Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Что понимают под архитектурой компьютерной сети

Работа добавлена на сайт samzan.net:


Обзор локальных и глобальных сетей
1. Что понимают под архитектурой компьютерной сети. Назовите ее основные составляющие.

 Архитектура - спецификации связи, разработанные для определения функций сети и установления стандартов различных моделей вычислительных систем, предназначенных для обмена и обработки данных.

    Для стандартизации сетей Международная организация стандартов (OSI) предложила семиуровневую сетевую архитектуру. К сожалению, конкретные реализации сетей не используют все уровни международного стандарта. Однако этот стандарт дает общее представление о взаимодействии отдельных подсистем сети.         Семиуровневая сетевая архитектура

  1.  Физический уровень (Physical Layer).
  2.  Уровень управления линией передачи данных (Data Link).
  3.  Сетевой уровень (Network Layer).
  4.  Транспортный уровень (Transport Layer).
  5.  Сеансовый уровень (Session Layer).
  6.  Уровень представления (Presentation Layer).
  7.  Уровень приложений (Application Layer).

    Физический уровень (Physical Layer) обеспечивает виртуальную линию связи для передачи данных между узлами сети. На этом уровне выполняется преобразование данных, поступающих от следующего, более высокого уровня (уровень управления передачей данных), в сигналы, передающиеся по кабелю.В глобальных сетях на этом уровне могут использоваться модемы и интерфейс RS-232-C. Характерные скорости передачи здесь определяются линиями связи и для телефонных линий (особенно отечественных) обычно не превышают 2400 бод.

    В локальных сетях для преобразования данных применяются сетевые адаптеры, обеспечивающие скоростную передачу данных в цифровой форме. Скорость передачи данных может достигать десятков и сотен мегабит в секунду.

    Уровень управления линией передачи данных (Data Link)обеспечивает виртуальную линию связи более высокого уровня, способную безошибочно передавать данные в асинхронном режиме. При этом данные обычно передаются блоками, содержащими дополнительную управляющую информацию. Такие блоки называют кадрами.

    При возникновении ошибок автоматически выполняется повторная посылка кадра. Кроме того, на уровне управления линией передачи данных обычно обеспечивается правильная последовательность передаваемых и принимаемых кадров. Последнее означает, что если один компьютер передает другому несколько блоков данных, то принимающий компьютер получит эти блоки данных именно в той последовательности, в какой они были переданы.

    Сетевой уровень (Network Layer) предполагает, что с каждым узлом сети связан некий процесс. Процессы, работающие на узлах сети, взаимодействуют друг с другом и обеспечивают выбор маршрута передачи данных в сети (маршрутизацию), а также управление потоком данных в сети. В частности, на этом уровне должна выполняться буферизация данных.

    Транспортный уровень (Transport Layer) может выполнять разделение передаваемых сообщений на пакеты на передающем конце и сборку на приемном конце. На этом уровне может выполняться согласование сетевых уровней различных несовместимых между собой сетей через специальные шлюзы. Например, такое согласование потребуется для объединения локальных сетей в глобальные.

    Сеансовый уровень (Session Layer) обеспечивает интерфейс с транспортным уровнем. На этом уровне выполняется управление взаимодействием между рабочими станциями, которые участвуют в сеансе связи. В частности, на этом уровне выполняется управление доступом на основе прав доступа.

    Уровень представления (Presentation Layer) описывает шифрование данных, их сжатие и кодовое преобразование. Например, если в состав сети входят рабочие станции с разным внутренним представлением данных (ASCII для IBM PC и EBCDIC для IBM-370), необходимо выполнить преобразование.

Уровень приложений (Application Layer) отвечает за поддержку прикладного программного обеспечения конечного пользователя.
2. Понятие открытая система.

Под термином "открытая система" в данном случае понимается незамкнутая в себе система, имеющая возможность взаимодействия с другими системами (в отличие от закрытой системы). По определению , открытые системы позволяют устанавливать соединение практически с любой другой системой.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet - Request For Comments (RFC), что можно перевести как "запрос на комментарии", - показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.
3. История развития локальных и глобальных сетей.

Первые глобальные компьютерные сети

А вот потребность в соединении компьютеров, находящихся на большом расстоянии друг от друга, к этому времени уже вполне назрела. Началось все с решения более простой задачи — доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных суперкомпьютеров. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер.

Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым признаком любой вычислительной сети.

На основе подобного механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие ставшие теперь традиционными сетевые службы.

Итак, хронологически первыми появились глобальные сети (Wide Area Network, WAN), то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно
находящиеся в различных городах и странах.

Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи, лежащие в основе современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, концепции коммутации и маршрутизации пакетов.

Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей — телефонных. Главное технологическое новшество, которое привнесли с собой первые глобальные компьютерные сети, состоял в отказе от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях.

Выделяемый на все время сеанса связи составной телефонный канал, передающий информацию с постоянной скоростью, не мог эффективно использоваться пульсирующим трафиком
компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, работающими по принципу коммутации
пакетов, когда данные разделяются на небольшие порции — пакеты, — которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета.

Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобитов в секунду), набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов (преимущественно в фоновом режиме) и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток — они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных. Типичным примером таких сетей являются сети Х.25, разработанные еще в начале 70-х, когда низкоскоростные аналоговые каналы, арендуемые у телефонных компаний, были преобладающим типом каналов, соединяющих компьютеры и коммутаторы глобальной вычислительной сети.

В 1969 году министерство обороны США инициировало работы по объединению в единую сеть суперкомпьютеров оборонных и научно-исследовательских центров. Эта сеть, получившая название ARPANET, стала отправной точкой для создания первой и самой известной ныне глобальной сети — Интернет.

Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных операционных систем (ОС) с дополнительными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров сети. ОС этих компьютеров можно считать первыми сетевыми операционными системами.

Истинно сетевые ОС в отличие от многотерминальных ОС позволяли не только рассредоточить пользователей, но и организовать распределенные хранение и обработку данных
между несколькими компьютерами, связанными электрическими связями. Любая сетевая операционная система, с одной стороны, выполняет все функции локальной операционной системы, а с другой стороны, обладает некоторыми дополнительными средствами, позволяющими ей взаимодействовать через сеть с операционными системами других компьютеров. Программные модули, реализующие сетевые функции, появлялись в операционных системах постепенно, по мере развития сетевых технологий, аппаратной базы компьютеров и возникновения новых задач, требующих сетевой обработки.

Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей.

С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме.

Это привело к появлению высокоскоростных цифровых каналов, соединяющих автоматические телефонные станции (АТС) и позволяющих одновременно передавать десятки и сотни разговоров.

К настоящему времени глобальные сети по разнообразию и качеству предоставляемых услуг догнали локальные сети, которые долгое время лидировали в этом отношении, хотя и появились на свет значительно позже.

Первые локальные компьютерные сети

Важное событие, повлиявшее на эволюцию компьютерных сетей, произошло в начале 70-х годов. В результате технологического прорыва в области производства компьютерных
компонентов появились большие интегральные схемы (БИС). Их сравнительно невысокая стоимость и хорошие функциональные возможности привели к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов. Эмпирический закон Гроша перестал соответствовать действительности, так как десяток мини-компьютеров, имея ту же стоимость, что и мэйнфрейм, решали некоторые задачи (как правило, хорошо распараллеливаемые) быстрее.

Даже небольшие подразделения предприятий получили возможность иметь собственные компьютеры. Мини-компьютеры решали задачи управления технологическим оборудованием, складом и другие задачи уровня отдела предприятия. Таким образом, появилась концепция распределения компьютерных ресурсов по всему предприятию. Однако при этом все компьютеры одной организации по-прежнему продолжали работать автономно:

Автономное использование нескольких мини-компьютеров на одном предприятии

Шло время, и потребности пользователей вычислительной техники росли. Их уже не удовлетворяла изолированная работа на собственном компьютере, им хотелось в автоматическом режиме обмениваться компьютерными данными с пользователями других подразделений. Ответом на эту потребность стало появление первых локальных вычислительных сетей.

Различные типы связей в первых локальных сетях

Локальные сети (Local Area Network, LAN) — это объединения компьютеров, сосредоточенных на небольшой территории, обычно в радиусе не более 1-2 км, хотя в отдельных случаях локальная сеть может иметь и большие размеры, например несколько десятков километров. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую одной организации.

На первых порах для соединения компьютеров друг с другом использовались нестандартные сетевые технологии. Это вызывало много проблем свзязанных с несовместимостью сетевого оборудования.

Сетевая технология — это согласованный набор программных и аппаратных средств (например, драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи
данных по линиям связи, достаточный для построения вычислительной сети.

Разнообразные устройства сопряжения, использующие собственные способы представления данных на линиях связи, свои типы кабелей и т. п., могли соединять только те конкретные модели компьютеров, для которых были разработаны, например, мини-компьютеры PDP-11 с мэйнфреймом IBM 360 или мини-компьютеры HP с микрокомпьютерами LSI-11. Такая ситуация создала большой простор для творчества студентов — названия многих курсовых и дипломных проектов начинались тогда со слов «Устройство сопряжения…».

В середине 80-х годов положение дел в локальных сетях кардинально изменилось. Утвердились стандартные сетевые технологии объединения компьютеров в сеть Ethernet, Arcnet, Token Ring, Token Bus, несколько позже — FDDI.

Мощным стимулом для их появления послужили персональные компьютеры. Эти массовые продукты стали идеальными элементами построения сетей — с одной стороны, они были достаточно мощными, чтобы обеспечивать работу сетевого программного обеспечения, а с другой — явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Все стандартные технологии локальных сетей опирались на тот же принцип коммутации, который был с успехом опробован и доказал свои преимущества при передаче трафика данных в глобальных компьютерных сетях, — принцип коммутации пакетов.

Стандартные сетевые технологии превратили процесс построения локальной сети из решения нетривиальной технической проблемы в рутинную работу. Для создания сети достаточно было приобрести стандартный кабель, сетевые адаптеры соответствующего стандарта, например Ethernet, вставить адаптеры в компьютеры, присоединить их к кабелю стандартными разъемами и установить на компьютеры одну из популярных сетевых операционных систем, например Novell NetWare.

Разработчики локальных сетей привнесли много нового в организацию работы пользователей. Так, стало намного проще и удобнее, чем в глобальных сетях, получать доступ к общим сетевым ресурсам. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей, освобожденных от необходимости изучать специальные (и достаточно сложные) команды для сетевой работы.

Конец 90-х выявил явного лидера среди технологий локальных сетей — семейство Ethernet, в которое вошли классическая технология Ethernet со скоростью передачи 10 Мбит/с, а также Fast Ethernet со скоростью 100 Мбит/с и Gigabit Ethernet со скоростью 1000 Мбит/с.

Простые алгоритмы работы предопределяют низкую стоимость оборудования Ethernet. Широкий диапазон иерархии скоростей позволяет рационально строить локальную сеть, выбирая ту технологию семейства, которая в наибольшей степени отвечает задачам предприятия и потребностям пользователей. Важно также, что все технологии Ethernet очень близки друг к другу по принципам работы, что упрощает обслуживание и интеграцию этих сетей.


4. Интеграция локальных и глобальных сетей, включая основные принципы работы мостов, маршрутизаторов, шлюзов и коммутаторов.

Интеграция локальных и глобальных сетей

С 1960-х и до начала 1980-х годов процедура передачи цифровых данных подразумевала непосредственное подключение неинтеллектуальных (без своего центрального процессора) терминалов к мэйнфреймам и мини-ЭВМ с использованием протокола Systems Network Architecture (SNAкомпании IBM. На рис. 1.6 изображена простая сеть, в которой терминалы непосредственно подключены к мэйнфрейму через шлюз SNA (шлюзы будут рассматриваться в данной главе позже). В настоящее время SNA является проверенным традиционным методом коммуникаций, однако с началом распространения локальных сетей в 1982 году пользователи персональных компьютеров и рабочих станций применяют для сетевого подключения к мэйнфреймам как протокол SNA, так и более совершенные методы доступа. Кроме того, хотя мэйнфреймы могли одновременно выполнять множество задач, в настоящее время серверы меньшей мощности, такие как файловые серверы, серверы приложений, баз данных и электронной почты, выполняют те же задачи. Устаревший метод непосредственного подключения к мэйнфреймам почти повсеместно заменен сетями, которые позволяют соединяться с любыми устройствами, в число которых входят следующие:

-          серверы;

-          мэйнфреймы и мини-ЭВМ;

-          равноправные компьютеры, например, рабочие станции, работающие под управлением операционных систем Windows XP или UNIX;

-          дисковые устройства централизованного хранения данных;

-          массивы приводов CD-ROM;

-          принтеры;

-          факсимильные аппараты.

 

Компьютерные сети также позволяют реализовать клиент-серверные вычисления,при которых вычислительные мощности распределяются между серверами и клиентскими рабочими станциями. Такой тип обработки данных позволяет объединить мощности новых настольных персональных компьютеров и специализированных серверов, которые не всегда превосходят по параметрам эти настольные компьютеры. Мэйнфреймы по-прежнему позволяют компаниям сохранять их средства, вложенные в программное обеспечение 10-20-летней давности, в то время как клиент-серверные системы поддерживают самые современные технологии обработки данных, позволяя при этом использовать графический пользовательский интерфейс (GUI) и новые возможности обращения к базам данных. Оба типа организации вычислительных мощностей сосуществуют в локальных и глобальных сетях, чтобы пользователи могли работать с жизненно важными программами и данными.

Дальнейшим развитием клиент-серверных систем является архитектура .NET, разработанная компанией Microsoft. Она взаимодействует с Интернетом и предназначена для такой интеграции данных и пользовательских функций, чтобы их выполнение могло осуществляться в любой точке и на многих типах устройств, включая карманные компьютеры и сотовые телефоны. Кроме того, архитектура .NET позволяет объединять различные языки программирования и использовать их для построения крупномасштабных приложений. Например, некоторая компания может применять существующий, давно проверенный программный код и объединять его с новым кодом, который может использоваться веб-сервером, отдельным персональным компьютером или устройством с перьевым вводом. С внедрением архитектуры .NET граница между настольными компьютерами и серверами становится менее заметной, поскольку настольные компьютеры могут, в принципе, выполнять те же роли в совместном использовании данных и ресурсов, которые имеются у существующих серверных систем.

Каждый день растут требования к комплексным сетям, которые могли бы связать организации, находящиеся в разных странах или на разных континентах. Перед сетевыми администраторами ставится множество задач, в т. ч. подключение к различным локальным и глобальным сетям, обеспечение деятельности надомных сотрудников, развертывание служб мультимедиа, а также поддержка старых и новых компьютеров в пределах одной сети. Другой важнейшей задачей является увеличение пропускной способности магистральных каналов локальных и глобальных сетей с целью удовлетворения потребностей возросшего сетевого трафика.

