Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

- которые возникают в системе при участии внешней силы - при которых их амплитуда под действием силы трения

Работа добавлена на сайт samzan.net:


F1: Физика (ЛД, СТ)

F2: Кумыков В.К.

F3: Лечебное дело. Стоматология

V1: ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

I:

S: Гармоническими называются колебания:

-: которые возникают в системе при участии внешней силы

-: при которых их амплитуда под действием силы трения постепенно уменьшается

+: при которых колеблющаяся величина изменяется в зависимости от времени по закону синуса или косинуса

-: при которых механические возмущения распространяются в пространстве и переносят энергию

-: при которых их скорость остается постоянной

I:

S: Примером гармонических колебаний могут служить:

+: колебания математического маятника

-: колебания физического маятника

-: периодические подскакивания в реальных условиях мяча, упавшего на землю

-: круги, расходящиеся на поверхности воды от брошенного камня

-: колебания температуры окружающей среды

I:

S: Фаза колебаний представляет собой:

-: величину, численно равную времени, в течение которого совершается одно полное колебание

-: величину, численно равную наибольшему отклонению колеблющегося тела от положения равновесия

-: величину, численно равную числу колебаний за единицу времени

+: величину, характеризующую положение колеблющейся точки в данный момент времени

-: величину скорости распространения колебаний в данный момент времени

I:

S:Уравнение гармонических колебаний было получено в предположении:

+: малости отклонения маятника от положения равновесия

-: наличия вынуждающей силы, действующей на маятник

-: отсутствия начальной фазы колебания

: равенства нулю кинетической энергии маятника в положении равновесия

-: наличия силы трения в точке подвеса маятника

S :В выражении для смещения материальной точки X = А0sin0t + ...) в случае гармонических колебаний пропущен символ:

+:

-:

-:

-:

-:

I:

S: Гармонические колебания описываются уравнением:

+:

-:

-:

-:

I:

S: Не могут служить примером гармонических колебаний:

-: колебания математического маятника

+: затухающие колебания

-: электромагнитные колебания в колебательном контуре

-: колебания физического маятника

-: колебания груза на пружине

I:

S: Неверным является утверждение о том, что:

-: амплитуда гармонических колебаний не зависит от их частоты

-: амплитуда гармонических колебаний не зависит от их периода

+: частота колебаний не зависит от их периода

-: смещение колеблющейся точки зависит от фазы колебаний

-: смещение колеблющейся точки зависит от времени

I:

S: Неверным является утверждение о том, что гармонические колебания:

+: совершаются по экспоненциальному закону

-: совершаются по закону косинуса

-: могут иллюстрироваться периодическими изменениями температуры

-: это явления, при которых система, будучи выведена из состояния равновесия, возвращается в него через равные промежутки времени

-: совершаются при условии отсутствия затухания

I:

S: При увеличении длины математического маятника вдвое его частота:

-: Уменьшится в 2 раза

-: Увеличится в  раз

-: Увеличится в 2 раза

+: Уменьшится в  раз

-: Не изменится

I:

S: При уменьшении массы пружинного маятника вдвое его период колебаний:

-: Уменьшится в 2 раза

-: Увеличится в 2 раза

-: Увеличится в  раз

+: Уменьшится в  раз

-: Не изменится

I:

S: При перенесении математического маятника на Луну:

-: Амплитуда его колебаний увеличится

-: Амплитуда его колебаний уменьшится

+: Период его колебаний увеличится

-: Период его колебаний уменьшится

-: Частота его колебаний не изменится

I:

S: При перенесении пружинного маятника в условия невесомости:

-: Частота его колебаний увеличится

-: Период его колебаний увеличится

+: Период его колебаний не изменится

-: Маятник колебаться не будет

-: Частота его колебаний уменьшится

I:

S: На рисунке изображен математический маятник. Амплитуда колебаний маятника равна:

-: 10 см

+: 20 см

-: 30 см

-: 40 см

-: 0,5 м

I:

S: Период колебаний данного маятника равен:

-:

+:

-:

-:

-:

I:

S: Согласно графику, смещение колеблющейся точки через 4 с после начала движения составляет:

-: 5 см

-: 10 см

+: 20 см

-: 30 см

-: 40 см

I:

S: На рисунке изображен математический маятник. Амплитуда колебаний маятника равна:

-: 4 м

+: 3 м

-: 2 м

-: 1 м

-: 0,5 м

I:

S: Частота колебаний данного маятника равна:

-: 2 с-1

-: 1 с-1

-: 0,5 с-1

-: 4 с-1

+: 0,25 с-1

I:

S: Волна с частотой 10 Гц распространяется в некоторой среде, причем разность фаз в двух точках, находящихся на расстоянии 1 м одна от другой на одной прямой с источником колебаний, равна π радиан. Скорость распространения волны в этой среде будет равна:

-: 5 м/с

-: 1 м/с

-: 10 м/с

+: 20 м/с

-: 100 м/с

V1: МЕХАНИЧЕСКИЕ ВОЛНЫ

I:

S: В выражении для смещения материальной точки  в случае гармонических колебаний, символ S означает:

-: амплитуду колебаний

-: фазу волны

-: расстояние между соседними гребнями волн

-: произвольную координату

+: смещение точки, участвующей в волновом процессе

I:

S: В уравнении волны  символ x представляет собой:

-: смещение точки, участвующей в волновом процессе

+: произвольную координату

-: амплитуду колебаний

-: фазу волны

-: расстояние между соседними гребнями волн

I:

S: Длиной волны называется:

-: расстояние между двумя соседними точками на оси OY, колеблющимися в одинаковых фазах

+: расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах

-: расстояние между двумя соседними точками на оси OX, колеблющимися в противоположных фазах

-: расстояние, пробегаемое волной за единицу времени

-: наибольшее отклонение точек волны от положения равновесия

I:

S: Вектором Умова называют:

+: величину, равную потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению

-: вектор, перпендикулярный направлению распространения волны

-: величину, равную плотности энергии волны

-: величину кинетической энергии, переносимой волной

-: величину, показывающую скорость затухания волны

I:

S: Вектор Умова определяется выражением:

-:

+:

-:

-:

-:

I:

S: В выражении для интенсивности волны  величина Ф представляет собой:

-: длину волны

-: амплитуду волны

+: поток энергии волн

-: плотность энергии волн

-: энергию волн

I:

S: Механической волной называется:

-: механические колебания, описываемые по гармоническому закону

-: механическое возмущение, возникающее в твердом теле при его деформации

-: перенос энергии в упругой среде

+: механическое возмущение, распространяющееся в пространстве и несущее энергию

-: периодическое отклонение тела от положения равновесия

I:

S: Уравнение волны записывается в следующем виде:

+:

-:

-:

-:

-:

I:

S: Скорость распространения волны определяется выражением:

-:

-:

+:

-:

-:

I:

S: За время 4/3 секунды волна распространилась на расстояния равное длине волны. Частота колебаний волны равна:

+: 0,75 Гц

-: 1 Гц

-: 10 Гц

-: 0,25 Гц

-: 250 Гц

I:

S: Скорость распространения звука в материале, в котором колебания с периодом 0,01 с вызывают звуковую волну, имеющую длину 10 м, составляет:

-: 100 м/с

+: 1000 м/с

-: 10 км/с

-: 10 м/с

-: 100 км/с

I:

S: Частота колебаний волны с длиной волны 3 м и скоростью распространения 12 м/с составляет:

-: 0,25 Гц

-: 25 Гц

-: 0,4 Гц

+: 4 Гц

-: 0,5 Гц

V1: СТАТОБРАБОТКА

I:

S: В соответствии с приведенной таблицей коэффициент Стьюдента для пяти измерений и доверительной вероятности 0,98 составляет

n

p

0,7

0,8

0,9

0,95

0,98

0,99

2

2,0

3,1

6,3

12,7

31,8

63,7

3

1,3

1,9

2,9

4,3

7,0

9,9

4

1,3

1,6

2,4

3,2

4,5

5,8

5

1,2

1,5

2,1

2,8

3,7

4,6

6

1,2

1,5

2,0

2,6

3,4

4,0

7

1,1

1,4

1,9

2,4

3,1

3,7

-: 1,2;

-: 2,8;

+: 3,7;

-: 1,9;

-: 2,3.

I:

S: Для шести измерений коэффициенту Стьюдента равному 2,6 соответствует доверительная вероятность

n

p

0,7

0,8

0,9

0,95

0,98

0,99

2

2,0

3,1

6,3

12,7

31,8

63,7

3

1,3

1,9

2,9

4,3

7,0

9,9

4

1,3

1,6

2,4

3,2

4,5

5,8

5

1,2

1,5

2,1

2,8

3,7

4,6

6

1,2

1,5

2,0

2,6

3,4

4,0

7

1,1

1,4

1,9

2,4

3,1

3,7

-: 0,7;

-: 0,8;

-: 0,85;

-: 0,9;

+: 0,95.

I:

S: При коэффициенте Стьюдента равном 2,6 доверительная вероятность 0,95 может быть обеспечена при количестве измерений равном

n

p

0,7

0,8

0,9

0,95

0,98

0,99

2

2,0

3,1

6,3

12,7

31,8

63,7

3

1,3

1,9

2,9

4,3

7,0

9,9

4

1,3

1,6

2,4

3,2

4,5

5,8

5

1,2

1,5

2,1

2,8

3,7

4,6

6

1,2

1,5

2,0

2,6

3,4

4,0

7

1,1

1,4

1,9

2,4

3,1

3,7

-: 3;

-: 4;

-: 5;

+: 6;

-: 8.

I:

S: При многократных измерениях некоторой физической величины были получены следующие значения: 45; 44; 44; 46; 44; 126; 45. При этом среднее значение измеряемой величины равно

+: 45;

-: 44;

-: 56;

-: 60;

-: 72.

I:

S: При многократных измерениях некоторой физической величины были получены следующие значения: 10; 12; 11; 10; 12. При этом абсолютная погрешность первого измерения составила

+: 1;

-: 2;

-: 3;

-: 4;

-: 5.

I:

S: При статистической обработке данных измерений некоторой физической величины было получено ее среднее значение равное 12, а средняя абсолютная погрешность измерений составила 3. При этом относительная погрешность измерений составила

-: 15%;

-: 9%;

-: 36%;

+: 25%;

-: 40%.

I:

S: При статистической обработке данных измерений некоторой физической величины было получено ее среднее значение равное 12, а случайная погрешность измерений составила 2. При этом доверительный интервал составляет

-: От 2 до 12;

-: От 10 до 12;

+: От 10 до 14;

-: От 2 до 14;

-: От 0 до 12.

I:

S: Окончательная запись результатов измерений записана неверно в выражении

-: 284±1;

-: 350±38;

-: 52,7±0,3;

+: 284,5±1;

-: 4,750±0,006.

I:

S: По данным пяти измерений были получены следующие значения измеряемой величины: 40; 30; 30; 30; 30. При этом средняя арифметическая погрешность измерений составила

-: 2;

+: 3;

-: 4;

-: 5;

-: 6.

I:

S: По данным пяти измерений были получены следующие значения измеряемой величины: 40; 30; 30; 30; 30. При этом средняя квадратичная погрешность измерений составила

-: 1;

-: 2;

-: 3;

+: 4;

-: 5.

I:

S: По данным пяти измерений были получены следующие значения измеряемой величины: 40; 30; 30; 30; 30. При этом случайная погрешность измерений составила

-: 1;

-: 2;

-: 3;

-: 4;

+: 5.

I:

S: По данным пяти измерений были получены следующие значения измеряемой величины: 70; 70; 60; 60; 70. При этом средняя арифметическая погрешность измерений составила

-: 2;

-: 3;

-: 4;

+: 5;

-: 6.

I:

S: По формуле  рассчитывается

-: Средняя арифметическая погрешность;

+: Среднее арифметическое значение;

-: Средняя квадратичная погрешность измерения;

-: Абсолютная погрешность отдельного измерения;

-: Относительная погрешность.

I:

S: По формуле  рассчитывается

-: Средняя арифметическая погрешность;

-: Среднее арифметическое значение;

-: Средняя квадратичная погрешность измерения;

+: Абсолютная погрешность отдельного измерения

-: Относительная погрешность.

I:

S: По формуле  рассчитывается

+: Средняя арифметическая погрешность;

-: Среднее арифметическое значение;

-: Средняя квадратичная погрешность измерения;

-: Абсолютная погрешность отдельного измерения

-: Относительная погрешность.

