Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Вопрос 24
Полупроводниковый диод и транзистор.
Диод.
В нястояшее время для выпрямления электрическигй тока в радиосхемах наряду с двухэлектродными лампами вся больше применяют полупроводниках диоды, так как они обладают рядом преимуществ. В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси.Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленого тока более миниатюрны, чем ламповые. Полупроводниковые диоды изготовляют из германия, кремния. селена и других веществ. Рассмотрим как создается p-n переход при использовании днорной примеси, этот переход не удастся получить путем механического соеденения двух полупроводников различных типов, т.к. при этом получается слишком большой зазор между полупроводииками.Эта толщина должна быть не больше межатомных растояний. По этому в одну из поврхностей образца вплавляют индий. Вследствие диффузии атомов индии индия в глубь монокристалла германня у поверхности германия преобразуется область с проводимцстью р-типа. Остальная часть образца германии, в которуй атомы индмя нс проникли, по-прежнему имеет проводимосгь n-типа. Между областями возникает p-n переход. Вполупроводниковом диоде германий служит катодом, а индий - анодом. На рисунке 1 показано прямое (б) и обратное (в) подсоеденение диода.
Заменили лампы, очень широко используются в техники, в основном для выпрямителей, также диоды нашли применение в различных приборах.
Транзистор.
Рассмотрим один из видов транзистора из германия или кремния с введенными в них донорными и акцепторными примесями. Распределение примесей таково, что создается очень тонкая (порядка нескольких микрометров) прослойка полупроводника n-типа между двумя слоями полупроводника р-типа. Эту тонкую прослойку называют основанием или базой. В кристалле образуются два р-n-перехода, прямые направления которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изображенную на рисунке 3. При данном включении левый рn переход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмитером. Если бы не было правого р n -перехода, в цепи эмиттер - база существовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напря- жения) и сопротивления цепи, включая малое сопротивление прямого пе- рехода эмиттер база. Батарея Б2 включена так, что правый р-n-переход в схеме (см. рис. 3) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называемой коллектором. Если бы не было левого pn- перехода, сила тока и цепи коллектора была бы близка к нулю. Так как сопротивление обратного перехода очень велико. При существовании же тока в левом р n переходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере.При создании напряжения между эмиттером и базой основные носители полупроводника р-типа дырки проникают в базу, гдр они являютс уже леосновными носителями. По-скольку толщина базы очень мала и число основных носителей (электронов) в ней невелико, попавшие в нее дырки почти не объединяются (не рекомбинируют) с электронами базы и проникают н коллектор за счет диффузии. Правый рn- переход закрыт для основных носителей заряда базы электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см.рис. 3) плоскости много меньше сечения в вертикальной плоскости. Сила тока в коллекторе, практи чески равная силе тока в эмиттере, изменяется вместе с током в эмиттере. Сопротивление резистора R мало влияет на ток в коллекторе , и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника переменного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе. При большом сопротивление резистора изменение напряжения на нем может в десятки тысяч раз превышать изменение сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно получить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера. Они заменяют электронные лампы, широко используются в технике.