Построение локальных, региональных, глобальных и корпоративных сетей возможно благодаря использованию сетевых устройств, позволяющих расширять область охвата сети, связывать сети воедино, преобразовывать протоколы, а также направлять фреймы и пакеты в нужные сети, т. е. выполнять все операции помежсетевому обмену (internetworking). Несмотря на наличие большого количества типов сетевых устройств, имеются четыре группы устройств, играющих основную роль при объединении сетей:

-          мосты;

-          маршрутизаторы;

-          шлюзы;

-          коммутаторы.

Мосты (bridge) — это сетевые устройства, которые позволяют удлинить локальную сеть или объединить несколько локальных сетей, соединяя таким образом многочисленные рабочие станции, серверы и другие сетевые устройства, которые иначе не смогли бы взаимодействовать. Как показано на рис. 1.7, мосты могут соединять две или несколько локальных сетей, использующих один и тот же протокол.

 

Сетевые администраторы также применяют мосты для разбиения локальной сети на небольшие подсети с целью повышения производительности, при этом можно распределять сетевой трафик, локализовать сетевые проблемы и управлять доступом к каждой подсети. Для решения этих задач мосты проверяют адреса принимающих и передающих устройств в тех фреймах, которые на них поступают, и, используя соответствующее программное обеспечение, определяют – передавать фрейм дальше или отбросить его. Также мосты могут соединять разные локальные сети, в которых применяются различные типы передающей среды. Например, они могут подключать кабель к оптоволокну или УКВ-оборудованию и, следовательно, могут использоваться для связи локальной сети с глобальной.

Маршрутизаторы (router) — это устройства межсетевого обмена, работающие на более высоком уровне сетевого взаимодействия по сравнению с мостами. Как показано на рис. 1.8, они позволяют локальным и глобальным сетям направлять (маршрутизировать) данные в указанные места назначения.

Маршрутизаторы соединяют сети, которые могут использовать различные протоколы, и обеспечивают больше коммуникационных функций, чем мосты. Например, маршрутизаторы могут определять кратчайший путь между двумя компьютерами, разделенными локальной или глобальной сетями. Они также могут устанавливать разные сетевые маршруты, соответствующие типу передаваемых данных (например, для видеоданных может выбираться маршрут с высокой стоимостью, а для символьной информации – с низкой).

Маршрутизаторы регулярно взаимодействуют друг с другом и динамически изменяют информацию о сетевых маршрутах по мере того, как меняется топология сети или условия передачи информации.

Примечание

Маршрутизатор может быть специализированным устройством или компьютером с программным обеспечением, выполняющим функции маршрутизации. Например, в качестве маршрутизатора может использоваться компьютер под управлением операционных систем NetWareWindows 2000, Windows Server 2003 или UNIX. Практические задания 1-8 и 1-9 демонстрируют настройку опций маршрутизации в системах Windows 2000 и Server Red Hat Linux 7.2.

 

Шлюз (gateway) представляет собой сетевое устройство, обеспечивающее взаимодействие между различными устройствами, системами или протоколами, и которое может работать на любом уровне сетевого обмена в зависимости от заданных ему функций. Чаще всего шлюзы используются для преобразования протоколов. Подобное преобразование может потребоваться при передаче данных из одной локальной сети в другую или из локальной сети в глобальную. Некоторые шлюзы позволяют сетевым компьютерам обращаться к мэйнфрейму, находящемуся в той же локальной сети или подключаться к глобальной сети для передачи информации на большие расстояния. Например, как показано на рис. 1.9, компьютеры в локальной сети могут взаимодействовать с мэйнфреймом IBM через шлюз SNA, подключенный к той же сети. Другие шлюзы предназначены для обработки межсетевых пакетов, генерируемых специальным программным обеспечением, например, сообщений электронной почты. Поскольку обычно шлюзы выполняют очень ограниченное количество специализированных функций, то они используются реже, чем маршрутизаторы и мосты.

Примечание

Подобно маршрутизаторам шлюзы могут быть автономными устройствами или службами операционной системы. Например, компьютер под управлением IBM AIXможно сконфигурировать как шлюз SNA, или же сервер Windows 2000 с установленным протоколом TCP/IP может работать как шлюз к серверу NetWare, использующему протокол IPX/SPX. Практическое задание 1-10 рассказывает о том, как настроить систему Windows 2000 Server в качестве шлюза NetWare.

Первоначально коммутаторы (switch) предназначались для выполнения функций мостов (2-й уровень модели OSI), обеспечивающих более высокую производительность, чем обычные мосты. Это достигалось за счет того, что коммутаторы могут передавать данные непосредственно в заданный сетевой порт или сегмент. В настоящее время коммутаторы некоторых производителей имеют возможности, близкие к возможностям маршрутизаторов (3-й уровень модели OSI), поскольку они анализируют адреса протокола IP и на основе этого анализа посылают сетевые пакеты по указанному маршруту. Другие коммутаторы могут определять назначение передаваемой информации в зависимости от того, какая прикладная программа ее генерирует. На рис. 1.10 проиллюстрирована работа коммутатора. Мосты, маршрутизаторы, шлюзы и коммутаторы более подробно будут описаны в последующих главах этой книги.


5. Описать методы интеграции сетевых протоколов.

Границу локальных и глобальных сетей можно определить по типу используемых протоколов. Протокол определяет способ форматирования сетевых данных в виде пакетов или фреймов, а также методы передачи каждого блока данных и способы интерпретации Данных на принимающем узле. Пакет — это модуль данных, имеющий определенный формат, пригодный для передачи информации по сети в виде некоторого сигнала.

В сетевых коммуникациях каждый пакет состоит из двоичных разрядов, располагающихся в информационных полях, представляющих команды управления обменов, адреса источника и назначения, полезные данные и контрольные суммы для обнаружения ошибок. Пакеты соответствуют сетевой информации, передаваемой на Сетевом уровне (Уровне 3) эталонной модели OSI (Open Systems Interconnection), который определяет выбор маршрута, по которому пакет следует к узлу назначения. Подробнее этот уровень рассматривается в главе 2.

Иногда информационные поля в модуле данных, передаваемом по сети, не содержат сведений о маршрутизации, поскольку соответствующий протокол или устройство функционируют на Канальном уровне (см. главу 2). В этом случае подобный модуль данных называется не пакетом, а фреймом.


6. Рассказать о предварительных этапах процесса проектирования сети.Взаимодействие локальных и глобальных сетей

Введение в проектирование сетей

Процесс проектирования локальных и глобальных сетей начинается с шагов, которые описываются в разных главах этой книги. Сначала нужно понять работу сетей с точки зрения протоколов, методов доступа и топологий. Например, проектирование сети Ethernet зачастую отличается от методов, проектирования, применяемых для создания сетей с маркерным кольцом. Аналогичным образом, проектирование глобальных сетей на основе телекоммуникационных каналов проводится иначе, нежели для спутниковых глобальных сетей.

Другим шагом в процессе проектирования сети является знакомство с физическими устройствами, применяемыми в локальных и глобальных сетях., Сюда входят и коммуникационная среда (например, оптоволоконный ка-1 бель), и сетевые устройства, такие как маршрутизаторы и коммутаторы. При правильном проектировании необходимо учитывать детали: нужно, к примеру, знать, какая передающая среда используется в магистралях, а какая — для подключения настольных компьютеров. Изучение характеристик различных коммуникационных сред и устройств позволит вам спроектировать сеть самым эффективным образом.

Третий шаг — понимание основных принципов проектирования сетей: знакомство с методами применения структурированных кабельных систем, технологией создания сетей для мультимедийных клиент-серверных приложений, преимуществами тех или иных характеристик устройств, применяемых в локальных и глобальных сетях. Например, во многих случаях производительность сети повышается, если вместо моста или простейшего концентратора использовать методы коммутации. Кроме этого, с помощью маршрутизатора можно создать брандмауэр, защищающий сеть, или обеспечить повышение скорости передачи мультимедийных данных.

Четвертым шагом в процессе проектирования сети является определение факторов, влияющих на архитектуру сети выбранного предприятия. В частности, для этого следует получить ответы на следующие вопросы.

-          Какие компьютеры имеются и где они расположены?

-          Какое программное обеспечение существует и какие сетевые ресурсы нужны для работы этих приложений?

-          Какие бизнес-правила применяются на предприятии и как для их реализации используется сеть?

-          Как распределяются периоды максимальной и минимальной загрузки сети предприятия?

-          Какими средствами должна обладать сеть для облегчения процесса поиска и устранения неисправностей?

-          Какие средства безопасности требуются для сети?

-          Каковы перспективы роста предприятия и в какой мере (в чем) они могут повлиять на использование сетевых ресурсов?

 

Резюме

-          Локальные, региональные и глобальные сети — три основных типа компьютерных сетей. Главным их отличием друг от друга является область обслуживания, а затем – протоколы и топологии, используемые для построения сети. Термины "локальная сеть" и "глобальная сеть" в первую очередь относятся, соответственно, к небольшим самостоятельным сетям и к крупномасштабным сетям, их соединяющим. Соотношение между локальными и глобальными сетями напоминает подключение небольшой учрежденческой телефонной станции к крупной телекоммуникационной системе. С другой стороны, сеть можно рассматривать как совокупность корпоративных ресурсов, в число которых входят компьютеры, серверы, мэйнфреймы, принтеры и другое оборудование, при этом все ресурсы связаны посредством разнообразных локальных, региональных и глобальных сетей.

-          История развития сетей весьма достойна изучения, поскольку с ее помощью можно понять сложные социальные, политические и технические факторы, определившие создание сетей и их быстрое распространение. Корни локальных и глобальных сетей следует искать в самых первых телеграфных и телефонных системах. В настоящее время сетевые технологии по-прежнему тесно связаны с успехами в области телекоммуникаций и в значительной мере определяются потребностями бизнеса, а также запросами в сфере личного общения и развлечений.

-          Интеграция локальных и глобальных сетей становится все теснее и теснее благодаря развитию разнообразных сетевых устройств, таких как мосты, маршрутизаторы, шлюзы и коммутаторы. На этот процесс также влияют программные решения, позволяющие осуществлять взаимодействие между локальными сетями через глобальную сеть.

-          Процесс проектирования сети включает в себя множество шагов. Чтобы разработать эффективную сеть, необходимо хорошо знать протоколы,топологий, сетевое оборудование, принципы проектирования сетей и способы определения сетевых потребностей всего предприятия. 


8. Объяснить эталонную модель OSI, устанавливающую стандарты взаимодействия локальных и глобальных сетей.

С целью стандартизации процессов взаимодействия открытых компьютерных систем международная организация по стандартизации (International Organization for Standardization - ISO) в 1983 г. разработала модель, которая называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.


9. Процесс передачи информации между стеками OSI для компьютеров, объединенных в сеть.

Объединение локальных и глобальных сетей с первых шагов выполнялось в соответствии с некоторой идеологией, называемой эталонной моделью взаимодействия открытых систем (Open Systems InterconnectionOSI). Модель OSIявляется детищем двух регламентирующих организаций: Международной организации по стандартизации (International Organization for StandardizationISO) иНационального института стандартизации США (American National Standards Institute,ANSI). В сфере разработки экономических, интеллектуальных, научных и технологических стандартов организация ISO представляет свыше 140 стран. Институт ANSI работает совместно с деловыми и правительственными кругами США и международными группами и создает стандарты на коммерческие (серийные) изделия, включая сетевое оборудование и компьютеры.

Модель OSI, разработанная в 1974 году, регламентирует взаимодействие локальных и глобальных сетей и представляет собой попытку стандартизации сетевых программных и аппаратных средств (чтобы узнать о том, как в модели OSIрассматривается необходимость стандартизации, выполните практическое задание 2-1). На протяжении многих лет модель OSI способствовала развитию сетевых коммуникаций, позволяющих решать следующие вопросы:

обеспечение передачи информации между различными типами локальных и глобальных сетей;

стандартизация сетевого оборудования, что позволяет устройствам одного производителя взаимодействовать с устройствами других производителей;

сохранение капиталовложений пользователей, обеспеченное возможностью взаимодействия старого сетевого оборудования с новыми устройствами; при этом устраняется необходимость замены оборудования при установке новых устройств;

разработка программного и аппаратного обеспечения, использующего общие интерфейсы для передачи данных как внутри сети, так и между различными сетями;

возможность появления всемирных сетевых коммуникаций, в первую очередь – Интернета.

10. Описать типы сетей с точки зрения топологии локальных сетей;

Типы сетей

Любая сеть состоит из совокупности кабелей, сетевого оборудования, файловых серверов, рабочих станций и программного обеспечения. Комбинируя эти элементы, можно создать сеть, соответствующую задачам и возможностям конкретной организации. Первоначальная установка некоторых типов сетей не требует больших расходов, однако расходы появляются при эксплуатации или модернизации. Другие сети, наоборот, требуют значительных капиталовложений на этапе развертывания, но они просты в обслуживании их легко расширять.

Одним из важнейших различий между разными типами сетей является их топология. Топология – это физическая конфигурация сети в совокупности с ее логическими характеристиками. Физическая конфигурация подобна плану разводки кабелей в офисе, здании или кампусе. Иногда ее называют кабельным участком (cable plant). Логические характеристики сети описывают способ передачи сигнала по кабелю от одной точки к другой.

Конфигурация сети может быть или децентрализованной (когда кабель "обегает" каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями). Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый альпинист имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.

Существуют три основных топологии: шина, кольцо и звезда. При выборе топологии необходимо, чтобы тип сети соответствовал ее предназначению внутри организации. Например, некоторые организации более интенсивно используют свои сети по сравнению с другими. Количество и тип прикладных программ внутри организации влияют на количество и частоту передачи фреймов и пакетов, что в совокупности образует сетевой трафик. Если пользователи сети в первую очередь работают с текстовыми редакторами, то сетевой трафик будет относительно небольшим и большая часть работы будет выполняться на рабочих станциях, а не в сети.

Клиент-серверные приложения в зависимости от своей архитектуры создают сетевой трафик средней и высокой интенсивности. В сетях, в которых происходят частые обращения к базам данных, таким как Microsoft SQL Server или Oracle, трафик средний или высокий. Научные программы и серверы публикаций создают трафик высокой интенсивности, поскольку они работают с очень большими файлами. Также большой трафик вызывает работа программ обработки графики (например, серверы потокового мультимедиа или телеконференций).

Влияние на сеть количества хостов и серверов определяется типом используемых прикладных программ. К примеру, сервер базы данных, к которому часто обращаются для получения отчетов и финансовых сведений, будет создавать значительно больший сетевой трафик, чем файловый сервер, с которого изредка получают деловую корреспонденцию или бланки писем.

При выборе топологии сети нужно учитывать, будет ли она связана с другими сетями. Сетевая топология для малого предприятия, в котором используются несколько компьютеров, отличается от топологии сети промышленного предприятия, связанного через глобальную сеть с сетями других предприятий. Малое предприятие вряд ли взаимодействует с другими сетями, за исключением разве что подключения к Интернету. Корпоративная сеть может состоять из нескольких взаимно связанных сетей, в число которых, например, могут входить сеть для управления производственным оборудованием, сеть настольных систем, исследовательская сеть и внешняя глобальная сеть для связи с удаленными площадками. Одни топологии имеют лучшие возможности для объединения сетей, чем другие.