I:

S: По формуле  рассчитывается

-: Средняя арифметическая погрешность;

-: Среднее арифметическое значение;

-: Средняя квадратичная погрешность измерения;

-: Абсолютная погрешность отдельного измерения

+: Относительная погрешность.

I:

S: По формуле  рассчитывается

-: Средняя арифметическая погрешность;

-: Среднее арифметическое значение;

+: Случайная погрешность;

-: Абсолютная погрешность отдельного измерения

-: Относительная погрешность.

I:

S: По формуле рассчитывается

+: Средняя квадратичная погрешность измерения;

-: Среднее арифметическое значение;

-: Случайная погрешность;

-: Абсолютная погрешность отдельного измерения

-: Относительная погрешность.

V1: ЭФФЕКТ ДОПЛЕРА

I:

S: Эффект Доплера заключается в изменении:

-: скорости распространения волн, воспринимаемых наблюдателем, при относительном движения источника волн и наблюдателя

+: частоты волн, воспринимаемых наблюдателем, вследствие относительного движения источника волн и наблюдателя

-: громкости звука, воспринимаемого наблюдателем, вследствие относительного движения источника звука и приемника

-: интенсивности волн, воспринимаемых наблюдателем, вследствие относительного движения источника звука и приемника

-: фазы сигнала, воспринимаемого наблюдателем, вследствие относительного движения источника звука и приемника

I:

S: Эффект Доплера наблюдается:

-: только для ультразвука

-: только для света

-: только для звука

-: только для электромагнитных волн

+: для любых волн

I:

S: Эффект Доплера описывается выражением:

-:

-:

-:

-:

+:

I:

S: В формуле для эффекта Доплера символ ν0 означает:

-: длину волны сигнала, испускаемого источником

-: скорость распространения сигнала в среде

+: частоту сигнала, испускаемого источником

-: скорость движения источника сигнала

-: амплитуду колебаний звуковой волны

I:

S: В гемодинамике УЗ эффект Доплера применяется для:

-: определения диаметра кровеносных сосудов

+: определения скорости кровотока

-: изучения распределения фармпрепаратов в организме человека

-: определения скорости оседания эритроцитов

-: визуализации внутренних органов человека

I:

S: В кардиологии УЗ эффект Доплера позволяет определить:

-: нарушения режима работы СА-узла

-: характер помех, возникающих при записи электрокардиограмм

-: изменение сечения аорты

-: визуализации желудочков сердца

+: клапанные нарушения сердца

V1: ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

I:

S: Элементарными заряженными частицами являются

+: протоны

-: нейтроны

-: атомы

-: молекулы

-: изотопы

I:

S: Неподвижные электрические заряды взаимодействуют по закону

-: Ленца

-: Стокса

+: Кулона

-: Ома

-: Фарадея

I:

S: Сила взаимодействия неподвижных электрических зарядов определяется выражением

-: ;

+:

-:

-:

-:

I:

S: Напряженность поля является его

-: Энергетической характеристикой

-: Емкостной характеристикой

-: Индукционной характеристикой

-: Динамической характеристикой

+: Силовой характеристикой

I:

S: Единицей измерения напряженности электрического поля является

-: Вольт

-: Ампер

-: Ампер/с

+: Вольт/м

-: Фарад

I:

S: Напряженность электрического поля, создаваемого точечным зарядом, описывается выражением

+: ;

-:

-:

-:

-:

I:

S: Потенциал поля является его

+: Энергетической характеристикой

-: Емкостной характеристикой

-: Индукционной характеристикой

-: Динамической характеристикой

-: Силовой характеристикой

I:

S: Для расчета потенциала электрического поля, создаваемого точечным зарядом, следует воспользоваться выражением

-: ;

-:

+:

-:

-:

I:

S: Единицей измерения потенциала электрического поля является

+: Вольт

-: Ампер

-: Ампер/с

-: Вольт/м

-: Фарад

I:

S: Напряженность электрического поля и разность потенциалов связаны выражением

-:

-:

+:

-:

-:

 

I:

S: Физический смысл диэлектрической проницаемости среды состоит в том, что она показывает

-: Плотность среды, в которой находится поле

-: Величину энергии электрического поля

-: Густоту линий индукции

+: Во сколько раз сила взаимодействия электрических зарядов в вакууме больше, чем в данной среде

-: Во сколько раз сила взаимодействия электрических зарядов в вакууме меньше, чем в данной среде

I:

S: Для потока напряженности электрического поля справедливо выражение

+:

-:

-:

-:

-:

I:

S: В соответствии с теоремой Остроградского-Гаусса поток напряженности электрического поля, пронизывающий любую замкнутую поверхность, окружающую электрические заряды, пропорционален

-: Произведению заряда, находящегося внутри замкнутой поверхности, на напряженность поля

-: Произведению потенциала поля на площадь замкнутой поверхности

-: Силе, приходящейся на единицу площади замкнутой поверхности  

-: Произведению напряженности поля на потенциал внутри замкнутой поверхности

+: Алгебраической сумме зарядов, находящихся внутри замкнутой поверхности

I:

S: Напряженность поля электрического диполя на продолжении оси диполя равна

-:   

+:  

-:        

-:      

-:

V1: КОНТАКТНЫЕ ЯВЛЕНИЯ  

I:

S: Элементарными заряженными частицами являются

+: протоны

-: нейтроны

-: атомы

-: молекулы

-: изотопы

I:

S: Возникновение контактной разности потенциалов возможно при соприкосновении

-: Серебра с янтарем

+: Алюминия с серебром

-: Золота с алмазом

-: Ртути со стеклом

-: Стекла с алюминием

I:

S: Контактная разность потенциалов зависит от

-: Плотности контактирующих элементов  

: Их масс

-: Их валентностей

+: Их химического состава  

-: Их теплопроводностей

I:

S: Контактная разность потенциалов зависит от

-: Плотности контактирующих элементов  

: Их масс

-: Их валентностей

-: Их теплопроводностей   

+: Их температуры

I:

S: Цепь состоит из четырех разнородных металлов, соединенных последовательно. В цепи возникают следующие разности потенциалов: в первом контакте 4 В, во втором – 3 В, в третьем – 2 В, в четвертом – 1 В. При этом разность потенциалов на концах цепи составит

-: 1 В

+: 3 В

-: 5 В

-: 7 В

-: 9 В

I:

S: Замкнутая цепь состоит из трех последовательно соединенных разнородных металлов с работами выхода 1 эВ, 2 эВ и 3 эВ При этом на концах цепи возникает контактная разность потенциалов равная

+: 0 В

-: 3 В

-: 5 В

-: 7 В

-: 9 В

I:

S: Явление термоэлектричества состоит в

-: Увеличении сопротивления металлов при их нагревании

-: Явлении нагревания проводников при прохождении через них электрического тока  

+: Зависимости контактной разности потенциалов от температуры

-: Явлении резкого повышения температуры контактирующих элементов при коротком замыкании

-: Зависимости сопротивления металлов от температуры

I:

S: Явление термоэлектричества возникает в

-: Полупроводниках с электронной проводимостью

-: Полупроводниках с дырочной проводимостью

-: Контактах диэлектрика с металлом

+: Разнородных металлах

-: Однородных металлах

I:

S: Явление термоэлектричества описывается выражением

-: =

-: =

+: E=α(t1-t2);

-: U=I2R

-: =ER

I:

S: В выражении для термо-ЭДС E=α(t1-t2) символ α означает

-: Удельное сопротивление материала

-: Измеряемую температуру

-: Разность потенциалов между контактирующими элементами

-: Термоток  

+: Чувствительность прибора

I:

S: Термоэлектричество лежит в основе работы

+: Термопары

-: Транзистора  

-: Электронного осциллографа

-: Полупроводникового диода  

-: Электрокардиографа  

I:

S: По сравнению с жидкостными термометрами термопара имеет следующие преимущества

-: Компактность

+: Безинерционность  

+: Точность

-: Дешевизна  

-: Электробезопасность  

V1: МАГНИТНОЕ ПОЛЕ  

I:

S: Для определения величины напряженности магнитного поля проводника с током следует воспользоваться выражением

-:

+:

-:

-:

-:

I:

S: Величина напряженности магнитного поля определяется как

 +: Отношение силы, с которой поле действует на единичный элемент тока (расположенный     

      перпендикулярно полю в вакууме), к магнитной постоянной

-: Сила, с которой поле действует на единичный заряд, помещенный в данную толчку поля 

-: Произведение индукции магнитного поля на величину тока в проводнике

-: Произведение элемента тока на магнитную постоянную

-: Отношение силы, с которой поле действует на единичный элемент тока (расположенный параллельно полю в вакууме), к магнитной постоянной

I:

S: Для магнитного поля, создаваемого прямолинейным проводником с током, справедлива формула Ампера, которая записывается в виде

-:

-:

-:

-:

+:

I:

S: Направление силы Ампера определяется по правилу

-: Кирхгофа

-: Буравчика

+: Левой руки

-: Правой руки

-: Ленца

I:

S: Напряженность магнитного поля измеряется в

-: Вольтах

-: Амперах

-: В/м

+: А/м

-: Гауссах

I:

S: Восприимчивость вещества к намагничиванию под действием внешнего магнитного поля называется

-: Магнитной постоянной

-: Индуктивностью среды

-: Диэлектрической проницаемостью среды

-: Магнитной плотностью среды

+: Магнитной проницаемостью среды

I:

S: Для индукции магнитного поля справедливо выражение

+:

-:

-:

-:

-:

I:

S: Индукция магнитного поля измеряется в

-: Вольтах

-: Амперах

+: Тесла

-: Фарадах

-: Гауссах

I:

S: Выражение  называется

-: Вектором Умова

+: Потоком индукции

-: Потоком энергии

-: Потоком напряженности

-: Магнитной проницаемостью

I:

S: Поток магнитной индукции измеряется в

-: Вольтах

-: Амперах

-: Тесла

+: Веберах

-: Гауссах

V1: НАПРАВЛЕНИЕ ВЕКТОРА МАГНИТНОЙ ИНДУКЦИИ   

I:

S: На рисунке изображен проводник, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (а) направлен

-: В плоскости чертежа слева направо

+: Перпендикулярно плоскости чертежа к нам

-: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

I:

S: На рисунке изображен проводник, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (в)

направлен

-: Перпендикулярно плоскости чертежа к нам

+: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

-: В плоскости чертежа слева направо

I:

S: На рисунке изображен проводник, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (а) направлен

-: Перпендикулярно плоскости чертежа к нам

+: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

-: В плоскости чертежа слева направо

I:

S: На рисунке изображен проводник, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (а) направлен

-: В плоскости чертежа слева направо

-: Перпендикулярно плоскости чертежа к нам

+: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

I:

S: На рисунке изображен проводник, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (в) направлен

-: В плоскости чертежа слева направо

+: Перпендикулярно плоскости чертежа к нам

-: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

I:

S: На рисунке изображен проволочный виток, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (о) направлен

+: Перпендикулярно плоскости чертежа к нам

-: В плоскости чертежа слева направо

-: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

I:

S: На рисунке изображен проволочный виток, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (о) направлен

-: В плоскости чертежа слева направо

-: Перпендикулярно плоскости чертежа к нам

+: Перпендикулярно плоскости чертежа от нас

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

I:

S: На рисунке изображен проволочный виток, через который течет электрический ток. Направление тока указано стрелкой. Вектор магнитной индукции в точке (о) направлен

-: В плоскости чертежа слева направо

-: Перпендикулярно плоскости чертежа к нам

-: Вертикально вверх в плоскости чертежа

-: В плоскости чертежа вертикально вниз

+: Перпендикулярно плоскости чертежа от нас

I:

S: Квадратная проволочная рамка расположена в однородном магнитном поле перпендикулярно вектору магнитной индукции В как показано на рисунке. Стрелки на рамке показывают направление тока. Сила, действующая на сторону dc рамки, направлена

-: В плоскости чертежа слева направо

-: Перпендикулярно плоскости чертежа к нам

-: Вертикально вверх в плоскости чертежа

+: Перпендикулярно плоскости чертежа от нас

-: В плоскости чертежа вертикально вниз

I:

S: Квадратная проволочная рамка расположена в однородном магнитном поле перпендикулярно вектору магнитной индукции В как показано на рисунке. Стрелки на рамке показывают направление тока. Сила, действующая на сторону ab рамки, направлена

-: В плоскости чертежа слева направо

+: Перпендикулярно плоскости чертежа к нам

-: Вертикально вверх в плоскости чертежа

-: Перпендикулярно плоскости чертежа от нас

-: В плоскости чертежа вертикально вниз

I:

S: Квадратная проволочная рамка расположена в однородном магнитном поле перпендикулярно вектору магнитной индукции В как показано на рисунке. Стрелки на рамке показывают направление тока. Сила, действующая на сторону bc рамки, направлена

+: Равна нулю

-: Перпендикулярно плоскости чертежа к нам

-: Вертикально вверх в плоскости чертежа

-: Перпендикулярно плоскости чертежа от нас

-: В плоскости чертежа вертикально вниз

I:

S: Квадратная проволочная рамка расположена в однородном магнитном поле перпендикулярно вектору магнитной индукции В как показано на рисунке. Стрелки на рамке показывают направление тока. Сила, действующая на сторону ad рамки, направлена

-: Вертикально вверх в плоскости чертежа

-: Перпендикулярно плоскости чертежа от нас

-: В плоскости чертежа вертикально вниз

+: Равна нулю

-: Перпендикулярно плоскости чертежа к нам

 

V1: ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

I:

S: Вследствие изменения магнитного потока на 0,0186 мВб за 5,9 мс внутри проволочного витка напряженность вихревого магнитного поля составила 10 В/м. При этом радиус витка составляет

   +-: 1 см

    -: 25 см

   -: 10 см

   -: 100 см

   -: 50 см

I:

S: В центре витка радиусом 0,05 м магнитный поток изменился на 0,0186 Вб за 0,0059 с. При этом напряженность вихревого магнитного поля составила

   --: 1 В/м

    -: 5 В/м

   +: 10 В/м

   -: 20 В/м

   -: 50 В/м

I:

S: В проволочном витке сопротивлением R=30 мОм магнитный поток уменьшается на 0,012 Вб. При этом через поперечное сечение витка пройдет заряд

    -: 10 Кл

    -: 40 Кл  

   -: 200 мКл  

   +: 400 мКл  

   -: 600 мкКл  

I:

S: Магнитного потока в витке уменьшился на 0,012 Вб. При этом через его поперечное сечение прошел заряд 0,4 Кл. Тогда сопротивление витка составляет  

    -: 1 Ом

    -: 0,8 Ом  

   -: 0,2 Ом  

   -: 0,1 Ом  

   +: 0,03 Ом  

I:

S: Внутри проволочного кольца сопротивлением 30 мОм происходит изменение магнитного потока, при котором через поперечное сечение витка пройдет заряд 0,4 Кл. При этом  изменение магнитного потока составило

    -: 1 Вб

    +: 12 мВб  

   -: 0,2 Вб  

   -: 0,1 Вб  

   -: 30 Вб  

I:

S: В катушке из 2000 витков при возбуждении в нем ЭДС индукции 120 В скорость изменения магнитного потока составляет

    -: 1 мкВ/с

    -: 12 мВ/с  

   +: 0,06 В/с  

   -: 0,1 В/с  

   -: 30 В/с  

I:

S: При скорости изменения магнитного потока в 60 мВ/с в соленоиде возбуждается ЭДС индукции 120 В. При этом число витков соленоида составляет

-: 5000

+: 2000

-: 1000

-: 500

-: 200

I:

S: Магнитный поток, пронизывающий контур, изменяется с 4 до 9 мВб в течение 5 мс. Величина возникающей при этом ЭДС индукции равна

-: 10 В

-: 5 В

+: 1 В

-: 0,1 В

-: 1 мВ

I:

S: Контур, в котором при силе тока 5А возникает магнитный поток 0,5 мВб, обладает индуктивностью

-: 10 Гн;

-: 1 Гн;

-: 0,1 Гн;

-: 1 мГн;

+: 0,1 мГн.

I:

S: В контуре индуктивностью 0,1 мГн при силе тока 5А возникает магнитный поток, составляющий

+: 0,5 мВб

-: 1 мВб

-: 2,5 мВб

-: 25 Вб

-: 50 Вб

I:

S: В витке проволоки индуктивностью 100 мкГн магнитный поток в 500 мкВб возникает при силе тока, равной

-: 0,1 А

-: 1 А

+: 5 А

-: 10 А

-: 20 А

I:

S: При равномерном изменении силы тока на 2 А в течение 250 мс возбуждается ЭДС самоиндукции 20 мВ. При этом индуктивность проводника составляет

+: 2,5 мГн

-: 25 мГн

-: 50 мГн

-: 0,5 Гн

-: 5 Гн

I:

S: При равномерном изменении силы тока на 2 А в проводнике индуктивностью 2500 мкГн возбуждается ЭДС самоиндукции 20 мВ. Время, в течение которого произошло указанное изменение силы тока, составляет

-: 2 с

-: 1 с

-: 0,5 с

+: 0,25 с

-: 0,05 с

I:

S: При равномерном изменении силы тока на 2 А в течение 0,25 с в проводнике индуктивностью 2,5 мГн возбуждается ЭДС самоиндукции, равная

-: 15 мВ

+: 20 мВ

-: 25 мВ

-: 50 мВ

-: 1 В

I:

S: В проводнике индуктивностью 2,5 мГн  возбуждается ЭДС самоиндукции, равная  0,02 В, в течение 0,25 с. При этом сила тока изменяется на

-: 1 А

-: 0,5 А

-: 0,25 А

-: 0,05 А

+: 2 А

I:

S: При силе тока 20 А в катушке индуктивностью 0,6 Гн возникает магнитное поле, энергия которого равна

-: 1,2 Дж

-: 12 Дж

+: 0,12 кДж

-: 1,2 кДж

-: 12 кДж

I:

S: Индуктивность катушки, в которой при силе тока 20 А возникает магнитное поле энергией 0,12 кДж, равна

-: 12 Гн

-: 6 Гн

-: 120 мГн

+: 600 мГн

-: 0,3 Гн

I:

S: В катушке индуктивностью 600 мГн возникает магнитное поле энергией 120 Дж при силе тока, равной

-: 0,1 А

-: 1,2 А

-: 6 А

-: 10А

+: 20 А

I:

S: При уменьшении силы тока в катушке вдвое энергия магнитного поля в катушке

-: Увеличится вдвое

-: Уменьшится вдвое

-: Увеличится в 4 раза

+: Уменьшится в 4 раза

-: Не изменится

I:

S: При увеличении силы тока в катушке втрое энергия магнитного поля в катушке

+:Увеличится  в 9 раз

-:Увеличится втрое

-:Увеличится в 4 раза

-:Увеличится в 5 раз

-:Не изменится

V1: ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

I:

S: Электромагнитные колебания

-: Возникают под действием постоянного источника энергии

     +: Возникают в контуре без участия внешних факторов за счет первоначально накопленной энергии

-: Совершаются в замкнутых системах за счет флуктуаций энергии

-: Возникают вокруг любых проводников с током

-: Возникают при освещении металла

I:

S: Электромагнитные колебания в вакууме распространяются со скоростью

-: 340 м/с

-: 1000 м/с

-: 3000 км/с

+: 300000 км/с

-: 3·106 км/с

I:

S: Согласно теории Максвелла скорость распространения переменного магнитного поля может быть рассчитана с помощью выражения

-:

-:

-:

-:

+:

I:

S: Электромагнитной природой обладает

-: Звук

-: Ультразвук

+: Свет

-: Процесс диффузии

-: Явление термоэлектричества.

