У вас вопросы?
У нас ответы:) SamZan.net

тема счисления Система счисления это совокупность приемов и правил по которым чи

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.12.2024

Арифметические основы компьютеров

1. Что такое система счисления?

Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются.

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая — 7 единиц, а третья — 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 . 102 + 5 . 101 + 7 . 100 + 7 . 10—1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.  

Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием  q  означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2 + ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,


где  
ai  — цифры системы счисления;   n и m — число целых и дробных разрядов, соответственно. 
Например:


  
 

2. Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.  

      Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе)означает замену её на 0. В двоичной системе, использующей только две цифры — 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 — замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета : 
 

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

  •  в двоичной системе:         0,   1,   10,   11,   100,   101,   110,   111,   1000,   1001;
  •  в троичной системе:         0,   1,   2,   10,   11,   12,   20,   21,   22,   100;
  •  в пятеричной системе:     0,   1,   2,   3,   4,   10,   11,   12,   13,   14;
  •  в восьмеричной системе: 0,   1,   2,   3,   4,   5,   6,   7,   10,   11.

 

3. Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

  •  двоичная (используются цифры 0, 1);
  •  восьмеричная (используются цифры 0, 1, ..., 7);
  •  шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел — от десяти до пятнадцати — в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

10-я

2-я

8-я

16-я

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10-я

2-я

8-я

16-я

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10

17

10001

21

11

18

10010

22

12

19

10011

23

13

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.  

4. Почему люди пользуются десятичной системой, а компьютеры — двоичной?

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.

А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

  •  для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;
  •  представление информации посредством только двух состояний надежно и помехоустойчиво;
  •  возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  •  двоичная арифметика намного проще десятичной.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел. 
  
 

5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 — соответственно, третья и четвертая степени числа 2).  

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:

 
 

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на  триады  (для восьмеричной) или  тетрады  (для шестнадцатеричной)  и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

  

6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Для перевода целого десятичного числа  N  в систему счисления с основанием  q  необходимо  N  разделить с остатком ("нацело") на  q , записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на  q , и т.д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа N  в новой системе счисления будет последовательность остатков деления, изображенных одной q-ичной цифрой и записанных в порядке, обратном порядку их получения.

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112   =  1138  =  4B16.  

7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Для перевода правильной десятичной дpоби  F  в систему счисления с основанием  q  необходимо  F  умножить на  q , записанное в той же десятичной системе, затем дробную часть полученного произведения снова умножить на  q, и т. д., до тех пор, пока дpобная часть очередного пpоизведения не станет pавной нулю, либо не будет достигнута требуемая точность изображения числа F   в q-ичной системе. Представлением дробной части числа F   в новой системе счисления будет последовательность целых частей полученных произведений, записанных в порядке их получения и изображенных одной q-ичной цифрой. Если требуемая точность перевода числа F  составляет k  знаков после запятой, то предельная абсолютная погрешность при этом равняется -(k+1) / 2.

Пример. Переведем число 0,36 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Для чисел, имеющих как целую, так и дробную части, перевод из десятичной системы счисления в другую осуществляется отдельно для целой и дробной частей по правилам, указанным выше.

 

8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?

Перевод в десятичную систему числа x, записанного в q-ичной cистеме счисления (q = 2, 8 или 16) в виде xq = (anan-1   ...  a ,  a-1  a-2   ...   a-m)q   сводится к вычислению значения многочлена 
 

x10 = an  q+  an-1  qn-1   +   ...   +  a0   q0   +   a-1   q -1   +   a-2   q-2   +     ...     +   a-m   q-m    


средствами десятичной арифметики. 

Примеpы:

  

9. Сводная таблица переводов целых чисел из одной системы счисления в другую

Рассмотрим только те системы счисления, которые применяются в компьютерах — десятичную, двоичную, восьмеричную и шестнадцатеричную. Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую. Порядок переводов определим в соответствии с рисунком:

На этом рисунке использованы следующие обозначения:

  •  в кружках записаны основания систем счисления;
  •  стрелки указывают направление перевода;
  •  номер рядом со стрелкой означает порядковый номер соответствующего примера в сводной таблице 4.1.

Например:  означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.

Сводная таблица переводов целых чисел 
                                                                                                         Таблица 4.1. 
 

 

10. Как производятся арифметические операции в позиционных системах счисления?

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком   и  деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

С л о ж е н и е

Таблицы сложения легко составить, используя Правило Счета.  

Сложение в двоичной системе

Сложение в восьмеричной системе

                 Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.   

  Пример 1. Сложим числа 15 и 6 в различных системах счисления.