Сеть с большим трафиком нуждается в высокоскоростных каналах передач  данных. От скорости сети зависит производительность работы пользователей. Наличие быстродействующих каналов особенно важно при передач  изображений, графики и других объемных файлов на большие расстояний или через глобальные сети.

Безопасность, представляющая собой механизм защиты данных от неавторизованного доступа, также влияет на архитектуру сети. В безопасной сет для ограничения доступа к информации и ресурсам используются специальные сетевые устройства, пароли, управляющие программы и другие технологии. Можно также применять шифрование данных и паролей, копи фреймы и пакеты кодируются, и только авторизованные компьютеры могут декодировать их. В сетях с высокой степенью защиты используется оптоволоконный кабель, который минимизирует риск перехвата данных. Другой способ повысить защищенность сети – поместить оборудование и сервер в помещения с ограниченным доступом (например, в серверные комнаты; монтажные шкафы).

Топология сети непосредственно влияет на возможность ее расширения. После установки сети наверняка потребуется подключение новых пользователей, в том же офисе или в других помещениях или зданиях. Также весьма вероятно, что для удаленного доступа к данным потребуется подключи  локальную сеть к какой-нибудь глобальной сети.

 

Шинная топология

Шинная топология (bus topology) представляет собой кабель, последователь  соединяющий компьютеры и серверы в виде цепочки. Как и обычная цен сеть с шинной топологией имеет начальную и конечную точки, и к каждому концу сегмента шинного кабеля подключается терминатор (terminator). Передаваемый пакет принимается всеми узлами сегмента и на прохождения всего сегмента требуется некоторое количество времени, называемое задержкой. Для того чтобы пакеты доходили в течение ожидаемого времени, длина сегмента сети с шинной топологией должна соответствовать спецификациям Института инженеров по электротехнике и электронике (Institute of Electrical and Electronics EngineersIEEE)(см. главу З). Этот институт представляет собой объединение ученых, инженеров, технических специалистов и преподавателей, играющих ведущую роль в разработке стандартов на сетевые кабельные системы и средства передачи данных. На рис. 2.8 изображена простейшая сеть с шинной топологией.

 

Наличие терминатора обязательно для шинной топологии, поскольку терминатор указывает на физическое окончание сегмента. На практике терминатор представляет собой электрическое сопротивление, гасящее сигнал когда тот достигает конца сети. Без терминатора сегмент не соответствовал бы спецификациям IEEE и сигналы могли бы отражаться обратно и воз вращаться в тот кабель, по которому они были переданы. Отраженный сигнал сбивает синхронизацию сети и может столкнуться с новыми сигналами передаваемыми по сети.

Совет

Если терминатор отсутствует или работает неправильно, передача данных по соответствующему сегменту сети нарушается и сетевое оборудование обычно отключает этот сегмент.

Традиционная шинная топология, показанная на рис. 2.8, хорошо работает небольших сетях, и стоимость ее реализации относительно невелика. При развертывании сети расходы минимальны, поскольку кабеля требуется меньше, чем для других топологий. Также легко можно добавить новые рабочие станции и немного удлинить шину в пределах комнаты или офис. Недостатком этой топологии является высокая стоимость ее эксплуатации. Например, трудно обнаружить отдельный неисправный узел или сегмент кабеля и связанные с ним разъемы, а один отказавший узел или сегмент с разъемами может вывести из строя всю сеть (хотя современное сетевое оборудование уменьшает вероятность такой ситуации). Другим недостатком является то, что трафик по шине может оказаться слишком большим, из-за чего для управления им потребуются дополнительные коммутаторы, маршрутизаторы и другое оборудование.

Примечание

Традиционная шинная топология используется все реже и реже, поскольку некоторые производители сетевого и компьютерного оборудования больше не поддерживают применяемые в ней методы передачи сигналов.

 

Кольцевая топология

Кольцевая топология (ring topology) представляет собой непрерывную магистраль для передачи данных, не имеющую логической начальной или конечной точек и, следовательно, терминаторов. Рабочие станции и серверы подключаются к кабелю в точках, расположенных по кольцу (рис. 2.9). Когда данные поступают в кольцо, они передаются по нему от узла к узлу, пока не достигнут точки назначения, после чего перемещаются дальше к узлу отправителю.

Первоначально кольцевая топология позволяла данным перемещаться только в одном направлении, при этом данные обегали кольцо и передача заканчивалась в передающем (исходном) узле. В новых высокоскоростных технологиях кольцевых сетей используются два кольца для дополнительной передачи данных в обратном направлении. В результате этого, если разрывается кольцо передачи в одном направлении, данные все же могут достигнуть пункта назначения, перемещаясь в обратном направлении по другому кольцу (о чем будет рассказано позже в разделе, описывающем технологию FDDI).

Кольцевой топологией легче управлять, чем шинной, поскольку оборудование, используемое для построения кольца, упрощает локализацию дефектного узла или неисправного кабеля. Данная топология хорошо подходит для передачи сигналов в локальных сетях, поскольку она справляется с большим сетевым трафиком лучше, чем шинная топология. В целом можно сказать, что по сравнению с шинной топологией, кольцевая обеспечивает более надежную передачу данных.

Однако кольцевая топология намного дороже шинной. Обычно для ее развертывания требуется больше кабеля и сетевого оборудования. Кроме того, Кольцо не так широко распространено как шинная топология, из-за чего ограничен выбор оборудования и меньше возможностей для осуществления высокоскоростных коммуникаций.

 

Звездообразная топология

Звездообразная топология (star topology), или просто "звезда", является старейшим способом передачи сигналов, имеющим свое начало в коммутационных телефонных станциях. Несмотря на возраст, достоинства при использовании в сетях делают звездообразную топологию удачным выбором для современных сетей. Физически звездообразная топология состоит из множества узлов, подключенных к центральному концентратору. Каким образом рабочие станции и сервер подключены к концентратору, показано на рис. 2.10. Концентратор (hub) – это центральное устройство, объединяющее в сеть отдельные кабельные сегменты или отдельные локальные сети. Некоторые концентраторы также называются элементами доступа (access unit) Отдельные сегменты передающего кабеля расходятся от концентратора как звезда (выполните практическое задание 2-6 и создайте диаграмму звездообразной топологии).

В настоящее время начальные затраты на реализацию звездообразной топологии ниже, чем для традиционной шинной топологии и сравнимы с рая ходами на создание кольца. Это объясняется понижением цен на сетевое оборудование и кабель, вызванным широким распространением этой архитектуры. Как и кольцо, звездообразная топология проще в управлении, чем традиционная шинная сеть (отказавшие узлы обнаруживаются очень быстро). Если узел или кабель неисправны, сетевое оборудование легко может изолировать их от сети и работоспособность других узлов не нарушится. Звезду легче расширить, подключив дополнительные узлы или сети. Также она наилучшим образом может быть модернизируема для работы на больших скоростях. Звезда – это наиболее распространенная топология и поэтому для нее существует широкий выбор оборудования.

Недостатком звезды является то, что концентратор является единственной точкой отказа: при выходе его из строя все подключенные узлы теряют возможность передачи данных (если отсутствуют дополнительные меры обеспечения избыточности). Другим недостатком является то, что для звезды требуется больше кабеля, чем для шины; однако кабели и разъемы для звездообразной топологии в настоящее время дешевле, чем для шинной.

 

Реализация шинной топологии в виде физической звезды

В современных сетях логическая организация сети с применением шинной топологии совмещается с физической реализацией в виде звезды. При такой архитектуре каждый луч звезды функционирует как отдельный сегмент логической шины, имеющий только один или два подключенных компьютера. Такой сегмент шины по-прежнему имеет два конца, однако преимуществом является отсутствие терминаторов. В данном случае один конец сегмента заканчивается на концентраторе, а другой – на сетевом устройстве.

Другим достоинством комбинированной архитектуры является то, что для расширения сети в разных направлениях можно соединить несколько концентраторов при условии выполнения спецификаций IEEE на длину кабелей, количество концентраторов и подключенных устройств. Соединение между концентраторами представляет собой магистраль, которая чаще всего обеспечивает высокоскоростную передачу данных между ними. Магистраль(backbone) – это быстродействующая среда передачи информации, соединяющая сети и центральные сетевые устройства в масштабах этажа, всего здания или нескольких удаленных площадок.

Для упрощения процесса обнаружения неисправностей концентраторы имеют специальные встроенные средства. Также имеются возможности расширения для реализации высокоскоростных сетей. Поскольку описываемая архитектура широко распространена, то для шинных сетей, реализованных в виде физической звезды, имеется большой выбор оборудования.


11. Описать основные методы передачи данных в локальных сетях, включая Ethernet, Token Ring и FDDI.
12. Основные топологии глобальных сетевых коммуникаций и методы передачи данных, включая каналы телекоммуникации и кабельного телевидения, спутниковые технологии.Методы передачи физического сигнала
13. Описать различные типы сетевой передающей среды, включая коаксиальный кабель, витую пару и оптоволокно, а также определить, какой тип среды следует использовать в конкретной сетевой конфигурации.

14. Рассказать об основах беспроводных коммуникаций.

Беспроводные коммуникации

В качестве альтернативы кабельным системам существует несколько беспроводных технологий передачи сетевых пакетов, при этом используются радиоволны, сигналы инфракрасного диапазона и СВЧ-волны. Во всех перечисленных технологиях сигнал передается по воздуху или через эфир, поэтому они являются удобным решением в тех случаях, когда затруднительно или невозможно применять кабель. Однако это же качество является и недостатком, поскольку передаваемый сигнал подвержен помехам со стороны других сигналов, существующих в данной среде (например, от солнечных пятен, изменений ионосферы и других атмосферных явлений).

В беспроводных технологиях несущий сигнал излучается обычной или параболической антенной ("тарелкой"). Излучаемая мощность и усиление регламентируются коммуникационными законами конкретной страны.Например, в США нелицензированная связь на частоте 2,4 ГГц ограничена коэффициентом усиления антенны, равн 212s1823c 99;м 6 dB (дБ на дюйм), и излучаемой мощностью в 1 Ватт. Лицензированные операторы (например, любительские станции пакетного радио) могут использовать и большую мощность, в зависимости от лицензии на широкополосную связь и занимаемую частоту. Конкретные частоты, выделенные для беспроводных коммуникаций, также регламентируются национальными и международными соглашениями и конвенциями по связи.

В беспроводных системах необходимо определить количество узлов, передающих широкополосный сигнал, для чего анализируется наличие излучаемого сигнала в антенне. Например, одним из простейших методов определения конфликтов Ethernet является фиксация минимально допустимого уровня принимаемого радиосигнала в антенне. Если минимальный порог превышен, то предполагается наличие конфликта. Другим способом распознавания конфликтов является применение в передаваемых фреймах сигналов RTS(Request To Send - готовность к передаче), CIS (Clear To Send готовность к приему) и АСК (Acknowledgement- уведомление). Эти сигналы координируют передачу данных в каждом узле беспроводной системы.


15. Высокоскоростные технологии на основе витой пары и оптоволоконного кабеля.

На основе витой пары и оптоволоконного кабеля разработаны новейшие высокоскоростные технологии локальных сетей, позволяющие передавать значительно больший сетевой трафик по сравн 212s1823c 77;нию с трафиком, возможным при первоначальной скорости, равн 212s1823c 86;й 10 Мбит/с. Вот эти технологии:

·                     Fast Ethernet;

·                     Gigabit Ethernet;

·                     10 Gigabit Ethernet.

Fast Ethernet

Необходимость в высокоскоростных технологиях привела к быстрому развитию Ethernet-совместимых устройств, обеспечивающих передачу пакетов по витой паре со скоростью 100 Мбит/с. Чтобы удовлетворить все возрастающий интерес, институт ШЕЕ стандартизовал высокоскоростные технология Ethernet, получившие общее название Fast Ethernet ("быстрый" Ethernet).

Поскольку с самого начала производители разделились во мнении о способах реализации исходной концепции, были разработаны две технологии Fast Ethernet. Одна группа разработчиков, представленная компаниейHewlett-Packard, выбрала технологию 100BaseVG, или 100VG-AnyLAN. Другая группа, в состав которой входили компании Bay Networks (позднее приобретенная компанией Nortel Networks), Sun Microsystems и 3Com, разрабатывали технологию 100BaseX. Оба этих решения рассматриваются в следующих разделах.

Gigabit Ethernet

Технология Gigabit Ethernet, обеспечивающая передачу данных со скоростью до 1 Гбит/с, в первую очередь предназначена в качестве альтернативы перегруженным локальным сетям, когда Fast Ethernet уже не можетобеспечить требуемую полосу пропускания. Эта технология представляет собой "истинный" Ethernet, т. к. в ней применяется метод доступа CSMA/CD и она разработана как непосредственное обновление для практически любых Ethernet-сетей 100BaseX, которые соответствуют всем установленным стандартамGigabit Ethernet. Также проектировщики технологии Gigabit Ethernet стремились сделать ее притягательной для пользователей сетей с маркерным кольцом в звездообразных физических топологиях, которые могут быть преобразованы в комбинацию сетей Fast Ethernet и Gigabit Ethernet, обеспечивающую дополнительную полосу пропускания для развивающихся клиент-серверных, мультимедиа- и VPN-приложений. ТехнологияGigabit Ethernet одобрена ассоциацией Gigabit Ethernet Alliance, в которую входят свыше 120 компаний-участников.

10 Gigabit Ethernet

Технология 10 Gigabit Ethernet, одобренная стандартом IEEE 802.3ае, представляет собой высокоскоростной сетевой протокол, конкурирующий другими скоростными технологиями региональных и глобальных сетей, в частности, с сетями SONET (описываемыми в этой главе ниже). Кроме того, она предназначена для реализации быстрых магистралей в локальных сетях. Эта технология соответствует "истинному" стандарту Ethernet, однако функционирует только в полнодуплексном режиме (одновременная двунаправленная передача данных в одной коммуникационной среде), из-за чего отпадает необходимость в использовании метода CSMA/CD в силу принципиального отсутствия конфликтов пакетов. На момент написания книги стандарт был определен только для оптоволоконного кабеля.


16. Рассказать о методах передачи данных в глобальных сетях, использующих двухточечные соединения, Т-линии, SONET, ISDN и беспроводные технологии.Сетевое передающее оборудование

Двухточечные соединения

Самым распространенным способом передачи данных в глобальных сетях являются двухточечные соединения по общедоступным коммутируемым телефонным линиям или выделенным каналам. Например, простейшая глобальная сеть образуется всякий раз, когда выполняется межмодемное соединение по телефонной линии. Модем на отвечающей стороне может быть подключен к сети или к компьютеру, находящемуся на большом удалении (до нескольких тысяч километров). Физическая коммуникационная средапредставляет собой аналоговую цепь, проходящую через телефонные станции и обеспечивающую соединение только на время сеанса связи.