I:

S: Между длиной волны λ, периодом Т и скоростью v распространения электромагнитной волны установлено  соотношение

-:

+:

-:

-:

-: 

I:

S: В состав закрытого колебательного контура входят

-: Источник тока и катушка индуктивности

-: Конденсатор и источник тока

+: Конденсатор и катушка индуктивности

-: Конденсатор, источник тока и реостат

-: Источник тока, конденсатор и катушка индуктивности

I:

S: Частота колебаний в контуре может быть рассчитана с использованием формулы

-: Максвелла

+: Томсона

-: Эйнштейна

-: Кулона

-: Ампера.

I:

S: Период электромагнитных колебаний в контуре определяется выражением

-:

-:

-:

+:

-:

I:

S: Интенсивность электромагнитной волны

-: Пропорциональна ее частоте;

-: Пропорциональна ее периоду;

-: Обратно пропорциональна частоте;

+: Пропорциональна квадрату ее частоты;

-:5. Не зависит от ее частоты.

I:

S: Колебательный контур применяется в

-: Трансформаторах напряжения

-: Конструкции полупроводникового диода

+: Конструкции генераторов переменного тока

-: Лампах накаливания

-: Реостатах.

I:

S: Прохождение переменного электрического тока не сопровождается потерей энергии в

-: Проводнике;

-: Электролите;

-: Лампе накаливания;

+: Конденсаторе;

-: Трансформаторе.

I:

S: Интенсивность электромагнитной волны

-: Пропорциональна ее частоте;

-: Пропорциональна ее периоду;

-: Обратно пропорциональна частоте;

+: Пропорциональна квадрату ее частоты;

-: Не зависит от ее частоты.

V1: ПЕРЕМЕННЫЙ ТОК

I:

S: Сила переменного тока изменяется по закону

+:

-: ;

-:

-:

-:

I:

S: Для расчета полного сопротивления цепи переменного тока следует воспользоваться формулой

-: Z=R + RL + RC 

-:

+:     

-:

-:

  

I:

S: Для расчета индуктивного сопротивления справедливо выражение

-:

-:

-:

+:

-:

I:

S: Для расчета емкостного сопротивления следует воспользоваться выражением

-:

+:

-:

-:

-:

I:

S: Эффективное Iэ и амплитудное Iо значения переменного тока связаны выражением

-:  

-:

+:   

-:

-:.

I:

S: В тканях человека наблюдается наличие

-: Только активного сопротивления

-: Только емкостного сопротивления

-: Только индуктивного сопротивления

-: И активного и индуктивного сопротивления

+: И активного и емкостного сопротивления

I:

S: Воздействие на человека электрического тока поражающего действия может вызвать

-: Разрушение биомакромолекул

+: Фибрилляцию желудочков сердца

-: Диссоциацию молекул воды на ионы

-: Лишение клеток способности к делению

-: Нарушение гомеостаза

I:

S: К реактивному типу сопротивлений можно отнести

+: Индуктивное сопротивление

-: Омическое сопротивление

-: Внутреннее сопротивление источника тока

-: Внешнее сопротивление цепи

-: Емкостное сопротивление

I:

S: Прохождение переменного электрического тока не сопровождается потерей энергии в

-: Проводнике

-: Электролите

-: Лампе накаливания

+. Конденсаторе

-: Трансформаторе

V1: ДИФРАКЦИЯ СВЕТА

I:

S: Дифракцией света называется явление

-: При котором электрическая составляющая светового вектора колеблется в одной плоскости

+: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

-: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

I:

S: В явлении дифракции обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

I:

S: Дифракционный максимум от щели имеет место при условии, когда

+: Пучки лучей дифрагируют под углами, соответствующими нечетному числу зон Френеля

-: Пучки лучей дифрагируют под углами, соответствующими четному числу зон Френеля

-: Разность хода лучей равна нечетному числу полуволн

-: Разность хода лучей равна четному числу полуволн

-: Разность хода лучей равна целому числу волн

I:

S: Дифракционный минимум от щели имеет место при условии, когда

-: Пучки лучей дифрагируют под углами, соответствующими нечетному числу зон Френеля

+: Пучки лучей дифрагируют под углами, соответствующими четному числу зон Френеля

-: Разность хода лучей равна нечетному числу полуволн

-: Разность хода лучей равна четному числу полуволн

-: Разность хода лучей равна целому числу волн

I:

S: Дифракционный максимум наблюдается при разности хода световых лучей

-:

+:

-:

-:

-:

I:

S: Дифракционный минимум наблюдается при разности хода световых лучей

-:

-:

+:

-:

-:

I:

S: При дифракции света от одной щели дифракционные максимумы наблюдаются под углами, для которых

+:

-:

-:

-:

-:

I:

S: При дифракции света от одной щели дифракционные минимумы наблюдаются под углами, для которых

-:

-:

-:

+:

-:

I:

S: Дифракционная решетка представляет собой

-: Тонкую фольгу с большим числом квадратных ячеек

-: Мелкоячеистую проволочную сетку

+: Совокупность большого числа узких параллельных щелей, расположенных близко друг от друга

-: Плоский экран с рядом круглых отверстий

-: Плоский экран с рядом квадратных отверстий

I:

S: Для дифракционной решетки справедливо соотношение

-:

-:

+:

-:

-:

I:

S: Дифракционная решетка используется для:

-: Определения концентрации растворов оптически активных веществ

+: Точного измерения длины световых волн

-: Измерения толщины прозрачных микрообъектов

-: Усиления яркости изображений

-: Получения увеличенного изображения мелких объектов

I:

S: Явление дифракции используется

-: В концентрационной колориметрии

-: В ультрамикроскопии

-: В голографии

+: В рентгеноструктурном анализе

-: В рефрактометрии

I:

S: Гипотеза о том, что движущиеся микрочастицы обладают волновыми свойствами впервые была высказана

+: Де-Бройлем

-: Эйнштейном

-: Бором

-: Планком

-: Шредингером

I:

S: Движение микрочастицы сопровождается распространением волны, длина которой равна

-:

-:

-:

-:

+:

I:

S: Первое экспериментальное подтверждение гипотезы о том, что движущиеся микрочастицы обладают волновыми свойствами, было дано

-: Кулоном

-: Планком

-: Эйнштейном

+: Дэвиссоном и Джермером

-: Томсоном и Тартаковским

I:

S: Волновые свойства частиц были обнаружены в опытах по

-: Отражению микрочастиц от границы раздела сред

-: Поглощению микрочастиц в мутных средах

+: Дифракции электронов

-: Поляризации протонов

-: Интерференции альфа-частиц

V1: ИНТЕРФЕРЕНЦИЯ СВЕТА

I:

S: Интерференцией света называется явление

-: При котором электрическая составляющая светового вектора колеблется в одной плоскости

-: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

+: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

I:

S: В явлении интерференции обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

I:

S: Интерференционный максимум имеет место при условии, когда разность хода световых лучей равна

-: Целому числу полуволн

-: Нечетному числу полуволн

+: Четному числу полуволн

-: Четному числу волн

-: Нулю

I:

S: Интерференционный минимум имеет место при условии, когда разность хода световых лучей равна

-: Целому числу полуволн

+: Нечетному числу полуволн

-: Четному числу полуволн

-: Четному числу волн

-: Нулю

I:

S: Координаты максимумов интерференции рассчитываются по формуле

+:

-:

-:

-:

-:

I:

S: Координаты минимумов интерференции рассчитываются по формуле

-:

+:

-:

-:

-:

I:

S: Расстояние между двумя ближайшими максимумами интерференции рассчитывается по формуле

-:

-:

+:

-:

-:

I:

S: Когерентными называются источники, которые излучают

-:  Монохроматический свет

-: Поляризованный свет

-: Ультрафиолетовый свет

+: С постоянной разностью фаз

-: С постоянной частотой

 

I:

S: Верно, что

-: Когерентными являются любые два источника света, излучающие при одинаковой температуре

+: Естественные когерентные источники света в природе не встречаются

-: Естественные когерентные источники света в природе встречаются крайне редко

+: Когерентные источники света можно получить с помощью зеркал Френеля

-: Когерентные источники света можно получить с помощью рассеивающей линзы

I:

S: Явление интерференции используется в

-: Сахариметрах

-: Поляриметрах

-: Спектроскопах

-: Рефрактометрах

+: Интерферометрах

I:

S: Интерферометры используются для

-: Определения концентрации растворов оптически активных веществ

-: Точного измерения длины световых волн

+: Измерения толщины прозрачных микрообъектов с высокой точностью

-: Усиления яркости изображений при визуализации внутренних органов

-: Получения увеличенного изображения микрообъектов

V1: ПОЛЯРИЗАЦИЯ СВЕТА

I:

S: Поляризацией света называется явление

+: При котором электрическая составляющая светового вектора колеблется в одной плоскости

-: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

-: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

I:

S: В явлении поляризации обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

I:

S: Поляризация света описывается законом

+: Малюса

-: Бугера

-: Ламберта

-: Бера

-: Гюйгенса

I:

S:  Интенсивность поляризованного света описывается формулой

     -:

-:

-: 

+:

-:  

I:

S:  К поляризаторам можно отнести

-: Стекло

+: Турмалин

-: Хрусталь

-: Полиэтилен

-: Алмаз

I:

S:  Наиболее распространенным поляризационным устройством является

-: Зеркало Френеля

-: Экран Гюйгенса

-: Плоско-параллельная пластинка

+: Призма Николя

-: Дифракционная решетка

I:

S:  Свойством вращения плоскости поляризации обладает

-: Спирт

+: Никотин

+: Водный раствор сахара

-: Кварц

-: Хрусталь

 

I:

S:  Угол поворота плоскости поляризации в растворе пропорционален его

+: Концентрации

-: Удельному весу

+: Толщине слоя

-: Показателю преломления

-: Коэффициенту поглощения

I:

S:  Угол поворота плоскости поляризации определяется выражением

-:

+:

-:

-:

-:

I:

S:  Явление вращения плоскости поляризации используется в

+: Сахариметрах

-: Спектроскопах

-: Рефрактометрах

-: Интерферометрах

-: Гониометрах

I:

S:  Поляриметры используются для

-: Определения показателя преломления вещества

-: Измерения толщины прозрачных микрообъектов

+: Определения концентрации растворов оптически активных веществ

-: Точного измерения длины световых волн

-: Усиления яркости изображений

V1: ПРИРОДА СВЕТА

I:

S: Корпускулярная теория была разработана

-: Лебедевым

+: Ньютоном

-: Гельмгольцем

-: Гюйгенсом

I:

S: Волновая теория была разработана

-: Лебедевым

-: Ньютоном

-: Гельмгольцем

+: Гюйгенсом

I:

S: И корпускулярная и волновая теории сформировались к концу

-: 15-го столетия

-: 16-го столетия

+: 17-го столетия

-: 18-го столетия

I:

S: Дальнейшее усовершенствование волной теории было осуществлено

+: Юнгом

-: Дираком

+: Френелем

-: Майкельсоном

I:

S: Дальнейшее усовершенствование корпускулярной теории было осуществлено

-: Юнгом

+: Планком

-: Френелем

+: Эйнштейном

I:

S: Представлениям о волновой природе света противоречат такие оптические явления как

+: Фотоэффект

-: Дифракция света

-: Интерференция света

-: Рефракция света

I:

S: Представлениям о квантовой природе света противоречат такие оптические явления как

-: Фотоэффект

+: Дифракция света

-: Люминесценция света

-: Атомные и молекулярные спектры

I:

S: Впервые световое давление было обнаружено в опытах

-: Ньютона

-: Гюйгенса

+: Лебедева

-: Прохорова

I:

