Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

забезпечує надзвичайно високу точність відновлення генетичної інформації рівень помилок становить ~1010 н

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2024

Однією із загальних властивостей біологічних систем є їхня консервативність - здатність відновлювати генетичний матеріал і передавати його нащадкам у майже незмінному вигляді. Молекулярна машинерія реплікації та репарації ДНК (розділ 1) забезпечує надзвичайно високу точність відновлення генетичної інформації - рівень помилок становить ~10-10 нуклеотидних замін, тобто менше однієї заміни на еукаріотичний геном при одному подвоєнні ДНК. Зрозуміло, що абсолютна точність відтворення ДНК є неможливою, і мінливість генетичного матеріалу є також важливим аспектом його існування.

Мінливість можна визначити як здатність генетичного апарату до змін, які зумовлюють фенотипові відмінності між особинами одного виду в ряду поколінь або в межах одного покоління. Мінливість може бути спричинена змінами геному (спадкова мінливість) або виникати в результаті зміни експресії генів за дії факторів навколишнього середовища протягом індивідуального розвитку (неспадкова мінливість).

Спадкова мінливість може бути зумовлена утворенням або нових варіантів послідовностей нуклеотидів ДНК (мутаційна мінливість), або нових комбінацій уже існуючих послідовностей, які виникають за рахунок рекомбінації та випадкового розподілу хромосом у мейозі (комбіна-тивна мінливість). Механізми й наслідки комбінативної мінливості описано в розділах 1 і 3, а в цьому розділі увагу буде зосереджено саме на мутаційній мінливості. Слід розрізняти також власне мутаційну мінливість, яка приводить до випадкових змін генетичних програм (саме про таку мінливість ітиметься нижче), і запрограмовані зміни генетичного матеріалу в певних геномних зонах або іноді в масштабі цілого геному, приклади яких розглядатимуться в розділах 5 і 6.

Мутації - це незапрограмовані, випадкові та стабільні (такі, що залишаються "назавжди" та спадкуються) зміни в структурі ДНК, які з'являються або в результаті дії пошкоджуючих чинників, або як результат помилок систем реплікації, репарації чи рекомбінації. Мутація, яка виникла в соматичних клітинах (соматична мутація), спадкується тільки в ряду клітинних поколінь, а та, що в статевих (генеративна м,утація) - передається наступним поколінням нащадків. Крім мутацій, котрі виникають у ядерному геномі (ядерні мутаціі), зміни можуть відбуватися також у ДНК мітохондрій і хлоропластів - це цитоплазматичні мутації.

ТИПИ МУТАЦІЙ

Мутаційні зміни можуть охоплювати декілька нуклеотидів молекули ДНК, великі за довжиною послідовності та цілі набори хромосом. Відповідно, розрізняють точкові, хромосомні та геномні мутації.

Зміну послідовності ДНК, обмежену лише одним чи декількома нуклеотидами, називають точковою мутацією. Така мутація може являти собою заміну одного нуклеотиду на інший. Заміна, в результаті якої замість пурину (А, G) включається піримідин (T, C) або навпаки називається трансверсією. Заміна пурину на пурин ^^G) і, відповідно, піримідину на піримідин (T^-C), називається транзицією. Транзиції та трансверсії, які відбулися в кодуючій частині гена, можуть зумовити заміну амінокислоти в складі білка - у такому випадку мутацію називають міссенс-мутацією (missense), або несинонімічною нуклеотидною заміною. Унаслідок виродженості генетичного коду (див. розділ 2) заміна нуклеотиду може не змінити змісту кодона. Така нуклеотидна заміна називається сеймсенс-мутацією (samesense), або синонімічною мутацією. При утворенні в результаті трансверсії чи транзиції стоп-кодона (беззмістовного щодо амінокислот) нуклеотидну заміну називають нонсенс-мутацією (nonsense).

Іншими двома типами точкових мутацій є вставка (інсерція) або випадіння (делеція) одного чи декількох нуклеотидів. Інсерція або делеція не кратної трьом кількості нуклеотидів у кодуючій частині гена приводить до зсуву рамки зчитування. Якщо вставка повторює послідовність, яка присутня поблизу місця інсерції, то її називають дуплікацією, а багаторазовий повтор декількох нуклеотидів - експансією повторів. Усі розглянуті типи точкових мутацій схематично зображено на рис. 4.1.