Другим видом двухточечных соединений является связь по выделенным телефонным линиям (например, по специализированным цифровым Т-линиям), которые могут использоваться только между двумя точками (к примеру, между головным офисом компании и ее подразделением). В этом случае при установлении сеанса связи не нужно каждый раз набирать номер и искать коммутируемую цепь. Иногда в выделенных линиях используется подавление шума, и в целом они обеспечивают более надежную связь, чем коммутируемые линии. В зависимости от типа выбранной службы выделенных каналов, линия может поддерживать аналоговые или цифровые коммуникации.

Т-линии

Т-линии были описаны в главе 2 как метод передачи данных в глобальных сетях, который обычно существует между телекоммуникационными компаниями (хотя собственные Т-линии могут быть и в крупных корпорациях).Базовые службы Т-линий часто имеют названия в виде Т-х или DS-x, где x означает уровень передаваемого сигнала. Эти названия взаимозаменяемы, однако между ними существует и различие. Название DS-xотносится к Физическому уровню модели OSI, на котором определяются электрические параметры сигнала (например, его тип и напряжение в вольтах). Название Т-x относится к Канальному уровню, на котором решаются задачи выбора протокола и способов форматирования данных.

В Т-линиях, применяемых для построения глобальных сетей, используется цифровая передача данных, для которой обычно выбирается сигнал из группы каналов, предоставляемых телекоммуникационной компанией. Существуют пять типов сигналов группы каналов: с D-l no D-4 и Digital Carrier Trunk (транк, цифровая коммуникационная магистраль). Сигнал D-1 был первым типом сигналов для коммуникаций по Т-линиям. В нем для передачи информации используются семь разрядов, а один дополнительный разряд служит для управления и синхронизации. Отдельная группа каналов D-1 имеет 72 канала.

Сигналы D-2 разработаны для повышения производительности и уменьшения издержек сигналов D-1. В сигналах D-2 все восемь разрядов используются для передачи информации, и в каждом шестом фрейме, посылаемом по Т-линии, присутствуют команды управления и синхронизации. Благодаря этим усовершенствованиям, группа каналов D-2 имеет 96 каналов.

Развитие интегральных микросхем привело к увеличению емкости каналов канальных группах, в результате чего группы D-3 и D-4 имеют по 1,44 канала. Кроме того, в этих группах улучшены способы передачи фреймов по Т-линиям. Начиная с группы D-2, коммуникационные компании начали разработку так называемых суперфреймов (superframe) и смогли упаковать несколько 193-разрядных фреймов в один большой фрейм. Технология суперфреймов, состоящих из двенадцати 193-разрядных фреймов, получила распространение в канальных группах D-4.

Цифровая коммуникационная магистраль (Digital Carrier Trunk, DCT) - это новейший тип канальных групп, позволяющий уменьшить стоимость услуг, благодаря снижению затрат на оборудование и эксплуатацию. В некоторых DCT-магистралях используется новейшая методика форматирования фреймов, называемая расширенным суперфреймом (extended superframe, ESF). В ESF-фрейме используются 24 фрейма, а не 12 (как в группах D-4), и в нем применяется более развитый контроль ошибок. Благодаря имеющимся в ESF-фрейме возможностям управления ошибками и диагностики, коммуникационные компании могут быстрее устранять неисправн 212s1823c 86;сти и тем самым уменьшить время простоя.

Для передачи информации в Т-линиях используется один из двух методов коммутации: множественный доступ с временным разделением, или уплотнением (time division multiple access, TDMA), и комбинация ТОМА со статистическим множественным доступом (см. главу 2). Такая комбинация представляет собой быструю технологию коммутации пакетов, позволяющую службам Т-линий учитывать различные приоритеты доступа к каналу, возникающие при передаче речевых сигналов, видео и данных. Физическое устройство, используемое для коммутации, называется мультиплексором. Это устройство принимает множество входных сигналов от нескольких источников и передает их в одну (чаще всего) или несколько совместно используемых высокоскоростных передающих сред. Оно просто переключает каналы, обеспечивая передачу принимаемой информации на нужный канал.

Для управления физическими сигналами в Т-линиях используется различное оборудование. Некоторые компании для связи с пользователями применяют системы цифрового доступа и коммутации (Digital AccessCross-connect System, DACS). Эти системы предоставляют несколько режимов работы. Во-первых - базовый канал DS-1 (или Т-1), во-вторых - для клиентов, которым не нужны целиком услуги Т-1, они предоставляют комбинированный или частичный канал DS-0. Частичный канал представляет собой комбинацию 64-Кбит/с каналов. В-третьих, системы DACS предоставляют отдельные каналы DS-0. Кроме DACS, для непосредственного предоставления клиентам всех услуг Т-линий коммуникационные компании используют канальные группы D-4 и DCT.

Многие клиенты подключаются к Т-линиям при помощи комбинации устройства обслуживания канала (channelservice unit, CSU) и устройства обработки данных (data service unit, DSU). CSU - это физический интерфейс, связанный с Т-линией, как показано на рис. 3.10. DSU работает подобно Цифровому модему, преобразующему сигнал, принимаемый устройством обслуживания канала, в такой сигнал, который можно передавать в сеть к Рабочим станциям и серверам. Кроме этого, DSLJ получает сетевой сигнал и преобразует его в сигнал DS- , передаваемый через CSU в Т-линию. Оба Устройства обычно реализуются в виде одного автономного блока или могут быть объединены на одной плате в сетевом маршрутизаторе, концентраторе Или коммутаторе. Устройства CSU/DSU обеспечивают форматирование Фреймов Т-линий D-4 и ESF и должны поддерживать форматирование фреймов используемое системами цифрового доступа и коммутации (DACS) или группами каналов обслуживающей коммуникационной компании. Если клиент использует частичные службы Т-линий, то в его местоположении устанавливаются устройства CSU/DSU частичной Т-линии.

SONET

Synchronous Optical Network (SONET) (синхронная оптическая сеть) представляет собой высокоскоростную технологию глобальных коммуникаций, в торой используются одномодовый и многомодовый оптоволоконный кабель коммуникационные каналы, основанные на службах Т-3. Подробнее сети SONET описываются в главе 7. Базовый Т-3 уровень SONET называется Synchronous Transport Signal Level 1 (STS-1). Уровень STS-1 можно модернизировать до более высоких уровней, которые получаются путем добавления линий Т-3. Как показано на рис. 3.11, фрейм SONET STS-1 состоит из 810 октетов, представленных в виде матрицы из девяти рядов по 90 октетов Служебные данные ячейки занимают первые три октета в каждом ряду, аоставшиеся 783 октета составляют синхронный конверт полезной нагрузки (synchronous pay10ad enve10pe,SPE). Ячейки передаются поочередно каждые 125 микросекунд, ряд за рядом, начиная с верхнего.

SONET преобразует электрические сигналы STS-x в световой сигнал, называемый оптической несущей (optical carrier, ОС). Фреймы STS-1 можно преобразовывать и передавать одновременно пачками, при этом используется механизм, чередующий фреймы и позволяющий достичь более высоких скоростей для уровнейSTS-x и ОС-х.

ISDN

Integrated Services Digital Network (ISDN) (Цифровая сеть связи с комплексными услугами) - это технология глобальных сетей, предназначенная для предоставления услуг передачи речевых сигналов, данных и видео по телефонным линиям. (Подробнее сети ISDN рассматриваются в главе 7.) В сетях ISDN применяются цифровые методы, что позволяет передавать информацию быстрее и надежнее, чем это возможно по линиям обычной телефонной сети. Физически линия ISDN представляет собой традиционную линию или линию Т-1 (на основе витой пары или оптоволокна), однако при этом в помещениях коммуникационной компании и клиента устанавливается специальное оборудование ISDN.

Для передачи цифровых сигналов в сети применяются два метода. Первый метод - уплотнение с временной компрессией (time-compression multiplexing ТСМ). В этом случае 16- или 24-разрядные блоки данных посылаются с некоторой регулярностью в виде цифровых пакетов. Между пакетами имеются периоды молчания, необходимые для адаптации линии перед передачей следующего пакета. Таким образом, первый пакет отсылается в одном направлении, после чего следует пауза. Затем пересылается пакет в обратномнаправлении. Скорость передачи пакетов в каждом направлении равн 212s1823c 72; 288 Кбит/с. Из-за переключения направления общая скорость передачи данных уменьшается до 144 Кбит/с. Передачей пакетов данных управляет центральное синхронизирующее устройство.

Второй метод передачи сигналов - эхоподавление (echo cancellation). В даном случае данные передаются в обоих направлениях одновременно. Для связи передатчика и приемника с клиентской линией используется специальное устройство, называемое дифференциальной системой (hybrid). Часто при одновременной двунаправленной пересылке данных возникает отражение (или эхо) переданного сигнала. Эхосигналы в линии могут по мощности в три раза превосходить полезные сигналы, в результате чего данные невозможно выделить. Для подавления отраженных сигналов в сетях ISDN применяется эхокомпенсатор (echo canceler), который определяет амплитуду эхосигналов и вычитает ее из входящих сигналов. Поскольку мощность эхосигналов варьируется, в эхокомпенсаторе используется схема обратной связи, непрерывно измеряющая их амплитуду.


17. Описать назначение оборудования локальных сетей, включая сетевые адаптеры, повторители, модули множественного доступа (MAU), концентраторы, мосты, маршрутизаторы, мосты-маршрутизаторы, коммутаторы и шлюзы.

Передающее оборудование локальных сетей

Коммуникационное оборудование локальных сетей предназначено для связи устройств в единую сеть, для создания и объединения множества сетей или подсетей, а также для развертывания сети предприятия (кампуса). Используемое в локальных сетях оборудование может применяться как для подключения отдельного узла, так и для связи множества узлов. В его состав входят следующие устройства:

    сетевые адаптеры;

    повторители;

    модули множественного доступа;

    концентраторы;

    мосты;

    маршрутизаторы;

    мосты-маршрутизаторы;

    коммутаторы;

    шлюзы.

Далее каждый тип устройств рассматривается подробно.

 

Сетевые адаптеры

Как вы узнали из предыдущей главы, сетевой адаптер служит для подключения к сети некоторого сетевого устройства, например, компьютера или другого сетевого оборудования. Конструкция сетевых адаптеров ориентирована на конкретные методы передачи сетевого сигнала, тип компьютерной шины и сетевую передающую среду. Для реализации сетевого соединения нужны четыре компонента:

1.            коннектор, соответствующий сетевой передающей среде;

2.            трансивер;

3.            контроллер, поддерживающий подуровень MAC канального уровня OSI (см. главу 2);

4.            микропрограммное обеспечение для управления протоколом.

Коннекторы и обрамляющие цепи разрабатываются для конкретного типа коммуникационной среды (например, для коаксиала, витой пары, оптоволокна или беспроводных технологий). Некоторые сетевые платы, подобные показанной на рис. 4.1, изготавливаются с несколькими разъемами, и поэтому могут использоваться с различными типами среды.

 

Назначение блока контроллера MAC

Общая задача блока контроллера MAC и программно-аппаратных средств – правильно упаковать адреса источника и назначения (физические адреса передающего и принимающего сетевых адаптеров), передаваемые данные иконтрольную сумму (см. разд. "Эталонная модель взаимодействия открытых системOSI" главы 2). Контроллер MAC работает на подуровне MAC Канального уровня OSI и форматирует фреймы. Кроме этого, блок контроллера функционирует на подуровнеLLC того же уровня и выполняет следующие задачи:

 

        инициирует коммуникационный канал между двумя узлами;

        П обеспечивает целостность канала и надежную передачу данных;

        следит за тем, чтобы сетевые адаптеры на обоих коммуникационных узлах выдерживали паузу, равную 9,6 мкс между приемом одного фрейма и передачей последующего, для того чтобы у обоих адаптеров был небольшой запас времени на правильное переключение между режимами приёма и передачи.

 

Блок контроллера MAC и программно-аппаратные средства настроены на конкретную сетевую технологию, например:

              Ethernet;

              Fast Ethernet;

              Gigabit Ethernet;

              10 Gigabit Ethernet;

              Token Ring;

              Fast Token Ring;

              FDDI;

              ATM.

 

Режимы передачи сигналов

Некоторые сетевые адаптеры могут работать с несколькими технологиями, в частности с Ethernet и Fast Ethernet, что позволяет легко модернизировать сеть для перехода на высокоскоростную передачу данных. Кроме того, многие адаптеры могут работать как в полудуплексном, так и в полнодуплексном режиме.Полудуплексный (half-duplex) режим работы не позволяет сетевому адаптеру и сетевому оборудованию передавать и принимать данные одновременно.Полнодуплексный (full-duplex), или просто дуплексный режим предусматривает возможность одновременной передачи и приема, что возможно благодаря буферизации данных в сетевом адаптере. С этой целью адаптер снабжается памятью для временного хранения информации, не обрабатываемой в данный момент.

Совет

Перед тем как конфигурировать в адаптере полудуплексный или дуплексный режим, определите настройки коммуникационного устройства, к которому адаптер подключен. Например, если компьютер с адаптером подключен к порту коммутатора и этот порт настроен на полудуплексную работу, то сетевой адаптер необходимо настроить на этот же режим. Если режимы работы адаптера и коммуникационного устройства не согласованы, то они не смогут общаться друг с другом.

 

Сетевые адаптеры FDDI и ATM

Сетевые адаптеры FDDI и ATM выпускаются в различных модификациях, это зависит от того, какое оборудование они подключают к сети. Обычно с помощью адаптеровFDDI узлы и файловые серверы подключаются к сетевому оборудованию FDDI с использованием одного соединения (единичное подключение), а сетевое оборудование подключается к кабельной системе FDDI с применением двух соединений (двойное подключение). Сетевые адаптеры ATM чаще всего используются для подключения к ATM-сети Коммутаторов ATM или серверов. Кроме того, технология ATM доступна и Для настольных систем, что стимулирует разработку сетевых адаптеров ATM Для рабочих станций; однако такие адаптеры сравнительно дорогие.

 

Беспроводные сетевые адаптеры

Беспроводной адаптер обеспечивает передачу данных в одном из двух режимов. Один режим представляет собой выделенное, равноправное (peer-to-peer) взаимодействие с другим беспроводным адаптером. Другой

Режим – это взаимодействие с точкой (местом) доступа (access point), например, с беспроводным мостом (о них будет рассказано далее в этой главе). Если вы работаете с беспроводной точкой доступа, то нецелесообразно также использовать выделенные беспроводные коммуникации, поскольку они не будут работать стабильно в присутствии точки доступа.

Выпускаемые беспроводные адаптеры, совместимые со стандартом 802.11b, обычно рассчитаны на скорости 1, 2, 10 и 11 Мбит/с. Некоторые производители или также выпускают беспроводные адаптеры, совместимые со стандартом 802.11а. На и передающие данные со скоростью до 54 Мбит/с. Беспроводные адаптеры не всегда работают на максимально  возможной скорости, они, «договариваются» о скорости, наиболее подходящей для текущих условий, и при этом учитывается загрузка равноправных компьютеров или точки доступа.