 
      

Шестнадцатеричная: F16+616

Ответ: 15+6 = 2110 = 101012 = 258 = 1516.  
Проверка. Преобразуем полученные суммы к десятичному виду: 
10101
2 = 24 + 22 + 20 = 16+4+1=21,  
25
8 = 2 . 81 + 5 . 80 = 16 + 5 = 21,  
15
16 = 1 . 161 + 5 . 160 = 16+5 = 21. 

  Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F16+716+316

Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916.  
Проверка: 
11001
2 = 24 + 23 + 20 = 16+8+1=25, 
31
8 = 3 . 81 + 1 . 80 = 24 + 1 = 25,  
19
16 = 1 . 161 + 9 . 160 = 16+9 = 25. 

  Пример 3. Сложим числа 141,5 и 59,75.

 
  
Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416 Проверка. Преобразуем полученные суммы к десятичному виду: 11001001,012 = 27 + 26 + 23 + 20 + 2-2 = 201,25 311,28 = 3 . 82 + 181 + 1 . 80 + 2 . 8-1 = 201,25 C9,416 = 12 . 161 + 9 . 160 + 4 . 16-1 = 201,25

В ы ч и т а н и е

Пример 4. Вычтем единицу из чисел 102, 108 и 1016 
      
 
      
 
  
  
Пример 5. Вычтем единицу из чисел 1002, 1008 и 10016
      
 
      
 
  
  
Пример 6. Вычтем число 59,75 из числа 201,25.

 
  

Ответ: 201,2510 - 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816

Проверка. Преобразуем полученные разности к десятичному виду: 10001101,12 = 27 + 23 + 22 + 20 + 2-1 = 141,5; 215,48 = 2 . 82 + 1 . 81 + 5 . 80 + 4 . 8-1 = 141,5; 8D,816 = 8 . 161 + D . 160 + 8 . 16-1 = 141,5.

У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям. 

  Пример 7. Перемножим числа 5 и 6.

 
Ответ: 5 . 6 = 3010 = 111102 = 368Проверка. Преобразуем полученные произведения к десятичному виду: 111102 = 24 + 23 + 22 + 21 = 30; 368 = 381 + 680 = 30.     

Пример 8. Перемножим числа 115 и 51.

 
Ответ: 115 . 51 = 586510 = 10110111010012 = 133518Проверка. Преобразуем полученные произведения к десятичному виду: 10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865; 133518 = 1 . 84 + 3 . 83 + 3 . 82 + 5 . 81 + 1 . 80 = 5865.

Д е л е н и е

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей. 
  
  
Пример 9. Разделим число 30 на число 6.

 

Ответ: 30 : 6 = 510 = 1012 = 58.    

 Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 133518 :1638

 

Ответ: 5865 : 115 = 5110 = 1100112 = 638Проверка. Преобразуем полученные частные к десятичному виду: 1100112 = 25 + 24 + 21 + 20 = 51; 638 = 6 . 81 + 3 . 80 = 51. 

  Пример 11. Разделим число 35 на число 14.

Восьмеричная: 438 : 168

 

Ответ: 35 : 14 = 2,510 = 10,12 = 2,48Проверка. Преобразуем полученные частные к десятичному виду: 10,12 = 21 + 2 -1 = 2,5; 2,48 = 2 . 80 + 4 . 8-1 = 2,5.   

Упражнения

1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления. 

2. Какие целые числа следуют за числами:  

а) 12;

е) 18;

п) F16

б) 1012;

ж) 78;

м) 1F16;

 в) 1112

з) 378;

н) FF16;

г) 11112;

и) 1778;

о) 9AF916

д) 1010112;

к) 77778;

п) CDEF16 ?

3. Какие целые числа предшествуют числам:  

а) 102;

е) 108;

л) 1016;

б) 10102;

ж) 208;

 м)2016;

в) 10002;

з) 1008;

н) 10016;

г) 100002;

и) 1108;

о) A1016;

д) 101002;

к) 10008;

п) 100016 ?

4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число? 

5. Какое наибольшее десятичное число можно записать тремя цифрами:

  •  а) в двоичной системе;
  •  б) в восьмеричной системе;
  •  в) в шестнадцатеричной системе?

6. В какой системе счисления 21 + 24 = 100? 

Решение. Пусть x — искомое основание системы счисления. Тогда 100x = 1 · x2 + 0 · x1 + 0 · x0,    21x = 2 · x1 + 1 · x0,    24x = 2 · x1 + 4 · x0. Таким образом, x2 = 2x + 2x + 5 или x2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5. Ответ. Числа записаны в пятеричной системе счисления.

7. В какой системе счисления справедливо следующее:

  •  а) 20 + 25 = 100;
  •  б) 22 + 44 = 110?