Хромосомні мутації (хромосомні перебудови або хромосомні аберації) - це порушення в нормальній морфології хромосом, спостережувані на стадії метафази або телофази мітозу, коли можна розрізняти окремі хромосоми. Отже, хромосомними мутаціями є такі великомасштабні зміни послідовностей ДНК (від 1 млн пар основ і більше), які можна ідентифікувати за допомогою оптичного мікроскопа. Здебільшого під хромосомними абераціями розуміють будь-які порушення морфології хромосом - у тому числі такі, що унеможливлюють наступний поділ клітини або взагалі є несумісними з життям і тому не спадкуюються. Хромосомні мутації - це частина хромосомних аберацій, які успадковуються дочірніми клітинами.

Хромосомні перебудови можуть бути внутрішньохромосомними (відбуваються в межах однієї хромосоми) і міжхромосомними (перебудови, що охоплюють дві різні хромосоми).

Одним із типів внутрішньохромосомних перебудов є делеції. Розрізняють термінальні делеції (дефішенсі - втрати кінцевих ділянок хромосом) та інтерстиціальні - втрати внутрішніх частин хромосом (рис. 4.2). До внутрішньохромосомних перебудов також належать дуплікації (двократні повтори певного сегменту хромосоми, рис. 4.3), ампліфікації (багаторазові повтори сегмента хромосоми) та інверсії -повороти ділянки хромосоми на 180°. Залежно від того, залучає інверсія область центромери чи ні, розрізняють відповідно перицентричні та парацентричні інверсії. Перші можуть значно змінювати морфологію хромосоми, а другі не приводять до зміни морфологічного типу хромосоми й детектуються лише за допомогою методів диференцій-ного забарвлення - методів, які дозволяють візуалізувати певні більш або менш інтенсивно забарвлені ділянки, розподіл яких є специфічною ознакою кожної хромосоми (рис. 4.4).

До міжхромосомних перебудов відносять інсерції та транслокації. Інсерція - це вставка ділянки однієї хромосоми всередину іншої (маються на увазі негомологічі хромосоми), яка супроводжується де-лецією в першій хромосомі.

Обмін ділянками між негомологічними хромосомами називається транслокацією. Розрізняють реципрокні та нереципрокні транслокації. Взаємний обмін ділянками двох негомологічних хромосом - це реципрокні транслокації (рис. 4.5). При цьому можуть об'єднатися дві центромерні області різних хромосом, тоді обмін веде до утворення дицентричної хромосоми (рис. 4.5, б). Така хромосома є прикладом перебудови, що не спадкується, - це хромосомна аберація, яка не є мутацією. Різновидом реципрокних транслокацій є роберт-сонівські транслокації - об'єднання двох акроцентричних хромосом (після дволанцюгового розриву в центромерних зонах) у мета- чи субметацентричну (рис. 4.5, в). При цьому кількість хромосом зменшується на одну: тільки одна половина кожної центромери містить елементи послідовності, важливі для утворення кінетохору під час мітозу, відповідно, фрагмент, що утворився шляхом з'єднання інших половин, втрачається.

При нереципрокних транслокаціях, на відміну від інсерцій, ділянка однієї хромосоми приєднується до кінця іншої (за умови порушення теломерної зони цієї іншої хромосоми).

Три типи геномних мутацій - гаплоїдія, поліплоїдія та анеуплоїдія -широко розповсюджені у тваринному й рослинному світі. Гаплоїдія -це зменшення вдвічі диплоїдного набору хромосом. Зворотним явищем є поліплоїдія - кратне гаплоїдному збільшення кількості хромосом. Клітина з трьома гаплоїдними наборами хромосом називається триплоїдною, чотирма - тетраплоїдною і т. д. Поліплоїдія може бути зумовлена або кратним збільшенням власних для даного виду хромосом (автополіплоїдія), або виникати за рахунок гібридизації, тобто об'єднання геномів різних видів (аллополіплоі'дія).