Совет

Быстрый сетевой адаптер в компьютере или сетевом устройстве будет загружен полностью, если только в компьютере установлен быстрый процессор (например, высококлассный PentiumItanium или RISC-процессор), который сможет обеспечить требуемую производительность адаптера.

 

Сетевые адаптеры и шины

Сетевые адаптеры должны соответствовать типу шины, используемой в компьютере. Шина – это компьютерная магистраль, по которой информация передается к процессору и периферийным устройствам, подключенным к компьютеру. Ниже перечислены основные типы шин в рабочих станциях и серверах:

                   Industry Standard Architecture (ISA) – устаревшая конструкция шины расширения, поддерживающая передачу 8- и 16-разрядных данных со скоростью 8 Мбайт/с;

                   Extended Industry Standard Architecture (EISA – более новая конструкция шины на основе ISA, способная передавать 32-разрядные данные. EISA позволяет использовать управление шиной (bus mastering) – процесс, уменьшающий нагрузку на центральный процессор при выполнении ввода/вывода;

                   Microchannel Architecture (MCA) – конструкция 32-разрядной шины, использующаяся в устаревших компьютерах IBM;

                   Peripheral Computer Interface (PCI) –  современная конструкция шины обеспечивающая передачу 32- и 64-разрядных данных. В PCI используется идея локальной шины, позволяющая применять разные шины для сетевых интерфейсов и для дисковых накопителей;

                   SPARC Bus (SBUS) – специализированная шина, предназначенная для рабочих станций SPARC компании Sun Microsystems;

                   NuBus – специализированная шина с 96-контактным разъемом, используемая в компьютерах компании Apple (от Macintosh II до Macintosh Performa);

                   Universal Serial Bus (USB) – стандарт шины, позволяющей подключать устройства любого типа (например, клавиатуры, фотокамеры, указательные устройства, телефоны и ленточные накопители) к одному шинному порту компьютера;

                   локальная шина VESA (VL-bus) – шина, использующаяся в некоторых 80486-компьютерах для пересылки 32-разрядных данных между сетевым адаптером и центральным процессором. Эта шина не используется на Pentium-совместимых компьютерах, где она замещена шиной PCI.

 

Повторители

Повторитель (репитер, repeater) соединяет два или несколько кабельных сегментов и ретранслирует любой входящий сигнал на все другие сегменты. Сегмент кабеля – это один отрезок кабеля, удовлетворяющий спецификациям IЕЕE, (например, отрезок кабеля 10Base2 длиной 185 м, к которому подключено не более 30 узлов, включая терминаторы и сетевое оборудование). Повторители представляют собой недорогое решение, реализующей передачу данных на Физическом уровне OSI(поскольку они работают с физическим сигналом) и позволяющее соединять пользователей, находящихся в удаленных концах здания – на расстояниях, не отвечающих требованиями IEEE на длину отдельного кабельного сегмента. Повторитель может выполнять следующие функции Физического уровня:

            фильтровать искажения сигнала или шум, вызванный радио или электромагнитными помехами;

            усиливать входящий сигнал и восстанавливать его форму для более точной передачи;

            синхронизировать сигнал (в сетях Ethernet);

            воспроизводить сигнал на всех кабельных сегментах.

Синхронизация позволяет избегать конфликтов сигналов в сети Ethernet, когда сигнал передается в кабель. Повторители позволяют выполнить следующие задачи:

         удлинить кабельную систему (например, на расстояние более 185 м для сегмента 10Base2 и свыше 500 м – для 10Base5);

         увеличить количество подключенных узлов и обойти ограничения, налагаемые на отдельный сегмент (например, подключить свыше 30 узлов в сети Ethernet);

         распознать сетевую ошибку и отключить сегмент кабеля;

         подключиться к компонентам в других сетевых устройствах, таких как концентраторы и коммутаторы, а также усилить и синхронизировать сигналы;

         соединить сегменты, работающие с разной передающей средой (например, подключить сегмент 10BaseT к сегменту 10Base2 или сегмент 10Base2 к сегменту 10Base5);

         удлинить сегменты магистрального кабеля в локальных и глобальных сетях;

         удлинить сегменты оптоволоконного кабеля;

         увеличить рабочее расстояние для Т-линий.

Если повторитель ретранслирует сигнал в два и более кабельных сегмента, он называется многопортовым повторителем. Например, повторитель может иметь порты для 2–8 дополнительных сегментов. Кабель, отходящий от некоторого порта, рассматривается как нормальный кабельный сегмент. То есть многопортовый повторитель сети 10Base2 может передавать сигнал в несколько кабелей длиной 185 м. Каждый кабель может иметь до 29 подключенных узлов, включая терминаторы на своих концах. На рис. 4.2 показана сеть старого образца, в которой сегменты 10Base2 подключены через повторитель к магистрали 10Base5.

Примечание

Необходимо иметь представление о сетях старой конструкции, поскольку многие из них по-прежнему находятся в работе и вполне возможно, что вам придется отвечать за их функционирование или же искать пути их модернизации.

Согласно спецификациям IEEE, можно использовать четыре повторителя, Чтобы увеличить длину толстого коаксиального кабеля до 2500 м, а длину Тонкого коаксиала – до 1000 м. В зависимости от топологии сети и используемой передающей среды, отдельный пакет данных может проходиться более чем через четыре повторителя. Если между двумя узлами расположен четыре повторителя, то, по меньшей мере, два связующих сегмента не должны иметь подключенных компьютеров.

 

Примечание

Повторители применяются как в локальных и региональных сетях, так и глобальных сетях. Например, глобальную сеть на основе линии Т-1 можно удлинять, помещая повторители через каждые 2,2 км.

В спецификациях IEEE 802.3u для Fast Ethernet описаны два типа повторителей: Класс 1 (Class I) и Класс 2 (Class II). Повторители Класса 1 работают медленнее, чем повторители Класса 2, и, следовательно, только один повторитель Класса 1 можно использовать в одной области коллизий (когда сегменты кабеля, отходящие от повторителей, имеют максимальную длиной 100 м). Таким образом, между двумя любыми конечными узлами можно поместить только один повторитель Класса 1. В этом случае область коллизий (collision domain) будет состоять из двух сегментов, соединенных одним или несколькими повторителями.

В сети с повторителями Класса 2 в области коллизий могут использоваться несколько повторителей, однако при этом между любыми двумя конечными узлами не должно быть включено более двух повторителей Класса 2. Когда в сеть стандарта IEEE802.3u включаются два повторителя, максимальная длина кабеля между ними равна 5 м, а каждый повторитель может обслуживать кабельные соединения длиной до 100 м (что дает общую длину, равную 205 м).

Модули множественного доступа

Модуль множественного доступа (multistation access unitMAU) выполни функции центрального концентратора в сети с маркерным кольцом. Также встречается термин интеллектуальный модуль множественного доступа (smart multistation accessunitSMAU), если модуль обладает возможностью находить неисправности в соединениях с рабочими станциями и изолировать неисправные станции от всей сети. Модули MAU используются исключительно в сетях с маркерным кольцом, где они могут выполнять следующие функции:

          соединять рабочие станции в логическое кольцо в рамках физической звездообразной топологии;

          передавать по кольцу маркер и фреймы;

          усиливать информационные сигналы;

          соединяться в последовательные цепочки для расширения маркерного кольца;

          обеспечивать правильное перемещение данных;

          отключать порты, связанные с неисправными узлами.

Концентраторы

Концентратор (hub) представляет собой центральное сетевое устройство, к которому в звездообразной топологии подключаются сетевые узлы (например, рабочие станции и серверы). Несколько входов и выходов концентратора могут быть активными одновременно. Концентраторы выполняют следующие функции:

          являются центральным устройством, через которое соединяется множество узлов сети;

          позволяют большое количество компьютеров соединять в одну или несколько локальных сетей;

          обеспечивают связь различных протоколов (например, преобразование протокола Ethernet в протокол FDDI и обратно);

          соединяют вместе сегменты сетевой магистрали;

          обеспечивают соединение между различными типами передающей среды

          позволяют централизовать сетевое управление и структуру.

Мосты

Мост (bridge) – это сетевое устройство, соединяющее между собой сегменты локальной сети. Мосты позволяют решать следующие задачи:

           расширить локальную сеть в случае, когда достигнут лимит на максимальное количество соединений (например, если сегмент Ethernet имеет 30 узлов);

           расширить локальную сеть и обойти ограничения на длину сегментов (например, если нужно нарастить сегмент Ethernet на тонком кабеле, который уже имеет длину 185 м);

           сегментировать локальную сеть для ликвидации узких мест в сетевом трафике;

           предотвратить неавторизованный доступ к сети.

Маршрутизаторы

Маршрутизатор (router) выполняет некоторые функции моста, такие анализ топологии, фильтрация и пересылка пакетов. Однако, в отличие от мостов, маршрутизаторы могут направлять пакеты в конкретные сети, анализировать сетевой трафик и быстро адаптироваться к изменениям сети. Маршрутизаторы соединяют локальные сети на Сетевом уровне эталонной модели OSI, что позволяет им анализировать в пакетах больше информации, чем это возможно для мостов. 

Главные задачи, которые могут решать маршрутизаторы:

          эффективно перенаправлять пакеты из одной сети в другую, устраняя ненужный трафик;

          соединять соседние или удаленные сети;

          связывать разнородные сети;

          устранять узкие места сети, изолируя ее отдельные части;

          защищать фрагменты сети от несанкционированного доступа.

Мосты-маршрутизаторы

Мост-маршрутизатор (brouter) – это сетевое устройство, в некоторых случаях исполняющее функции моста, а в других случаях – функции маршрутизатора. Например, такое устройство может работать как мост для определенных Протоколов, таких как NetBEUI (поскольку тот является немаршрутизируемым), и как маршрутизатор для других протоколов, например, для TCP/IP. Мост-маршрутизатор может выполнять следующие функции:

         эффективно управлять пакетами в сети со многими протоколами, включая протоколы, которые являются маршрутизируемыми, и протоколы, которые маршрутизировать нельзя;

         уменьшать нагрузку на каналы, изолируя и перенаправляя сетевой трафик;

         соединять сети;

         обеспечивать безопасность некоторых фрагментов сети, контролируя доступ к ним.

 

Коммутаторы

Коммутаторы (switch) обеспечивают функции моста, а также позволяют повысить пропускную способность существующих сетей. Коммутаторы используемые в локальных сетях, напоминают мосты в том смысле, что они работают на подуровнеMAC Канального уровня (Уровня 2) и анализируют адреса устройств во всех входящих фреймах. Как и мосты, коммутаторы хранят таблицу адресов и используют эту информацию для принятия решения о том, как фильтровать и пересылать трафик локальной сети. В отличие от мостов, для увеличения скорости передачи данных и полосы пропускания сетевой среды в коммутаторах применяются методы коммутации.

В коммутаторах локальных сетей обычно используется один из двух методов

    при коммутации без буферизации пакетов (cut-through switching) фреймы пересылаются по частям до того момента, пока фрейм не будет получен целиком. Передача фрейма начинается сразу же, как только будет прочитан целевой адресMAC-уровня и из таблицы коммутатора будет определен порт назначения. Такой подход обеспечивает относительно высокую скорость передачи (отчасти за счет отказа от проверки наличия ошибок).

    в процессе коммутации с промежуточным хранением (store-and-forwardswitching) (также называемой коммутацией с буферизацией) передача фрейма не начинается до тех пор, пока он не будет получен полностью. Как только коммутатор получает фрейм, он проверяет его контрольную сумму (CRC) перед тем, как отправлять целевому узлу. Затем фрейм поминается (буферизируется) до тех пор, пока не освободится соответствующий порт и коммуникационный канал (они могут быть заняты другими данными). Новейшие модели коммутаторов (иногда называемые маршрутизирующими коммутаторами), использующие коммутацию с промежуточным хранением, могут совмещать функции маршрутизаторов и коммутаторов и, следовательно, работают на' Сетевом уровне (Уровне 3), чтобы определять кратчайший путь к целевому узлу. Одним из достоинств таких коммутаторов является то, что они предоставляют большие возможности для сегментации сетевого трафика, позволяя избегать широковещательного трафика, возникающего в сетях Ethernet.

Шлюзы

Термин шлюз (gateway) используется во многих контекстах, но чаще всего он обозначает программный или аппаратный интерфейс, обеспечивающий взаимодействие между двумя различными типами сетевых систем или программ. Например, с помощью шлюза можно выполнять следующие операции:

          преобразовывать широко используемые протоколы (например, TCP/IP) в специализированные (например, в SNA);

          преобразовывать сообщения из одного формата в другой;

          преобразовывать различные схемы адресации;

          связывать хост-компьютеры с локальной сетью;

          обеспечивать эмуляцию терминала для подключений к хост-компьютеру;

          перенаправлять электронную почту в нужную сеть;

          соединять сети с различными архитектурами.


18. Объяснить принципы работы оборудования локальных сетей.

Коммуникационное оборудование локальных сетей предназначено для связи устройств в единую сеть, для создания и объединения множества сетей или подсетей, а также для развертывания сети предприятия (кампуса). Используемое в локальных сетях оборудование может применяться как для подключения отдельного узла, так и для связи множества узлов. В его состав входят следующие устройства:

·    сетевые адаптеры;

·    повторители;

·    модули множественного доступа;

·    концентраторы;

·    мосты;

·    маршрутизаторы;

·    мосты-маршрутизаторы;

·    коммутаторы;

·    шлюзы.


19.
Описать назначение оборудования глобальных сетей, включая мультиплексоры, группы каналов, частные телефонные сети, различные типы модемов, адаптеры ISDN, серверы доступа и маршрутизаторы.
Передающее оборудование глобальных сетей

Передающее оборудование глобальных сетей предназначено для работы в обычных телефонных сетях, а также на выделенных линиях, таких как Т-линии и ISDN-линии. Они могут иметь аналоговые компоненты (например, модемы) или же быть полностью цифровыми (как для ISDN-коммуникаций). Чаще всего это оборудование либо преобразует сигнал для передачи на большие расстояния, либо создает множество каналов внутри одной коммуникационной среды, обеспечивая тем самым более высокую пропускную способность.

Основные виды передающего оборудования глобальных сетей:

          мультиплексоры;

          группы каналов;

          частные телефонные сети;

          телефонные модемы;

          адаптеры ISDN;

          кабельные модемы;

          модемы и маршрутизаторы DSL;

          серверы доступа;

          маршрутизаторы.

20. Объяснить принципы работы оборудования глобальных сетей. Протоколы локальных сетей

Назначение протоколов

Протоколы (protocols) — это набор правил и процедур, регулирующих порядок осуществления некоторой связи. Например, дипломаты какой-либо страны четко придерживаются протокола при общении с дипломатами других стран. В компьютерной среде правила связи служат тем же целям. Протоколы — это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом. Запомните три основных момента, касающихся протоколов.

