Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1 Принцип работы матричных принтеров.
Ма́тричный принтер (англ. dot matrix printer) компьютерный принтер, создающий изображение на бумаге из отдельных маленьких точек ударным способом. Принцип действия В матричном принтере изображение формируется на носителе печатающей головкой, представляющей из себя набор иголок, приводимых в действие электромагнитами. Головка располагается на каретке, движущейся по направляющим поперёк листа бумаги; при этом иголки в заданной последовательности наносят удары по бумаге через красящую ленту, аналогичную применяемой в печатных машинках и обычно упакованную в картридж, тем самым формируя точечное изображение. Для перемещения каретки обычно используется ременная передача, реже зубчатая рейка или винтовая передача. Приводом каретки является шаговый электродвигатель. Такой тип матричных принтеров именуется SIDM (англ. Serial Impact Dot Matrix последовательные ударно-матричные принтеры). Скорость печати таких принтеров измеряется в CPS (англ. characters per second символах в секунду). Матричный принтер Star LC-10 Устройство перемещения печатной головки Картридж с красящей лентой Иглы в печатающей головке располагаются, в зависимости от их количества, одним или двумя вертикальными столбцами, или в виде ромба. Материалом для игл служит износостойкий вольфрамовый сплав. Для привода игл используются две технологии, основанные на электромагнитах баллистическая и с запасенной энергией. Поскольку электромагниты нагреваются при работе, печатающая головка снабжается радиатором для пассивного отвода тепла; в высокопроизводительных принтерах может применяться принудительное охлаждение печатающей головки вентилятором, а также система температурного контроля, снижающая скорость печати или прекращающая работу принтера при превышении допустимой температуры печатающей головки. Для печати на носителях различной толщины в матричном принтере имеется регулировка зазора между печатающей головкой и бумагоопорным валом. В зависимости от модели, регулировка может производится вручную, либо автоматически. При автоматической установке зазора принтер имеет функцию автоматического определения толщины носителя. В разное время выпускались принтеры с 9, 12, 14, 18, 24 и 36, 48 иголками в головке; разрешающая способность печати, а также скорость печати графических изображений напрямую зависят от числа иголок. Наибольшее распространение получили 9- и 24-игольчатые принтеры. 9-игольчатые принтеры применяются для высокоскоростной печати с невысокими требованиями к качеству. Для достижения высокой скорости в некоторых принтерах используются сдвоенные (2х9) и счетверенные (4х9) 9-игольчатые печатающие головки. За счет меньшего количества игл 9-игольчатая печатающая головка отличается большей надежностью и меньшим нагревом. В настоящее время 9-игольчатые матричные принтеры занимают большую часть рынка. Преимуществом 24-игольчатого принтера является высокое качество печати, в графическом режиме максимальное разрешение составляет 360х360 точек на дюйм. При этом скорость печати 24-игольчатого принтера существенно ниже, чем у 9-игольчатого. Основная сфера применения печать с высокими требованиями к качеству. В настоящее время 24-игольчатые матричные принтеры вытеснены лазерными и струйными принтерами и занимают небольшую рыночную долю. В современных матричных принтерах красящая лента из плотного нейлона упакована в картридж, содержащий также узлы для протяжки и натяжения ленты. В зависимости от конструкции принтера, картридж располагается на станине или на каретке. В ранних моделях вместо картриджа может использоваться лента на катушках для пишущей машинки. Для повышения ресурса ленты, ее длина часто составляет 6 и более метров. В случае короткой ленты используется дополнительная подкраска с помощью бункера или ролика из пористого материала (фетра), пропитанного краской. В некоторых принтерах для увеличения ресурса лента имеет вид Листа Мёбиуса. Особенности применения и режимы печати Помимо печати текстовой информации, когда удары иголок контролируются программным обеспечением самого принтера, многие матричные принтеры имеют режим индивидуального управления иголками с компьютера, что обеспечивает возможность печати графической информации; однако в этом режиме скорость печати значительно падает. Иногда встроенное программное обеспечение принтера поддерживает загрузку во встроенную память принтера дополнительного набора шрифтов. В зависимости от модели, матричные принтеры могут поддерживать все или некоторые из следующих режимов: графический режим (англ semi-graphic, character graphic); алфавитно-цифровой режим: LQ (англ. Letter Quality «типографское качество»), NLQ (англ. Near Letter Quality «качество близкое к типографскому»), Draft черновое качество печати; в этом режиме достигается максимальная скорость печати за счёт ухудшения её качества. Для печати на матричном принтере преимущественно используется рулонная или перфорированная фальцованная бумага. В случае применения листовой бумаги большинство матричных принтеров требует её ручной заправки; во многих моделях имеется возможность использования опционального автоподатчика листовой бумаги (англ. CSF, Cut Sheet Feeder). Многоцветная матричная печать Некоторые модели матричных принтеров обладают возможностью многоцветной печати при использовании четырёхцветной CMYK красящей ленты. Смена цвета достигается смещением картриджа с лентой относительно печатающей головки дополнительным механизмом. Цветной матричный принтер позволяет получить семь цветов: основные цвета печатаются в один проход, а дополнительные цвета в два прохода. Многоцветная матричная печать может использоваться для распечатки цветного текста и простой графики, и непригодна для получения фотореалистичных изображений. Чаще всего возможность цветной печати реализуется с помощью дополнительной оснастки (color kit), как в принтерах