Анеуплоїдія - це не кратна гаплоїдному набору зміна кількості хромосом. Найчастіше вона виявляється у збільшенні або зменшенні кількості копій однієї хромосоми, рідше - декількох. Анеуплоїдна клітина (чи організм), яка містить одну додаткову хромосому, має назву трисомік. Утрата однієї хромосоми приводить до моносомії, двох гомологічних хромосом - до нулісомії.

МОЛЕКУЛЯРНІ МЕХАНІЗМИ МУТАЦІЙНОЇ МІНЛИВОСТІ

Джерелом мутаційних змін є перебудови послідовності нуклеоти-дів ДНК, які виникають у результаті хімічних модифікацій молекули, таутомеризації азотистих основ, переміщення мобільних елементів (див. розділ 6), інтеграції чужорідної, (наприклад, вірусної) ДНК і помилок під час реплікації та репарації. Пошкодження ДНК не є власне мутаціями, а лише передмутаційними змінами, які можуть бути або виправлені системами репарації, або зафіксовані в ДНК у вигляді мутацій. Тобто мутація є такою зміною послідовності ДНК, яка залишилась після репарації та наступної чергової реплікації.

Пошкодження ДНК можуть виникати внаслідок як впливу продуктів нормальної життєдіяльності клітини, так і дії зовнішніх факторів середовища. Ендогенні та екзогенні фактори, здатні пошкоджувати ДНК, називають мутагенами, а процес утворення мутацій - мутагенезом. Мутагенез, який відбувається у природних умовах, конкретні причини якого, як правило, важко ідентифікувати, - це спонтанний мутагенез. Якщо мутації викликаються штучно (при використанні мутагенних факторів у експериментах), кажуть про індукований мутагенез. Молекулярні механізми виникнення пошкоджень ДНК і фіксації їх у вигляді мутацій принципово не відрізняються для обох типів мутагенезу.

Пошкодження ДНК, що виникають у процесі життєдіяльності клітини

Поява передмутаційних змін генетичного матеріалу в клітині унаслідок метаболічних процесів є нормальним явищем. Кількість спонтанних пошкоджень ДНК, що виникають у одній клітині людини за добу, оцінюється в 104-106. Переважна частина цих пошкоджень у нормі видаляється системами репарації, і тільки невелика кількість залишається у вигляді мутації.

Найпоширенішими передмутаційними пошкодженнями ДНК є втрати азотистих основ (утворення апуринових або апіримідинових сайтів), хімічні модифікації основ, ковалентні зшивання ДНК-ДНК і ДНК-білок, одно- та дволанцюгові розриви цукрофосфатного остова ДНК. Ці пошкодження виникають здебільшого в реакціях гідролізу (хімічні реакції з водою), реакціях з активними радикалами окси-гену та пероксидними радикалами, а також унаслідок метилування (алкілування) основ.

Гідроліз глікозидного зв'язку між азотистою основою та дезоксирибозою (див. рис. 1.1) приводить до видалення азотистої основи й появи в цьому місці апуринового чи апіримідинового сайта (АП-сайта). За добу в клітинній ДНК утворюється близько 10 тис. таких АП-сайтів. Неправильна репарація цих пошкоджень може зумовити нуклеотидні заміни (транзиції чи трансверсії). Відсутність репарації стане причиною того, що під час наступного реплікаційного циклу напроти АП-сайта у складі матричного ланцюга в ланцюзі, що синтезується, буде вставлено довільний нуклеотид - з імовірністю З/4 він виявиться не тим, що мав би стояти в цьому місці, тобто виникне точкова мутація типу нуклеотидної заміни. Крім того, ДНК-полімеразний комплекс може "проскочити" АП-сайт у складі матриці, наслідком чого буде делеція нуклеотиду в складі ланцюга, що синтезується.

Нерепаровані АП-сайти можуть також перетворюватися на одно-ланцюгові розриви. Накопичення одноланцюгових розривів, у свою чергу, приводить до розривів дволанцюгових (коли два одноланцюго-ві розриви розташовані на невеликій відстані та на різних ланцюгах), що може бути причиною утворення різних типів хромосомних аберацій. Одноланцюгові розриви ДНК можуть виникати також у результаті прямого гідролізу фосфодіефірного зв'язку.