  1.  Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.
  2.  Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает. Если, например, какой-то протокол работает на Физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату сетевого адаптера и их поступление в сетевой кабель.
  3.  Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов. Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функциям и возможностям стека.

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила и процедуры, или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, эти действия (шаги) должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютере-получателе -снизу вверх.

Компьютер - отправитель

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия:

  1.  разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;
  2.  добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;
  3.  подготавливает данные к передаче через плату сетевого адаптера и далее — по сетевому кабелю.

Компьютер - получатель

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке:

  1.  принимает пакеты данных из сетевого кабеля;
  2.  через плату сетевого адаптера передает пакеты в компьютер;
  3.  удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;
  4.  копирует данные из пакетов в буфер — для их объединения в исходный блок данных;
  5.  передает приложению этот блок данных в том формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

Маршрутизируемые и немаршрутизируемые протоколы

До середины 80-х годов большинство локальных сетей были изолированными. Они обслуживали один отдел или одну компанию и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими коммерческой информации возрос, ЛВС стали компонентами больших сетей.

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами. Так как маршрутизируемые протоколы могут использоваться для объединения нескольких локальных сетей в глобальную сеть, их роль постоянно возрастает.


21. Рассказать о следующих протоколах и об их использовании в различных сетевых операционных системах:
IPX/SPX; NetBEUI;AppleTalk; TCP/IP;SNA; DLC;DNA; _
Протоколы IPX/SPX и система Novell NetWare

Протокол Internetwork Packet Exchange (IPX) (межсетевой пакетный обмен) был разработан компанией Novellдля одной из самых первых сетевых операционных систем, выполняющей серверные функции и названнойNetWare. Первоначально эта система предназначалась для сетей Ethernet с шинной топологией, сетей с маркерным кольцом и сетей ARCnet, она была ориентирована на работу с одним файл-сервером. ARCnet - это одна из частных альтернативных сетевых технологий, в которой используются специальные пакеты с маркерами и смешанная топология (шина и звезда). В настоящее время операционная система NetWare стала аппаратно-независимой и может поддерживать различные топологии и протоколы.

В качестве прототипа протокола IPX компания Novell использовала один из первых протоколов локальных сетей - протокол Xerox Network System (XNS), адаптировав его для своей файл-серверной операционной системы NetWare. Компания Xerox Corporation предложила протокол XNS в качестве средства передачи данных по сетям Ethernet. В начале 1980-х годов некоторые производители выпустили собственные версии этого протокола. Вариант компании Novell определил возникновение протокола IPX, предназначенного длясерверов NetWare. Одновременно эта компания разработала сопутствующий протокол, названный SequencedPacket Exchange (SPX) и ориентированный на работу с прикладными программами, например, с базами данных.

Протоколы IPX/SPX широко используются в серверах NetWare до 4-й версии включительно. Начиная с версииNetWare 5.0, компания Novell предлагает пользователям переходить на стек протоколов TCP/IP. В настоящее время именно эти протоколы являются основными для версий NetWare 6.0 и выше, при этом пользователи могут по-прежнему применять протоколы IPX/SPX, в частности, для совместимости с устаревшими серверами и оборудованием (например, с принтерами).

Когда в сети Ethernet на основе серверов NetWare конфигурируются протоколы IPX/SPX, можно использовать фреймы Ethernet четырех типов:

o       802.2 - относительно новый тип фреймов, применяемый в сетях, базирующихся на серверахNetWare версий с 3.21 по 4.x;

o       802.3 - старый тип фреймов, применяемый в системах NetWare 286 (версий 2.x) и первых версиях системы NetWare 386 (3.0 и 3.1х);

o       Ethernet II  - для обеспечения совместимости с сетями Ethernet II и более эффективного форматирования фреймов;

o       Ethernet SNAP - реализация описанного в главе 2 протокола SubNetwork Access Protocol(SNAP), предназначенного для работы специальных сл)Я и приложений фирм-изготовителей.

Достоинства и недостатки

Достоинством протокола IPX (несмотря на его солидный возраст) по сравнению с другими ранними протоколами является возможность его маршрутизации, т. е. то, что с его помощью можно передавать данные по многим подсетям внутри предприятия. Недостатком протокола является дополнительный трафик, возникающий из-за того, что активные рабочие станции используют часто генерируемые широковещательные пакеты для подтверждения своего присутствия в сети. При наличии множества серверов NetWare и нескольких сотен клиентов применяемые протоколом IPX широковещательные пакеты типа "я здесь" могут создавать значительный сетевой трафик (рис. 5.2).

Назначение протокола SPX

Протокол SPX, дополняющий IPX, обеспечивает передачу данных прикладных программ с большей надежностью, чем IPX. Протокол IPX работает несколько быстрее своего "компаньона", однако в нем используются службы без установления соединения, работающие на подуровне LLC Канального уровня. Это означает, что IPX гарантирует доставку фрейма в пункт назначения с меньшей вероятностью. В протоколеSPX применяются службы с установлением соединения, что повышает надежность передачи данных. Чаще всего при упоминаниях обоих протоколов (IPX и SPX) используют сокращение IPX/SPX.

Протокол SPX широко применяется для передачи по сети содержимого Я данных. Кроме того, на основе этого протокола работают утилита удаленной консоли и службы печати фирмы Novell. Удаленная консоль позволяетрабочей станции администратора видеть ту же информацию, которая отображается на консоли файл-сервераNetWare, благодаря чему пользователь может удаленно выполнять системные команды сервера, не находясь за его клавиатурой.

Развертывание протоколов IPX/SPX

Для установки протоколов IPX/SPX на компьютерах с системой DOS используются специальные DOS-драйверы, разработанные для NetWare. На 32-разрядных операционных системах (например, Windows 95 и старших версия), ля установки протоколов можно запустить программу Novell Client32, которая обеспечит командную среду для доступа к серверам NetWare.

Протокол NetBEUI и серверы Microsoft Windows

Система Microsoft Windows NT начиналась как совместный проект компаний Microsoft и IBM по развитию серверной операционной системы LAN Manager. В начале 1990-х годов компания Microsoft перешла от LANManager к системе Windows NT Server, которая впоследствии стала широко распространенной операционной системой.

На основе продукта Windows NT Server были созданы системы Windows 2000 Server и Windows Server 2003. Как и современные версии Novell NetWare системы Windows NT, Windows 2000 и Windows Server 2003 совместимы локальными сетями Ethernet и Token Ring, они могут масштабироваться от небольших компьютеров с Intel-совместимыми процессорами до многопроцессорных систем. Чаще всего с указанными системами используются протоколы TCP/IP, однако до сих пор имеются системы Windows NT Server версий 3.51 и 4.0, в которых реализован родной протокол систем Windows NT  - NetBIOS Extended User Interface,NetBEUI. Этот протокол был создан для операционных систем LAN Manager и LAN Server до того, как появилась Windows NT. NetBEUI был реализован в первых версиях Windows NT до сих пор имеется в системеWindows 2000 (хотя больше и не поддерживается в системах Microsoft, начиная с Windows ХР).

Примечание

На компьютерах под управлением Windows NT и Windows 2000 протокол NetBEUI также встречается под именем NBF (NetBEUI frame - фрейм NetBEUI). Если для анализа сетевого трафика использовать анализатор протоколов, то фреймы NetBEUI будут отмечены именно такой аббревиатурой.

История NetBEUI

Протокол NetBEUI первоначально был разработан компанией IBM в 1985 году как улучшенная модификацияNetwork Basic Input/Output System, NetBIOS (базовая сетевая система ввода/вывода). NetBIOS - это не протокол, а метод взаимодействия прикладных программ с сетевыми устройствами, а также службы распознавания имен, используемых в сетях Microsoft. NetBIOS-имена даются различным объектам сети (таким как рабочие станции, серверы или принтеры). Например, имя пользователя может служить для идентификации его рабочей станции в сети, по имени HPLaser может осуществляться доступ к сетевому принтеру, а сервер может имет 515o142f ь имя AccountServer. Подобные имена облегчают поиск нужных сетевых ресурсов. Они транслируются (преобразуются) в адреса, используемые в сетевых коммуникациях, с помощью NetBIOS-службName Query.

Область применения NetBEUI

Протокол NetBEUI разрабатывался в то время, когда компьютерные сети в первую очередь означали локальные сети для относительно небольшого количества компьютеров (от нескольких до двух сотен). В процессе проектирования не учитывались особенности корпоративных сетей с маршрутизацией пакетов. По этой причине протокол NetBEUI нельзя маршрутизировать и лучше всего его применять в небольших локальных сетях под управлением относительно старых операционных систем компаний Microsoft и IBM:

·        Microsoft Windows 3.1 или 3.11;

·        Microsoft Windows 95;

·        Microsoft Windows 98;

·        Microsoft LAN Manager;

·        Microsoft LAN Manager for UNIX;

·        Microsoft Windows NT 3.51 или 4.0

·        IBM PCLAN;

·        IBM LAN Server.

При переводе сети с Windows NT Server на Windows 2000 или Windows Server 2003 в первую очередь настройте серверы и рабочие станции, использующие NetBEUI, на работу с TCP/IP. Хотя системы Windows2000 и поддерживают NetBEUI, компания Microsoft не рекомендует применять этот протокол более поздних операционных системах. Однако в том случае, если сеть небольшая (менее 50 клиентов) и не требуется доступ к Интернету, то протокол NetBEUI может оказаться более эффективным, чем TCP/IP.

NetBEUI и эталонная модель OSI

Протокол NetBEUI соответствует нескольким уровням модели OSI .Для взаимодействия сетевых интерфейсов используются Физический и Канальный уровни. В пределах Канального уровня для управления передачей кодирования и адресации фреймов задействуются подуровни LLC (Logical Link Control) и MAC (Media AccessControl). Также протокол реализует функции, относящиеся к Транспортному и Сеансовому уровням (обеспечение надежности передачи, подтверждение приема пакетов, установка и завершения сеансов).

Почему NetBEUI хорошо работает в сетях Microsoft

Для ответа на вопрос, вынесенный в заголовок раздела, имеется несколько причин. Во-первых, протоколNetBEUI прост в установке, поскольку его не нужно конфигурировать как другие протоколы (например, для TCP/IP нужно указать адрес, а для IPX/SPX следует выбрать тип фрейма). Во-вторых протокол позволяет одновременно поддерживать в сети большое количество сеансов обмена информацией (до 254 в ранних версиях протокола, в предыдущих версиях это ограничение снято). Например, в соответствии со спецификациями Microsoft сервер Windows NT может обеспечивать работу 1000 сеансов на один сетевой адаптер (для серверов Windows 2000 такие проверки проводились). В-третьих, протокол NetBEUI расходует мало оперативной памяти и имеет высокое быстродействие в небольших сетях. В-четвертых в нем реализованы надежные механизмы обнаружения и устранения ошибок.

Недостатки NetBEUI

Невозможность маршрутизации является главным недостатком протокола NetBEUI в средних и крупных сетях, включая корпоративные сети. Маршрутизаторы не могут перенаправить пакет NetBEUI из одной сети другую, поскольку фрейм NetBEUI не содержит информации, указующие на  конкретные подсети. Еще одним недостатком протокола является то, что для него имеется мало сетевых анализаторов (помимо тех инструментов, которые выпустила Microsoft).

Примечание

В практическом задании 5-5 рассказывается о том, как установить протокол NetBEUI на компьютере под управлением Windows 2000.

 Протокол AppleTalk и система Mac OS

Компания Apple разработала семейство протоколов AppleTalk для организации сетей на базе компьютеровMacintosh, работающих под управлением операционной системы Mac OS. AppleTalk - это одноранговый сетевой протокол, т. е. он предназначен для обмена данными между рабочими станциями Macintosh даже при отсутствии сервера. Этот факт иллюстрируется на рис. 5.5, где показано, как для связи компьютеровMacintosh используется коммутатор. С протоколом AppleTalk могут работать операционные системы NovellNetWare, MS-DOS, Microsoft Windows 9x/ME и Windows NT/2000/XP. Первая версия протокола называласьAppleTalk Phase I, она была выпущена в 1983 году. В 1989 году была разработана используемая до сих пор версия AppleTalk Phase II, которая позволяет работать большому количеству сетевых компьютеров и обеспечивает взаимодействие с большими гетерогенными сетями на основе нескольких протоколов.

Сравнение версий AppleTalk Phase I и AppleTalk Phase II

Между двумя этими версиями имеется несколько важных различий. Протокол AppleTalk Phase I не позволяет организовывать взаимодействие сетей (т. е. связывать несколько сетей вместе) и, следовательно, допускает только одну зону. Протокол AppleTalk Phase II не имеет этого недостатка и разрешает использование до 255 зон.

Совет

Зона (zone) - это группа компьютеров Macintosh в нескольких сетях, позволяющая упростить организацию совместного доступа к ресурсам, а также управление сетью. Нередко деление на зоны соответствует территориальному расположению компьютеров.

Максимальное количество станций в сети AppleTalk Phase I равно 254, а для сети AppleTalk Phase II этот парамет 515o142f р равен нескольким миллионам. Адресация в сетях первого типа осуществляется с применением идентификации узла (node identification, ID), а в сетях второго типа при адресации исполняется как идентификатор узла, так и идентификатор сети. И последним  отличием является то, что протоколAppleTalk Phase I может работать только в таких сетях, где других протоколов нет. Протокол AppleTalk Phase IIфункционирует в сетях со многими протоколами (например, IPX/SPX и ТСP/IP).

Примечание

Хотя протокол AppleTalk был разработан как одноранговый, он может применяться для обмена данными между серверами Mac OS X и Windows-системами настроенными на работу по этому протоколу.

Протокол TCP/IP и различные серверные системы

Transmission Control Protocol/Internet Protocol, TCP/IP (Протокол управления передачей/Протокол Интернета) - самый распространенный в настоящее время стек протоколов, являющийся к тому же протоколом Интернета. В этом разделе дается лишь краткий обзор TCP/IP в контексте общего знакомства с важнейшими протоколами. Более подробно стек TCP/IP рассматривается в главе 6.

Большинство операционных систем сетевых серверов и рабочих станций поддерживает TCP/IP, в том числе серверы NetWare, все системы Windows, UNIX, последние версии Mac OS, системы OpenMVS и z/OSкомпании IBM, а также OpenVMS компании DEC. Кроме того, производители сетевого оборудования создают собственное системное программное обеспечение для TCP/IP, включая средства повышения производительности устройств. Стек TCP/IP изначально применялся на UNIX-системах, а затем быстро распространился на многие другие типы сетей.

Достоинства TCP/IP

Среди многих достоинств стека TCP/IP можно упомянуть следующие:

·        он применяется во многих сетях и в Интернете, что делает его международным языком сетевых коммуникаций;

·        имеется множество сетевых устройств, предназначенных для работы с этим протоколом;

·        многие современные компьютерные операционные системы используют TCP/IP в качестве основного протокола;

·        для этого протокола существует много диагностических средств и анализаторов;

·        многие специалисты по сетям знакомы с протоколом и умеют его использовать.