Epson LX-300+II и Citizen Swift 24; реже многоцветная печать является базовой возможномтью (Epson LQ-2550, Okidata Microline-395C). Серьёзным недостатком технологии цветной матричной печати является постепенное загрязнение первичных цветов на ленте чёрным вследствие контакта ленты с многоцветным изображением, приводящее к искажающению цветов на распечатке. Цветные матричные принтеры не получили широкого распространения, поскольку к моменту возникновения широкой потребности в цветной печати были вытеснены цветнымиструйными принтерами, обладающими более высокими эксплуатационными качествами, и в настоящее время практически не встречаются. Управление печатью и взаимодействие с компьютером Управление матричными принтерами осуществляется при помощи различных систем команд, общепринятыми из которых являются две: Epson ESC/P (англ. EPSON Mode) иIBM ProPrinter (англ. IBM Mode); большинство принтеров поддерживает обе системы. Кабельный 36-контактный разъём Centronics для подключения внешнего устройства (IEEE 1284-B) Преимущества Несмотря на то, что технологии матричной печати часто воспринимаются как устаревшие, матричные принтеры по-прежнему находят применение там, где требуется недорогая массовая печать на многослойных бланках (например, на авиабилетах) или под копирку, а также в случаях, когда требуется вывод значительного количества чисто текстовой информации без предъявления особых требований к качеству получаемого документа (печать этикеток, ярлыков, данных с систем управления и измерения); дополнительная экономия при этом достигается за счёт использования дешёвой фальцованной или рулонной бумаги. Ещё одним преимуществом матричной печати является высокий ресурс как самого принтера (8 млн строк) так и печатной головки (30 млн символов). Недостатки Основными недостатками матричных принтеров являются: высокий уровень шума низкая скорость и качество печати в графическом режиме ограниченные возможности цветной печати Для снижения шума при печати в отдельных моделях предусмотрен тихий режим, в котором каждая строка печатается в два прохода с использованием половинного количества игл; побочным эффектом такого решения является значительное снижение скорости печати. Для борьбы с шумом также применяют специальные конструкции с звуконепроницаемыми кожухами. Для повышения скорости печати используют технологии, обеспечивающие печать строки за один проход так, в высокоскоростных линейно-матричных принтерах большое количество молоточков равномерно расположены на челночном механизме (фрете) по всей ширине печати. Скорость таких принтеров измеряется в LPS (англ. Lines per second строках в секунду). |
2 Архитектура автоматизированных информационных систем. Выбор технических средств, организация их эксплуатации, технологический процесс обработки данных, технологическое оснащение документально оформляются. Документацию технического обеспечения можно условно разделить на группы: общесистемная документация, включающая государственные и отраслевые стандарты по техническому обеспечению; специализированная документация, содержащая комплекс методик по всем этапам разработки технического обеспечения; нормативно-справочная документация, используемая при выполнении расчетов по техническому обеспечению. Эргономическое обеспечение совокупность реализованных решений в АИС по согласованию психологических, психофизиологических, антропометрических, физиологических характеристик и возможностей пользователей АИС с техническими характеристиками комплекса средств автоматизации АИС и параметрами рабочей среды на рабочих местах персонала АИС [4]. Охрана здоровья трудящихся, обеспечение безопасности условий труда, ликвидация профессиональных заболеваний и производственного травматизма составляют одну из главных забот человеческого общества. Обращается внимание на необходимость широкого применения прогрессивных форм научной организации труда, сведения к минимуму ручного, малоквалифицированного труда, на создание обстановки, исключающей профессиональные заболевания и производственный травматизм. Термин «архитектура» применительно к вычислительным системам появился задолго до создания первых АИС, тем не менее он является одним из основополагающих и в сфере информационных технологий. Существуют различные подходы к определению архитектуры АИС, различные точки зрения и различная степень детализации рассмотрения; приведем некоторые из них. Согласно архитектура это организационная структура автоматизированной системы. Известно и другое определение [12]: архитектура это концептуальное описание структуры Глава L Проектирование АИС системы, включающее описание элементов системы, их взаимодействия и внешних свойств. Выделяют два уровня архитектуры АИС: бизнес-архитектуру (бизнес-уровень); уровень информационных технологий (технический уровень). Бизнес-архитектура обычно первична по отношению к техническому уровню; может существовать и реализуема вне зависимости от существования АИС. Бизнес-архитектура является предметной областью для анализа и проведения автоматизации. На бизнес-уровне определяется набор задач, требований, характеристик, осуществляемых с помощью АИС. Соответствие указанному уровню технического уровня является основой эффективности функционирования АИС. С другой стороны, новые возможности, предоставляемые использованием информационных технологий, стимулируют развитие и корректировку бизнес-архитектуры, в связи с чем она является неотъемлемой частью архитектуры АИС и всего предприятия [13]. Уровень информационных технологий или технический уровень представляет собой интегрированный комплекс технических средств, используемых в АИС для реализации задач предприятия, и включает в себя как логические, так и технические (программные и аппаратные) компоненты. Компонентами этого уровня, в свою очередь, являются следующие подуровни: архитектура программных систем; информационная архитектура; технологическая (инфраструктурная) архитектура. Информационная архитектура представляет собой логическую организацию данных, с которыми работает АИС, т. е. практически структуры баз данных и баз знаний, а также принципы их взаимодействия. Под архитектурой программных систем понимают совокупность следующих технических решений: общий архитектурный стиль и общую организацию программной части АИС; деление программного комплекса на функциональные подсистемы и модули; свойства модулей, методы их взаимодействия и объединения, используемые интерфейсы. Архитектура программной системы охватывает не только структурные и поведенческие аспекты, но и правила ее использования и интеграции с другими системами, функциональность, производительность, гибкость, надежность, эргономичность, технологические ограничения. Технологическая архитектура описывает инфраструктуру, используемую для передачи данных. На этом уровне решаются вопросы сетевой структуры, применяемых каналов связи и т. д. По мере развития программных систем все большее значение приобретает их комплексная интеграция для построения единого информационного пространства предприятия. Обеспечение такой интеграции является важнейшим элементом архитектуры, в противном случае АИС окажется неэффективной. В современных стандартах четко определены процессы создания архитектуры, способной к удовлетворению не только сформулированных, но и потенциальных потребностей пользователей. К числу самых известных и авторитетных разработчиков стандартов в области АИС относятся следующие международные организации: SEI (Software Engineering Institute); WWW (консорциум World Wide Web); OMG (Object Management Group); организация разработчиков Java JCP (Java Community Process); IEEE (Institute of Electrical and Electronics Engineers) и т. д. |
3 Интегральные микросхемы. Назначение. Классификация Интегра́льная (микро)схе́ма (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, микрочи́п (англ. microchip, silicon chip, chip тонкая пластинка первоначально термин относился к пластинке кристалла микросхемы) микроэлектронное устройство электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой(МС) ИС, заключённую в корпус. В то же время выражение «чип-компоненты» означает «компоненты для поверхностного монтажа», в отличие от компонентов для пайки в отверстия на плате. Поэтому правильнее говорить «чип-микросхема», имея в виду микросхему для поверхностного монтажа. На сегодняшний день большая часть микросхем изготавливается в корпусах для поверхностного монтажа. Уровни проектирования Логический логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.). Схемо- и системотехнический уровень схемо- и системотехническая схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.). Электрический принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.). Физический методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле. Топологический топологические фотошаблоны для производства. Программный уровень позволяет программисту программировать (для микроконтроллеров и микропроцессоров) разрабатываемую модель используя виртуальную схему. В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов. Классификация Степень интеграции В СССР были предложены следующие названия микросхем в зависимости от степени интеграции, разная для цифровых и аналоговых микросхем (указано количество элементов для цифровых схем): малая интегральная схема (МИС) до 100 элементов в кристалле, средняя интегральная схема (СИС) до 1000 элементов в кристалле, большая интегральная схема (БИС) до 10000 элементов в кристалле, сверхбольшая интегральная схема (СБИС) до 1 миллиона элементов в кристалле, ультрабольшая интегральная схема (УБИС) до 1 миллиарда элементов в кристалле, гигабольшая интегральная схема (ГБИС) более 1 миллиарда элементов в кристалле. В настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом. Технология изготовления Гибридная микросхема STK403-090 извлеченная из корпуса Полупроводниковая микросхема все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния). Плёночная интегральная микросхема все элементы и межэлементные соединения выполнены в виде плёнок: толстоплёночная интегральная схема; тонкоплёночная интегральная схема. Гибридная микросхема (также микросборка) кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус. Смешанная микросхема кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла. Вид обрабатываемого сигнала Аналоговые. Цифровые. Аналого-цифровые. Аналоговые микросхемы входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания. Цифровые микросхемы входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В логической единице; а для микросхем ЭСЛ-логики при наприяжении питания −5,2 В диапазон −0,8…−1,03 В логической единице, а −1,6…−1,75 В логическому нулю. Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение[источник не указан 175 дней]. Технологии изготовления Типы логики Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем. Микросхемы на униполярных (полевых) транзисторах самые экономичные (по потреблению тока): МОП-логика (металл-окисел-полупроводник логика) микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа; КМОП-логика (комплементарная МОП-логика) каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП). Микросхемы на биполярных транзисторах: РТЛ резисторно-транзисторная логика (устаревшая, заменена на ТТЛ); ДТЛ диодно-транзисторная логика (устаревшая, заменена на ТТЛ); ТТЛ транзисторно-транзисторная логика микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе; ТТЛШ транзисторно-транзисторная логика с диодами Шоттки усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки; ЭСЛ эмиттерно-связанная логика на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, что существенно повышает быстродействие; ИИЛ интегрально-инжекционная логика. КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии. Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко. Технологический процесс |