При гідролізі екзоциклічних аміногруп азотистих основ виникає дезамінування основ (до 500 пошкоджень на клітину за добу). Так, у результаті дезамінування цитозин перетворюється на урацил (див. рис. 1.2), а 5-метилцитозин - на тимін. Обидві основи, що з'явилися внаслідок таких перетворень, комплементарні аденіну, а отже, у разі відсутності репарації дезамінування може зумовити нуклеотид-ну заміну (стабільну заміну пари GC на AT-пару при реплікації).

Оксидативні пошкодження ДНК виникають в результаті хімічних реакцій дезоксирибози та азотистих основ із вільними радикалами оксигену або пероксидними радикалами. Джерелом радикалів є процеси дихання клітини. Найсуттєвіші оксидативні пошкодження ДНК -це утворення 8-оксигуаніну (приєднання оксигену до восьмого атома кільця, див. рис. 1.2), комплементарного тиміну, і 2-оксиаденіну, комплементарного цитозину. Продуктами реакцій з вільними радикалами є також одноланцюгові розриви та зшивання ДНК-ДНК або ДНК-білок, які можуть бути причинами хромосомних аберацій.

Ще одним механізмом виникнення передмутаційних пошкоджень ДНК є метилування основ по атомах, які в нормі не піддаються цій модифікації. Помилки метилування викликають появу таких суттєвих пошкоджень ДНК: утворення 7-метилгуаніну, 3-метиладеніну та О6-ме-тиладеніну. 7-Метилгуанін і 3-метиладенін перешкоджають нормальному проходженню реплікації, унаслідок чого відбувається утворення однолацюгових прогалин (ділянок недореплікації) напроти модифікованих нуклеотидів. О6-метиладенін є комплементарним цитозину й може бути причиною транзицій.

Помилки реплікації та репарації

Помилкове включення нуклеотидів під час реплікації є досить вагомою причиною виникнення точкових мутацій і хромосомних перебудов. Утворення некомплементарних пар нуклеотидів (місметчів) під час реплікації відбувається з частотою 1 на 10 тис. нуклеотидних пар. Основною причиною помилкового приєднання нуклеотидів під час реплікації є таутом.ерш азотистих основ. Спонтанні перебудови електронних систем гетероциклів приводять до існування кожної основи у вигляді двох таутомерних форм: аміно- чи іміноформи для A, C; енольної чи кетоформи для G, T (рис. 4.6). Рівновага зсунута в бік аміно-та кетоформ, які й присутні у складі подвійних спіралей (див. також рис. 1.2) і для яких реалізуються правила комплементарності A-T, G-C. Але спарювання основ підпорядковується іншим правилам для мінорних таутомерних форм: наприклад, іміноформа А та аміноформа С утворюють між собою два водневі зв'язки (рис. 4.6), що може відбутися під час впізнання матриці черговим нуклеотидом при реплікації. Аналогічно, енольна форма тиміну є комплементарною гуаніну. У результаті швидкого повернення до мажорної таутомерної форми, у складі ДНК залишиться некомплементарна пара нуклеотидів. Якщо система редагування помилок під час синтезу ДНК і потім система репарації місметчів (див. розділ 1) не спрацює, у наступному репліка-тивному циклі така некомплементарна пара зафіксується у вигляді мутації в одній із двох дочірніх молекул.

На ділянках мікросателітних тандемних повторів (повторів елементів послідовності довжиною 1-15 пар основ, розділ 6) спостерігається специфічна помилка ДНК-полімеразного комплексу - проковзування (slippage) ДНК-полімерази. На ділянці матричного або ново-синтезованого ланцюгів ДНК інколи відбувається утворення мікро-петель або мікрошпильок за рахунок внутрішньоланцюгових комплементарних взаємодій. У випадку появи мікропетлі на матричному ланцюзі ДНК дочірній ланцюг буде коротший на кілька нуклеотидів, і отже, після наступного раунду реплікації буде спостерігатися делеція (рис. 4.7, а). Якщо така мікропетля утворюється в дочірньому ланцюзі, кількість нуклеотидів у ньому збільшиться, що приведе до вставки одного або декількох повторів (рис. 4.7, б).