Протокол  SNA и операционные системы IBM

В устаревших мэйнфреймах IBM обычно используются протоколы стека Systems Network Architecture, SNA,который был изначально разработан в 1974 году. Фактически SNA - это набор частных протоколов, в которых в качестве мет 515o142f ода доступа используется маркерное кольцо. Многие детали маркерных сетей, созданных компанией IBM, впоследствии были включены в  стандарт IEEE 802.5. Однако в сети SNAкабельный участок обязательно строится на базе экранированной витой пары (STP), причем кабели имеютстрого ориентированную маркировку (и разводку) (например, определенный конец кабеля должен идти к мэйнфрейму, а другой - к устройствам, подключенным к мэйнфрейму, таким как контроллеры дисковых накопителей или коммуникационных каналов). Это означает, что в сети SNA также используются частные (фирменные) кабельные разъемы и сетевые интерфейсы,

 Стек протоколов SNA и эталонная модель OSI

Стек протоколов SNA базируется на семиуровневой модели (табл. 5.5), напоминающей эталонную модель OSI.

Протокол DLC для доступа к операционным системам IBM

Если для доступа к мэйнфрейму, работающему с SNA, используются компьютеры под управлением Windows9x, Windows NT и Windows 2000, то альтернативой SNA-шлюзу является установка протокола Data LinkControl, DLC. Этот протокол эмулирует SNA, и он может также применяться для подключения к некоторым устаревшим моделям сетевых принтеров, которые могут работать только с ним (например, старые принтерыHewlett-Packard).

Совет

Протокол DLC не поддерживается в Windows XP. Если вы рассматриваете возможность перехода на эту систему, то учтите, что с ней вы не сможете использовать DLC для доступа к мэйнфреймам IBM и, возможно, вам потребуется SNA-шлюз.

В основном протокол DLC является альтернативой TCP/IP в тех случаях, когда некоторый хост используетSNA-коммуникации. Недостатком этого протокола является то, что он не маршрутизируется. Кроме того, он на самом деле не предназначен для одноранговых взаимодействий между рабочими станциями, а служит только для подключения к старым мэйнфреймам IBM (например, ES9000) или мини-компьютерам IBM (например, AS/400). В практическом задании 5-7 рассказывается о том, как установить DLC в системе Windows 2000.

Протокол DNA для операционных систем компьютеров Digital (Compaq)

Созданная в 1974 году архитектура Digital Network Architecture (DNA) имеет такой же возраст, что и SNA. DNAиспользовалась в первых сетях компании Digital Equipment Corporation (DEC) и по-другому называласьDECnet. Затем этот стек протоколов применялся значительно реже.

Архитектура DNA предусматривает использование фреймов Ethernet II (или DIX  - аббревиатура от названий компаний-разработчиков Digital, Intel и Xerox) в шинной топологии. Одним из достоинств DNA является то, что ссамого начала эта архитектура близко следовала эталонной модели OSI. He-Достаток DNA - то, что эта архитектура частная. Кроме того, после приобретения фирмы DEC компанией Compaq оригинальные компьютеры DEC и сети DNA стали менее популярными. Даже некогда известные компьютеры ча базе процессора DEC Alpha все чаще заменяются продаваемыми под маркой Compaq рабочими станциями и серверами, реализованными с использованием процессоров Intel Itanium.

Поскольку DNA все реже встречается в сетях, уменьшается вероятность того, что вы столкнетесь с этой архитектурой на практике. 

22. Методы повышения производительности локальных сетей. Прошлое, настоящее и будущее протокола TCP/IP

Компьютер

Все, что вы знаете о повышении производительности отдельного компьютера, применимо при его использовании в сети. К примеру, быстрый процессор и диск, а также грамотное использование памяти будет увеличивать производительность файлового сервера так же, как это происходит для отдельного компьютера. Регулярное проведение дефрагментации диска также повышает эффективность работы, особенно в случае файлового сервера.

Сетевые адаптеры и кабели

Неоптимальная установка сетевых даптеров и кабелей способна катастрофически снизить производительность сервера. Для оптимизации работы адаптеров и их соединения смотрите описания используемых адаптеров.

Программа ALONE

Входящая в состав LANtastic программа ALONE позволяет значительно повысить производительность сервера в тех случаях, когда не требуется его одновременное использование в качестве рабочей станции. Инструкции по работе с программой приведены в разделе "Использование программы ALONE" в главе 11.

Контрольные журналы

Ведение контрольного журнала может сильно замедлить выполнение ряда операций, таких как просмотр каталогов (DIR), открытие файлов и другие протоколируемые в журнале действия пользователей. Особенно аккуратно следует использовать контрольный журнал при ограниченном размере свободного пространства на диске. Например, при контроле операций чтения и записи единственная команда XCOPY будет вносить весьма большое количество записей в контрольный журнал. Это сильно снижает производительность сервера поскольку свободное пространство диска сильно фрагментируется.

Контроль подключения/отключения серверов незначительно снижает производительность. Следует с осторожностью пользоваться доступом к файлам контрольного журнала и регулярно удалять старые записи. Подробная информация о работе с контрольным журналом приведена в гл. 11 (DOS) и 17 (Windows).

Использование файлов-псевдонимов

При наличии права работы с файлами-псевдонимами (I), связанного с разделяемым каталогом, псевдонимы можно создавать в этом каталоге. Наличие в каталоге файлов-псевдонимов значительно снижает скорость просмотра каталога и открытия файлов. Не используйте без необходимости файлы-псевдонимы и это позволит вам избежать снижения производительности.


Протокол TCP, описанный в RFC 793, первоначально был разработан для двухточечных взаимодействий между компьютерами одной сети, а протокол IP (RFC 791) предназначался для обеспечения коммуникаций между компьютерами, подключенными к разным сетям или к глобальным сетям. Вскоре после своего появления оба протокола были объединены как стек TCP/IP для использования в популярных операционных системах Berkeley UNIX и были встроены в ОС Virtual Memory System (VMS, ныне – OpenVMS) компании DEC и Multiple Virtual Storage (MVS, ныне – OpenMVS) компании IBM.

С момента своего появления в начале 1970-х годов стек TCP/IP широко применялся в сетях в разных странах мира. Он реализован для PC-совместимых компьютеров, рабочих станций UNIX, мини-ЭВМ, компьютеров Macintosh и сетевых устройств, связывающих клиентов и хосты. TCP/IP обеспечивает тысячам открытых и коммерческих сетей подключение к Интернету, которым могут пользоваться миллионы людей.

TCP/IP – это многоуровневый стек протоколов, напоминающих уровни протоколов OSI, но не эквивалентных им. Стек TCP/IP содержит около ста стандартизованных протоколов, позволяющих обеспечить надежную и эффективную передачу данных между системами. Базовыми протоколами в стеке TCP/IP являются следующие:

  1.  Transmission Control Protocol (TCP);
  2.  User Datagram Protocol (UDP);
  3.  Internet Protocol (IP).

23. Расскажите историю появления TCP/IP;

В конце 1960-х годов управление ARPA работало над тем, чтобы сделать сетьARPANET доступной для общего пользования, обеспечивая компьютерам университетов, исследовательских учреждений и Министерства обороны возможность взаимодействия через глобальную сеть. Одним из заметных препятствий на пути достижения этой цели было наличие собственных стандартов у производителей компьютеров, и информацию о принципами боты своих систем производители охраняли как коммерческую тайну.

Первая попытка создания средств взаимодействия различных компьютеров была предпринята несколькими университетами, которые разработали сетевой протокол, названный Network Control Protocol (NCPи позволивший хост-компьютерам разных компаний, включая DEC и IBM, обменивал информацией. NCP был простейшим протоколом, который обеспечивал различным типам компьютеров DEC и IBMвозможность сетевых взаимодействий и запуска приложений через сеть, в которой хосты были географически удалены друг от друга. Например, одним из приложений протокола NCP была передача файлов между компьютерами. Это было хорошее начало, однако протокол NCP не мог обеспечить достаточно надежной передачи данных, поэтому управление ARPA для его модернизации запустило проект. Разработанный протокол на самом деле являлся комбинацией двух протоколов –Transmission Control Protocol (TCPи Internet Protocol (IP) названия которых обычно сокращаются до аббревиатуры TCP/IP.


24. Объясните принципы работы протоколов TCP и IP, а также методы использования протоколов UDP вместо TCP;

Базовыми протоколами в стеке TCP/IP являются следующие:

    Transmission Control Protocol (TCP);

    User Datagram Protocol (UDP);

    Internet Protocol (IP).

Каждый из этих протоколов подробно рассматривается в последующих разделах.

 

Функционирование протокола TCP

TCP – это транспортный протокол, с помощью которого устанавливаются сеансы передачи данных между процессами прикладных программ, запускаемых клиентами сети. TCP предназначен для надежной доставки данных, для чего осуществляется контроль за правильностью приема фреймов и выполняется управление потоком данных. Для решения этих задач в протоколе предусмотрено упорядочение фреймов и подтверждение их приема.

Два взаимодействующих устройства задают порядковый номер для каждом переданного фрейма, и этот номер записывается в заголовок фрейма TCPПорядковый номер не только показывает местоположение фрейма в потом фреймов, но и указывает на длину данных, содержащихся в этом фрейме. Получив фрейм, принимающий узел проверяет порядковый номер и убеждается в том, что получен правильный фрейм в правильной очередности. Если узел назначения принимает фрейм, он передает подтверждение передающему узлу. Пакет подтверждения не только свидетельствует об успешном приеме фрейма, но и содержит порядковый номер следующего фрейма передачу которого ожидает принимающий узел.

Количество байтов данных, переданных во фрейме, называется скользящим окном (sliding window), поскольку это количество может увеличиваться или уменьшаться в процессе обмена информацией по взаимному соглашению между взаимодействующими узлами. Размер скользящего окна определяется, узлами динамически, при этом учитываются два фактора:

   текущий сетевой трафик;

   размер буфера (обычно в памяти), который в данный момент может выделить каждый узел для хранения фреймов, ожидающих обработки данным узлом.

Основные функции протокола TCP аналогичны функциям Транспортами уровня модели OSI. Он должен отслеживать запросы на установление сеансов связи, устанавливать сеансы с другими TCP-узлами, передавать и принимать данные, а также закрывать коммуникационные сеансы. Фрейм 1Я содержит заголовок и полезную нагрузку (рис. 6.1) и называется TCP сегментом.

Заголовок TCP имеет минимальную длину 20 байт и содержит поля, описанные ниже.

    Порт источника (Source Port) – некоторый порт TCP (называемый также сокетом или сеансом в других протоколах), подобный виртуальному каналу между двумя коммуникационными процессами на разных узлах (рис. 6.2). Для обеспечения совместимости некоторым портам TCP (также называемым "хорошо известными портами") назначаются определенные задачи. Назначение портов TCP и их описание можно найти в RFC 1700. Наличие механизма портов TCP означает, что в определенный момент времени в течение одного сеанса связи между двумя взаимодействующими узлами может выполняться обмен данными между несколькими процессами. Например, по одному порту может передаваться; состояние сети, а по другому – сообщения электронной почты или файлы. Порт источника – это порт TCP на передающем устройстве.

Функционирование протокола UDP

Для передачи данных стек TCP/IP имеет возможность пересылки информации с помощью потоков без установления соединения, при этом к посылаемым IP-датаграммам практически не добавляется никаких служебных данных (RFC 1240). Алгоритмы, используемые для форматирования, передачи и обратной сборки фреймов, описываются спецификацией протокол User Datagram Protocol (UDP),который применяется вместо TCP. Каждый фрейм имеет упрощенный заголовок, за которым следуют данные (рис 6,3) Протокол UDP используется программами мониторинга сети и некоторыми приложениями для передачи файлов, когда не требуется такая степень надежности, которую обеспечивает протокол TCP.

Заголовок UDP содержит следующие поля:

          порт источника – порт, используемый некоторым прикладным процессом на передающем узле для обмена информацией с аналогичным процессом на принимающем узле;

          порт назначения – порт на принимающем узле, связанный с процессом, с которым обменивается данными передающий узел;

          длина – поле, указывающее на длину фрейма;

          контрольная сумма – поле, используемое так же, как аналогичное поле впротоколе TCP, служит для сравнения полученного фрейма с переданным.

Протокол UDP не обеспечивает такой же уровень надежности и защиты от ошибок, который предлагает протокол TCP, поскольку надежность гарантируется только контрольными суммами фреймов. У протокола UDP отсутствуют механизмы управления потоком, упорядочения и подтверждения. Он функционирует как протокол без установления соединений, позволяя быстрее обрабатывать и передавать данные. Достоинством протокола UDP является то, что он добавляет мало служебной информации в пакеты IP и может использоваться приложениями, выполняющими обработку транзакций, в качестве средства уменьшения нагрузки на сеть. Некоторые прикладные протоколы стека TCP/IP также применяют протоколUDP. Для сетевого администратора он важен тем, что с его помощью осуществляются многие важные операции по управлению сетью и передаются сообщения о состояния сети (например, при использовании описываемых далее протоколов RIPDNSSNMPRMON и ВООТР).

Функционирование протокола IP

Локальная сеть может состоять из нескольких подсетей. Глобальная сеть (например, Интернет) может быть образована из множества самостоятельных сетей (например, SONETX.25, ISDN и др.). Internet Protocol (IPпозволяет передавать пакет в различные подсети локальной сети и разные сети, входящие в глобальную сеть, при соблюдении единственного требования: эти сети должны использовать транспортные механизмы, совместимые со стеком TCP/IP. Такие сети могут соответствовать следующим стандартам:

                Ethernet;

                Token Ring;

                X.25;

                FDDI;

                ISDN;

                DSL;

                сети с ретрансляцией кадров (frame relay);

                ATM (с преобразованием форматов).

Поскольку протокол IP используется очень широко, важно понимать его базовые функций и принципы функционирования в качестве протокола без установления соединения.

 

Основные функции IP

Базовые функции протокола IP следующие: передача данных, адресация пакетов, маршрутизация пакетов, фрагментация и обнаружение простых ошибок в пакетах. Успешная передача данных и маршрутизация пакетов в нужные сети или подсети делаются возможными благодаря механизму адресации IP. Каждый сетевой узел имеет 32-разрядный адрес, который в сочетании с 48-разрядным МАС-адресом узла обеспечивает осуществление сетевых коммуникаций и успешную доставку пакета в назначенный узел.


25. Расскажите об адресации IP и о способах ее реализации в локальных и глобальных сетях;

Адресация в IP-сетях

2.1 Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

· Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

· IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

· Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.

2.2 Три основных класса IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 - традиционная десятичная форма представления адреса,

10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

На рисунке 2 показана структура IP-адреса.

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

· Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.

· Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.

· Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.

· Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

· Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс

Наименьший адрес

Наибольший адрес

A

01.0.0

126.0.0.0

B

128.0.0.0

191.255.0.0

C

192.0.1.0.