S: Квантовая теория света основана на

+: Дискретном характере излучения и поглощения света

-: Непрерывном характере излучения и поглощения света

-: Волновом характере излучения и поглощения света

-: Дискретном характере отражения и преломления света

I:

S: Двойственность природы света получила название

-: Корпускулярного формализма

-: Волнового дуализма

-: Корпускулярно-волнового формализма

+: Корпускулярно-волнового дуализма

V1: СТРОЕНИЕ АТОМА

I:

S: Атом в рамках резерфордовских представлений представляет собой

образование, в котором

-: Положительный и отрицательный заряды равномерно рассредоточены по объему атома

-: Электроны и протоны равномерно распределены в виде связанных зарядов

+: Положительный заряд сосредоточен в центре, а электроны вращаются вокруг него по орбитам

-: Нейтроны и электроны находятся в центре атома, а протоны вращаются вокруг него по орбитам

-: В силу электрической нейтральности атома в ядре располагаются только нейтроны, а электроны вращаются вокруг атома

I:

S: В рамках модели атома по Резерфорду

-: Была установлена радиоактивность атома

-: Удалось определить заряд и массу электрона

-: Были объяснены спектры излучения атома водорода

-: Была рассчитана полная энергия атома

+: Были объяснены опыт по рассеянию альфа-частиц и  установлены размеры ядра

I:

S: Недостатки резерфордовской модели атома состоят в том, что:

-: Резерфордовская модель атома не учитывала того факта, что электроны находятся в движении

+: В резерфордовской модели атом является неустойчивым образованием, тогда как опыт свидетельствует об обратном

-: По Резерфорду атом является устойчивым образованием, тогда как опыт свидетельствует об обратном

-: Спектр излучения атома по Резерфорду является дискретным, тогда как опыт говорит о непрерывном характере излучения

+: Спектр излучения атома по Резерфорду является непрерывным, тогда как опыт говорит о дискретном характере излучения

I:

S: Модель атома Резерфорда была усовершенствована на основе

представлений о

-: Радиоактивном характере излучения атома

-: Малости размеров и массы электрона по сравнению с размерами и массой ядра

   атома

-: Устойчивости атома

+: Дискретности энергетических состояний атома

-: Зависимости частоты излучения абсолютно черного тела от температуры

I:

S: Согласно первому постулату Бора

-:  Ядро атома заряжено положительно, а электроны движутся по электронным

   орбитам

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома.

-:  Электроны могут двигаться в атоме только по внешним орбитам

+: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

-: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

I:

S: Математическим выражением первого постулата Бора является:

-:

-:

+:

-:

-:

I:

S: Согласно второму постулату Бора

-: Переход электрона с одной стационарной орбиты на другую сопровождается излучением (поглощением) кванта энергии

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома

-: Электроны могут двигаться в атоме только по внешним орбитам

-: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

+: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

I:

S: Согласно третьему постулату Бора

+: Переход электрона с одной стационарной орбиты на другую сопровождается излучением (поглощением) кванта энергии

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома

-: Электроны могут двигаться в атоме только по внешним орбитам

-: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

-: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

I:

S: Математическим выражением третьего постулата Бора является:

-:

+:

-:

-:

-:

I:

S: Центростремительной силой, удерживающей электрон на орбите, является

-: Гравитационная сила притяжения между электроном и ядром

-: Гравитационная сила отталкивания между электроном и ядром

+: Кулоновская сила притяжения между электроном и ядром

-: Кулоновская сила притяжения между электроном и ядром

-: Сила Лоренца, действующая на движущийся электрон

I:

S: Условие равновесия электрона на орбите определяется соотношением

-:

-:

-:

+:

-:

I:

S: Радиус стационарной орбиты атома водорода определяется соотношением

-:

+:

-:

-:

-:

I:

S: Кинетическая энергия поступательного движения электрона в атоме определяется выражением

+:

-:

-:

-:

-:

I:

S: Потенциальная энергия электрона в атоме определяется выражением

-:

-:

+:

-:

-:

I:

S: Полная энергия электрона в атоме определяется выражением

-:

-:

-:

+:

-:

I:

S: С учетом выражения для радиуса электронной орбиты полная энергия электрона в атоме может быть записана в виде

-:

+:

-:

-:

-:

I:

S: Уровнем энергии атома (или энергетическим уровнем) называется

-: Кинетическая энергия электрона, находящегося на электронной орбите

-: Потенциальная энергия электрона, находящегося на электронной орбите

+: Сумма кинетической и потенциальной энергии электрона, находящегося на электронной орбите

-: Энергия атомного ядра

-: Сумма кинетической и потенциальной энергии электрона, находящегося на электронной орбите, а также энергии ядра атома

I:

S: Энергия атома

+: Возрастает с увеличением квантового числа n;

-: Убывает с увеличением квантового числа n

-: Убывает с увеличением радиуса электронной орбиты

-: Возрастает с уменьшением квантового числа и радиуса электронной орбиты

-: Не зависит от квантового числа и радиуса электронной орбиты




1. ТД Челны хлеб Г
2. тема общеобязательных формальноопределенных норм которые выражают государственную волю общества ее общеч
3. наука о почве ее строении составе свойствах и географическом распространении закономерностях ее происхо
4. Вариант 1 Задача 1нечетный вариант Даны прогнозные данные по ценным бумагам двух компаний А и В из разны
5. тема под которой понимают совокупность всех политических партий действующих в данной стране взаимодейств
6. исторического развития общества
7. Управление государственным долгом
8. Эмпирические исследования модели CPM
9. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Київ ~1
10. то далеко сверкает молния
11. ВерхнеВолжское УГМС Чрезвычайных ситуаций природного характера в течение 2012 года на территории Нижег
12. Основные понятия в терминологии БЖД
13. Технология производства кирпича керамического
14. Воинские звания военнослужащих Вооруженных Сил РФ
15. Технологический процесс изготовления детали Валик терморегулятора
16. старшего Облик лирического героя Бальмонта определяется претензией личности на высшее место в иерархии ц
17. губернатор Литвы
18. В 13 ЭТАЛОНЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН И ЭТАЛОННЫЕ СРЕДСТВА ИЗМЕРЕНИЙ Размеры единиц воспроизводятся хр
19. Календарь
20. на тему- Особливості розвитку уваги молодших школярів.html