Мутації виникають не тільки внаслідок недостатньо ефективної репарації - деякі процеси репарації ДНК самі є причинами мутацій. Насамперед це стосується неточних систем репарації: SOS-репарації, яка зумовлює неточний синтез ДНК у разі великої кількості пошкоджень, що викликає ще більше зростання мутацій, і системи репарації дволанцюгових розривів за рахунок негомологічного з'єднання кінців NHEJ (див. розділ 1). Саме NHEJ вважається основною причиною реалізації хромосомних перебудов, оскільки забезпечує з'єднання кінців будь-яких молекул ДНК.

Ефект положення гена, вплив розташування генів в хромосомі на. прояв їх активності. Явище відкрите американським генетиком А. Стертевантом в 1925. Спостерігається при структурних перебудовах хромосом (транслокаціях), в результаті яких гени активних зон хромосом (еухроматину) можуть переноситися в неактивних зони (гетерохроматін) і інактівіроваться і навпаки. При перебудові, що повертає еухроматіновий ген з гетерохроматіна в будь-яку точку зухроматіна, функціонування даного гена відновлюється. Властивість оборотності при Е. п. р. використовують для доказу того, що спостережувана зміна прояву даного гена — Е. п. р., а не його мутація . В результаті зникають пуфи в еухроматінових ділянках, порушуються синтези ДНК(дезоксирибонуклеїнова кислота) і РНК(рибонуклеїнова кислота): гетерохроматін при перенесенні в еухроматин активується і стає цитологичеськи не відмітний від еухроматину. Порушення активності при Е. п. р. може спостерігатися одночасно в декількох еухроматінових генів, розташованих за геном, безпосередньо прилеглим до гетерохроматіну, причому вплив гетерохроматіна завжди направлений від місця перебудови до найближчого еухроматіновому гена і у міру збільшення відстані між еухроматіновимі і гетерохроматіновимі генами цей вплив ослабляється (ефект поляризованого поширення). Найбільш вивчений т.з. мозаїчний Е. п. р., фенотіпічеськи що виявляється в мозаїчності, тобто в появі змінених соматичних кліток на тлі нормальних.

Поліплоїдія (дав.-гр. πολύς — багаточиселтний, πλοῦς — спроба, εἶδος — вид) — геномна мутація, при якій відбувається кратне збільшення кількості хромосом у клітинах тваринних і рослинних організмів. Виникає внаслідок поділу хромосом, що не супроводиться поділом клітини; злиття соматичних клітин або їхніх ядер; утворення гамет чи спор з нередукованим числом хромосом внаслідок аномалії мейозу. Це спричинюється впливом на клітину, що ділиться, високої або низької температри, іонізуючого випромінювання, хімічних речовин, що перешкоджають правильному розходженню хромосом тощо. До таких речовин належать алкалоїд рослинного походження колхіцин, аценафтен, закис азоту та інші. Поліплоїдія в природі виникає спонтанно, а також може бути спричинена штучно. Кратне збільшення в організмі кількості однакових наборів хромосом називається автополіплоїдією. Збільшення в клітині числа хромосомних наборів в три, чотири або більше разів порівняно з гаплоїдними клітинами приводить до появи триплоїдних, тетраплоїдних тощо клітин, з яких розвиваються відповідні організми або в цілому поліплоїди.

Розрізняють поліплоїдію збалансовану, яка характеризується утворенням клітин з парним числом хромосом, та незбалансовану, при якій виникають клітини з непарним числом хромосом. У збалансованих поліплоїдів мейоз відбувається нормально і утворюються розвинені статеві клітини; у незбалансованих — мейоз завжди порушується, оскільки внаслідок непарності хромосом порушується кон'югація; при цьому порушується закономірність розподілу хромосом між дочірніми клітинами. Це знижує життєздатність статевих клітин і плодючість організмів, що часто приводить до анеуплоїдії. Поліплоїди, що виникають у міжвидових гібридів і мають кілька повторів різних наборів хромосом, називають алополіплоїдами. Поліплоїдія ускладнює успадкування ознак і змінює характер розщеплення, внаслідок чого у нащадків гібридів переважають особини з домінантними ознаками.

Поліплоїдія дуже поширена у рослин (30% всіх квіткових рослин — поліплоїди); у тварин спостерігається рідко (у деяких комах, земноводних, червів), переважно у видів, яким властивий партеногенетичний спосіб розмноження. Багато родів рослин складаються з видів, що мають поліплоїдні ряди — наприклад злакові, пасльонові, розоцвіті та інші. Не зустрічається поліплоїдія у хвойних рослин і грибів, зрідка має місце у мохів і папоротеподібних. Поліплоїдія має велике значення в еволюції, наприклад видоутворенні, та селекції рослин, зокрема поліплоїдні організми триваліше зберігають гетерозис.

