) – f(x1)<0  или   f(x) < f(x1).

Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.

Доказательство теоремы для точки минимума производится аналогично.

Теорема доказана.

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

  1.  Найти критические точки функции.
  2.  Найти значения функции в критических точках.
  3.  Найти значения функции на концах отрезка.
  4.  Выбрать среди полученных значений наибольшее и наименьшее.

  1.                                          Исследование функции на экстремум с помощью

                                                           производных высших порядков.

Пусть в точке х = х1 f(x1) = 0 и f(x1) существует и непрерывна в некоторой окрестности точки х1.

 Теорема. Если f(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f(x1)<0 и минимум, если f(x1)>0.

 Доказательство. 

Пусть f(x1) = 0 и f(x1)<0. Т.к. функция f(x) непрерывна, то f(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f(x) = (f(x)) < 0, то f(x) убывает на отрезке, содержащем точку х1, но f(x1)=0, т.е. f(x) > 0 при х<x1 и f(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная  f(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.




1. Социологические исследования приоритетов в решении социальных проблем города.html
2. тематическому анализу ФКН II семестр 2012-2013 уч.html
3. судинні засоби 01 розчин адреналіну 1 мл 10 розчин кофеїну 1 мл підшкірно засоби що стимулюють дихання 1
4. тема общества главным звеном которого является государственный бюджет
5. Влияние температуры на пластичность металла
6. тематическое получение прибыли
7. I. Red the texts nd put the verbs in brckets into the pst simple
8. и гиперпротекции безнадзорность эмоциональное отвержение и др
9. Эластичность спроса по цене
10. 1825 Император Всероссийский 12