8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.

9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:  

а) 10110112;

е) 5178;

л) 1F16

б) 101101112;

ж) 10108

м) ABC16

в) 0111000012;

з) 12348;

н) 101016;

г) 0,10001102;

и) 0,348;

о) 0,А416;

д) 110100,112;

к) 123,418;

п) 1DE,C816.

10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

      а) 12510;      б) 22910;     в) 8810;      г) 37,2510;      д) 206,12510.

11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы: 

а) 1001111110111,01112;

 г) 1011110011100,112;

б) 1110101011,10111012;

д) 10111,11111011112;

в) 10111001,1011001112;

е) 1100010101,110012.

12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

а) 2СE16;     б) 9F4016;     в) ABCDE16;     г) 1010,10116;     д) 1ABC,9D16

13. Выпишите целые числа:

  •  а) от 1011012 до 1100002 в двоичной системе;
  •  б) от 2023 до 10003 в троичной системе;
  •  в) от 148 до 208 в восьмеричной системе;
  •  г) от 2816 до 3016 в шестнадцатеричной системе.

14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления. 

16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления. 

17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения: 

а) 10111012 и 11101112;

д) 378 и 758;

и) A16 и F16;

б) 1011,1012 и 101,0112;

е) 1658 и 378;

к) 1916 и C16;

в) 10112, 112 и 111,12;

ж) 7,58 и 14,68;

л) A,B16 и E,F16;

г) 10112 , 11,12 и 1112;

з) 68, 178 и 78;

м) E16, 916 и F16.

18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

                        

20. Вычтите: 

а) 1112 из 101002;

д) 158 из 208;

и) 1А16 из 3116;

б) 10,112 из 100,12;

е) 478 из 1028;

к) F9E16 из 2А3016;

в) 111,12 из 100102;

ж) 56,78 из 1018;

л) D,116 из B,9216;

г) 100012 из 1110,112;

з) 16,548 из 30,018;

м) ABC16 из 567816.

21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения: 

а) 1011012 и 1012;

д) 378 и 48;

б) 1111012 и 11,012;

е) 168 и 78;

в) 1011,112 и 101,12;

ж) 7,58 и 1,68;

г) 1012 и 1111,0012;

з) 6,258 и 7,128.

22. Разделите 100101102 на 10102 и проверьте результат, умножая делитель на частное. 

23. Разделите 100110101002 на 11002 и затем выполните соответствующее десятичное и восьмеричное деление. 

24. Вычислите значения выражений:

  •  а) 2568 + 10110,12 . (608 + 1210) - 1F16;
  •  б) 1AD16 - 1001011002 : 10102 + 2178;
  •  в) 101010 + (10616 - 110111012)  128;
  •  г) 10112 . 11002 : 148 + (1000002 - 408).

25. Расположите следующие числа в порядке возрастания:

  •  а) 748, 1100102, 7010, 3816;
  •  б) 6E16, 1428, 11010012, 10010;
  •  в) 7778, 1011111112, 2FF16, 50010;
  •  г) 10010, 11000002, 6016, 1418.




1. Некоммерческие организации теорико-правовые и практические проблемы
2. О бухгалтерском учете- новая концепция регулирования учета [5] Заключение [6] Список использ
3. С Выготский т Педология подростка1 Развитие интересов в переходном возрасте i К лючом ко всей проб
4. Бедные люди в кот
5. Конкуренция и виды конкуренции4 2
6. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ОАО ГРОДНЕНСКИЙ МЯСОКОМБИНАТ И НАПРАВЛЕНИЯ ЕЕ СОВЕРШЕНСТВОВАНИЯ
7. Тема- Діагностика ПК за допомогою програм та утиліт
8. Классификация экономических учений по исторической хронологии
9. Во многом это обеспечивается своевременным реагированием социальных институтов общественных организаций
10. Как правильно принять квартиру в новостройке
11. тематики и информатики Дисциплина- Информатика Курсовая работа Разработка приложений в среде
12. Тема 6 МЕТОДЫ ЦЕНООБРАЗОВАНИЯ 1
13. Лекция 3 Структура и функции клетки
14. 08 пружины и тарелки ВАЗ0107
15. Как разобраться в китайских пластинах и что такое NP-1
16. ции легких- Барьернаяявляется ловушкой ненужных опасных оргму клеток за счет активного состояния ка
17. Эллинизация Египта 2
18.  Определение услуги
19. Лекція 5 Філософія Нового часу Так само як на межі Античності і раннього Середньовіччя відбувався перехі
20.  Сметные расчеты составляются на основании- данных технического проекта на объем отдельных видов ра