Механізми виникнення поліплоїдій і анеуплодій

Кількісні аномалії хромосом пов'язані з порушенням процесів, які забезпечують розходження хромосом (хроматид) у мітозі та мейозі. Причиною помилок розподілу хромосом можуть бути порушення контролю клітинного поділу, дефекти в центромерній області хромосом і пошкодження мікротрубочок веретена поділу. Залежно від того, як саме виникла аномалія в кількості хромосом (у результаті мітотичного чи мейотичного поділу), розрізняють соматичну й мейотичну поліплоїдію та анеуплодію.

Одним із механізмів виникнення автополіплоїдних клітин є явище ендореплікації ДНК: клітина проходить декілька циклів реплікації без подальшого виходу в мітоз. Інший механізм - порушення мікротрубочок веретена поділу, що приводить до нерозходження хромосом або хроматид. Поліплоїдію можна викликати і штучним шляхом, застосовуючи речовини - блокатори мітозу (колхіцин, колцемід та ін.). Ці сполуки та їхні аналоги інгібують утворення мікротрубочок веретена поділу, і хромосоми після реплікації не розходяться до полюсів клітини. Крім того, автополіплоїдні клітини можна отримати шляхом блокування не власне поділу ядра (каріокінезу), а поділу цитоплазми (цитокінезу). Два диплоїдних ядра, залишаючись в одній цитоплазмі, при об'єднанні створюють клітину з тетраплоїдним набором хромосом.

Алополіплоїди утворюються штучним шляхом за рахунок міжвидової гібридизації.

Усі типи анеуплоїдій є результатом нерозходження окремих хромосом (чи хроматид) при поділі клітини - мітозі чи мейозі (рис. 4.8). Найчастіше нерозходження хромосом пов'язане з дефектом центро-мерної ділянки: така хромосома не прикріплюється до веретена поділу й опиняється в одній дочірній клітині разом зі своїм гомологом, інша дочірня клітина виявляється позбавленою однієї хромосоми. Отже, усі форми анеуплодій (моносомія і трисомія, нулісомія і трисомія) можуть бути результатом одного циклу неправильного розподілу хромосом. При мейотичному поділі нерозходження хромосом може відбуватися як у першому, так і в другому поділі.

Поліплоїдні та анеуплоїдні клітини характеризуються порушенням процесів мейозу. Так, при утворенні гамет у поліполоїдів замість бівалентів (див. розділ 1) можуть утворюватися три-, тетра- та уніваленти, що порушує сегрегацію хромосом і викликає появу нових геномних мутацій. Крім того, дисбаланс у кількості хромосом приводить до аномальних мітотичних поділів.




1. Методические указания к лабораторным занятиям и самостоятельной работе для студентов технических специа
2. Методы изучения масс микрочастиц
3. Описание некоторых жуков
4. тема Формы и системы оплаты труда
5.  Домінуюче монопольне становище- поняття та види зловживання ним
6. страхование ответственности перед 3ми лицами при строительномонтажных работах;2
7. Адаптация человека к профессиональной деятельности
8. Тема занятия- Статья 13
9. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата хімічних наук Одеса 2003
10. Курсова робота - Історичні музеї Львова в туризмі
11. Тема-Побудова графіків функції
12. на тему- Зварювання арматури електрозварювальні установки Виконав- Студент групи Б41
13. і.н. асист. Дух О.З
14. Реферат- Общая характеристика правового регулирования использования земель юридическими лицами в Республики Беларусь
15.  Классификация технологической оснастки по назначению- станочные приспособления для установки и закреплен
16. Роль текстовых задач в развитии логического мышления младших школьников
17. тема регулювання соціальнотрудових відносин у розвинутих країнах
18. нибудь влияет Мы не знаем на кого и в какой степени влияем Лучшая инвестиция в будущее правильное влиян
19. Александр Лозовой
20. Вариант 1 стом. Выбрать один правильный ответ и выписать его в рецепте I