223.255.255.0

D

224.0.0.0

239.255.255.255

E

240.0.0.0

247.255.255.255

2.3 Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

· если IР-адрес состоит только из двоичных нулей,

0 0 0 0 ................................... 0 0 0 0

то он обозначает адрес того узла, который сгенерировал этот пакет;

· если в поле номера сети стоят 0,

0 0 0 0 .......0

Номер узла

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;

· если все двоичные разряды IP-адреса равны 1,

1 1 1 1 .........................................1 1

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

· если в поле адреса назначения стоят сплошные 1,

Номер сети

1111................11

то пакет, имеющий такой адрес рассылается всем узлам сети с заданным номером. Такая рассылка называется широковещательным сообщением (broadcast);

· адрес 127.0.0.1 зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback.

Форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.


26. Объясните способы использования прикладных протоколов, входящих в стек TCP/IP;

Функционирование протокола TCP

TCP – это транспортный протокол, с помощью которого устанавливаются сеансы передачи данных между процессами прикладных программ, запускаемых клиентами сети. TCP предназначен для надежной доставки данных, для чего осуществляется контроль за правильностью приема фреймов и выполняется управление потоком данных. Для решения этих задач в протоколе предусмотрено упорядочение фреймов и подтверждение их приема.

Два взаимодействующих устройства задают порядковый номер для каждом переданного фрейма, и этот номер записывается в заголовок фрейма TCPПорядковый номер не только показывает местоположение фрейма в потом фреймов, но и указывает на длину данных, содержащихся в этом фрейме. Получив фрейм, принимающий узел проверяет порядковый номер и убеждается в том, что получен правильный фрейм в правильной очередности. Если узел назначения принимает фрейм, он передает подтверждение передающему узлу. Пакет подтверждения не только свидетельствует об успешном приеме фрейма, но и содержит порядковый номер следующего фрейма передачу которого ожидает принимающий узел.

Количество байтов данных, переданных во фрейме, называется скользящим окном (sliding window), поскольку это количество может увеличиваться или уменьшаться в процессе обмена информацией по взаимному соглашению между взаимодействующими узлами. Размер скользящего окна определяется, узлами динамически, при этом учитываются два фактора:

·   текущий сетевой трафик;

·   размер буфера (обычно в памяти), который в данный момент может выделить каждый узел для хранения фреймов, ожидающих обработки данным узлом.

Основные функции протокола TCP аналогичны функциям Транспортами уровня модели OSI. Он должен отслеживать запросы на установление сеансов связи, устанавливать сеансы с другими TCP-узлами, передавать и принимать данные, а также закрывать коммуникационные сеансы. Фрейм 1Я содержит заголовок и полезную нагрузку (рис. 6.1) и называется TCP сегментом.

Заголовок TCP имеет минимальную длину 20 байт и содержит поля, описанные ниже.

·    Порт источника (Source Port) – некоторый порт TCP (называемый также сокетом или сеансом в других протоколах), подобный виртуальному каналу между двумя коммуникационными процессами на разных узлах (рис. 6.2). Для обеспечения совместимости некоторым портам TCP (также называемым "хорошо известными портами") назначаются определенные задачи. Назначение портов TCP и их описание можно найти в RFC 1700. Наличие механизма портов TCP означает, что в определенный момент времени в течение одного сеанса связи между двумя взаимодействующими узлами может выполняться обмен данными между несколькими процессами. Например, по одному порту может передаваться; состояние сети, а по другому – сообщения электронной почты или файлы. Порт источника – это порт TCP на передающем устройстве. Некоторые обычно используемые порты TCP перечислены в табл. 6.1.

 

 

 

Таблица 6.1. Порты TCP

Номер порта

Назначение

Номер порта

Назначение

1

Мультиплексирование

9

Отвергнутая передача

5

Приложения   RJE   (remote job entry– дистанционный ввод заданий)

15

Состояние сети

20

Данные FTP

93

Управление устройствами

21

Команды FTP

102

Точка доступа к службе (SAP)

23

Telnet-приложения

103

Стандартные службы         электронной почты

25

SMTP-приложения электронной почты

104

Стандартный обмен электронной почтой

37

Транзакции службы времени

119

Передача новостейUsenet

53

Приложения DNS-сервера

139

NetBIOS-приложения

79

Поиск активного пользовательского приложения

 

 

·                 Порт назначения (Destination Port) – некоторый порт TCP на принимающем устройстве (см. рис. 6.2), участвующий в обмене информацией для некоторого прикладного процесса (например, при передаче файлам).

·                 Порядковый номер (Sequence Number) – 32-разрядный последовательный номер, назначаемый каждому фрейму в процессе передачи данных. С его помощью протокол TCP обеспечивает надежность приема всех фреймов. Порядковый номер также используется для обнаружения дубликатов фрейма и для расположения фреймов в нужном порядке после того, как они были переданы по разным сетевым маршрутам или каналам.

·                 Подтвержденный номер (Acknowledgement Number) – число, подтверждающее получение фрейма и передаваемое протоколом TCP исходному узлу после проверки порядкового номера фрейма. Если подтвержденный номер не отправляется обратно, то выполняется повторная передача фрейма.

·                 Смещение (Offset) или Длина заголовка (Header Length) – число, определяющее длину заголовка. С его помощью можно быстро определить начало данных, передаваемых во фрейме.

·                 Флаги/управление (Flags/control) – два флага в этом поле используются для обозначения начала (SYN) и конца (FIN) полного потока данных. Другие флаги представляют собой управляющую информацию (например, для сброса соединения или для отображения активности поля указателя срочности).

·                 Окно (Window) – информация, используемая механизмом управления потоком данных. Окно содержит количество байтов, которые можно передать до того момента, как исходный узел получит подтверждение приема фрейма. По достижении этого числа включается управление потоком, прекращающее передачу до тех пор, пока не будет получено подтверждение. Например, если размер окна равен 64 байтам, то управление потоком включается в тот момент, когда будут переданы 65 байт без подтверждения, посланного передающему узлу. Если скорость сети мала из-за высокого трафика, размер окна может быть увеличен для того, чтобы управление потоком не включалось без необходимости. Размер окна может быть и уменьшен, если принимающий узел отвечает медленно (например, когда на рабочей станции возникает высокая нагрузка на шину или центральный процессор из-за того, что локальное приложение занимает эти ресурсы). Иногда задержки так велики, что выделенное поле окна не может вместить все значение размера окна. Хотя размер окна обычно определяется автоматически взаимодействующими узлами, его может также задать администратор сети, настраивающий оптимальную производительность сети на медленных или быстрых каналах связи. Это можно сделать для уменьшения числа повторных передач от ошибочно работающих программ или при перегрузке сети, а также для исправления ошибок передачи со стороны прикладных программ, плохо работающих в сети.

·                 Контрольная сумма (Checksum) – 16-разрядный циклический код с избыточностью (CRC), вычисляемый путем сложения всех полей заголовка и поля полезной нагрузки (сумма всех полей TCP-сегмента). Сумма вычисляется с использованием логической операции дополнения до единицы, т. е. двоичные разряды каждого поля меняют значение на противоположное (например, двоичный 0 меняется на двоичную 1, а двоичная 1 меняется на двоичный 0). Таким образом, перед сложением двух полей (например, ОНО и 10110110) их значения меняются на обратные (1001 и 01001001), а затем складываются. Общая сумма будет CRC-суммой, которая записывается во фрейм передающим узлом. Принимающий узел также вычисляет контрольную сумму и сравнивает полученное значение со значением, записанным в поле фрейма. Если значения различаются, то фрейм отбрасывается и принимающий узел запрашивает повторную передачу фрейма. В дополнение к значению контрольной суммы используются адреса источника и назначения, которые должны совпадать с теми адресами, которые указаны в IP-заголовке фрейма в качестве подтверждения того, что фрейм послан по заданному адресу.

·                 Указатель срочности (Urgent Pointer) – это поле заголовка, представляющее собой предупреждение для принимающего узла о том, что передаются срочные данные. Оно также указывает на конец срочных данных в последовательности пересылаемых фреймов. Назначение этого поля – заранее дать информацию о том, сколько данных еще будет передано в логически связанной последовательности из нескольких фреймов.

·                 Опции (Options) – поле фрейма, которое может содержать дополнительную информацию о передаваемых данных, а также дополнительные флаги.

·                 Заполнение (Padding) – поле, используемое в тех случаях, когда дополнительные данные отсутствуют или их слишком мало, чтобы обеспечить требуемую длину заголовка, которая должна быть кратна 32.


27. Назначение прикладных протоколов стека TCP/IP;Методы передачи данных в глобальных сетях

Проводные:

хDSL (англ. digital subscriber line цифровая абонентская линия) — семейство технологий, позволяющих значительно повысить пропускную способность абонентской линии телефонной сети общего пользования путём использования эффективных линейных кодов и адаптивных методов коррекции искажений линии на основе современных достижений микроэлектроники и методов цифровой обработки сигнала.

Технологии хDSL появились в середине 90-х годов как альтернатива цифровому абонентскому окончанию ISDN.

К основным типам xDSL относятся ADSLHDSL, MSDSL, PDSL, RADSL, SDSL, SHDSL, UADSL, VDSL. Все эти технологии обеспечивают высокоскоростной цифровой доступ по абонентской телефонной линии. Существующие технологии xDSL разработаны для достижения определенных целей и удовлетворения определенных нужд рынка. Некоторые технологии xDSL являются оригинальными разработками, другие представляют собой просто теоретические модели, в то время как третьи уже стали широко используемыми стандартами. Основным различием данных технологий являются методы модуляции, используемые для кодирования данных.

DOCSIS Этот стандарт предусматривает передачу данных абоненту по сети кабельного телевидения с максимальной скоростью до 42 Мбит/с. (при ширине полосы пропускания 6 МГц и использовании многопозиционной амплитудной модуляции 256 QAM) и получение данных от абонента со скоростью до 10,24 Мбит/с. Он призван сменить господствовавшие ранее решения на основе фирменных протоколов передачи данных и методов модуляции, несовместимых друг с другом, и должен гарантировать совместимость аппаратуры различных производителей.

Ethernét (эзернет, от англ. ether — эфир) — пакетная технология передачи данных преимущественно локальных компьютерных сетей. В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех ниже перечисленных вариантах.

В этом разделе дано краткое описание всех официально существующих разновидностей. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется волоконно-оптический кабель.

Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение (autonegotiation) скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX и 1000BASE-T.

FTTx Fiber To The X или FTTx (англ. fiber to the x — оптическое волокно до точки X) — это общий термин для любой компьютерной сети, в которой от узла связи до определенного места (точка X) доходит волоконно-оптический кабель, а далее, до абонента, — медный кабель (возможен и вариант, при котором оптика прокладывается непосредственно до абонентского устройства). Таким образом, FTTx — это только физический уровень. Однако фактически данное понятие охватывает и большое число технологий канального и сетевого уровня. С широкой полосой систем FTTx неразрывно связана возможность предоставления большого числа новых услуг.

В семейство FTTx входят различные виды архитектур:

  1.  FTTN (Fiber to the Node) — волокно до сетевого узла;
  2.  FTTC (Fiber to the Curb) — волокно до микрорайона, квартала или группы домов;
  3.  FTTB (Fiber to the Building) — волокно до здания;
  4.  FTTH (Fiber to the Home) — волокно до жилища (квартиры или отдельного коттеджа).

Они отличаются главным образом тем, насколько близко к пользовательскому терминалу подходит оптический кабель

PON (Passive optical network) — технология пассивных оптических сетей. Распределительная сеть доступа PON основана на древовидной волоконно-кабельной архитектуре с пассивными оптическими разветвителями на узлах, представляет экономичный способ обеспечить широкополосную передачу информации. При этом архитектура PON обладает необходимой эффективностью наращивания узлов сети и пропускной способности, в зависимости от настоящих и будущих потребностей абонентов.

Коммутируемый удалённый доступ (англ. dial-up) — сервис, позволяющий компьютеру, используя модем и телефонную сеть общего пользования, подключаться к другому компьютеру (серверу доступа) для инициализации сеанса передачи данных (например, для доступа в сеть Интернет). Обычно dial-up называют только доступ в Интернет на домашнем компьютере или удаленный модемный доступ в корпоративную сеть и используют двухточечный протокол PPP (теоретически можно использовать и устаревший протокол SLIP).

ISDN (произносится «ай-эс-ди-э́н», англ. Integrated Services Digital Network) — цифровая сеть с интеграцией обслуживания. Позволяет совместить услуги телефонной связи и обмена данными. Основное назначение ISDN — передача данных со скоростью до 64 кбит/с по 4-килогерцовой проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование.

PLC (англ. Power line communication) — термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines — широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью более 1 Мбит/с, и NPL (англ. Narrowband over Power Lines — узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных.

Беспроводные

Wi-Fi (англ. Wireless Fidelity — «беспроводная точность») — Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала.

WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Максимальная скорость — до 1 Гбит/сек.

HSPA (англ. High Speed Packet Access — высокоскоростная пакетная передача данных) — технология беспроводной широкополосной радиосвязи, использующая пакетную передачу данных и являющаяся надстройкой к мобильным сетям WCDMA/UMTS

EV-DO (Evolution-Data Optimized) — технология передачи данных, используемая в сетях сотовой связи стандарта CDMA. 1X EV-DO — это фаза развития стaндарта мобильной связи CDMA2000 1x. EV-DO — сокращение от EVolution Data Only. В отличие от EV-DV (EVolution Data/Voice) эволюции подвергся только интерфейс передачи данных, а передача голоса осталась полностью идентичной CDMA2000 1x и CDMA One (IS-95a/b). EV-DO, получивший маркировку Rev. C, объединяет в себе такие мобильные технологии как CDMA, TDM, OFDM, Multiple Input Multiple Output (MIMO) и Space Division Multiple Access (SDMA).

GPRS (англ. General Packet Radio Service — пакетная радиосвязь общего пользования) — надстройка над технологией мобильной связи GSM, осуществляющая пакетную передачу данных. GPRS позволяет пользователю сети сотовой связи производить обмен данными с другими устройствами в сети GSM и с внешними сетями, в том числе Интернет. GPRS предполагает тарификацию по объёму переданной/полученной информации, а не по времени, проведённому онлайн.

EDGE (EGPRS) (англ. Enhanced Data rates for GSM Evolution) (сленговое Ёж) — цифровая технология для мобильной связи, которая функционирует как надстройка над 2G и 2.5G (GPRS)-сетями. Эта технология работает в TDMA- и GSM-сетях. Для поддержки EDGE в сети GSM требуются определённые модификации и усовершенствования.


28. Объяснить основы протокола Х.25; 

Низкое качество каналов связи, которые были два десятилетия назад, сильная их подверженность воздействию помех и, как следствие, низкая достоверность передачи данных стали причиной разработки помехоустойчивых процедур передачи информации. Одним из наиболее широко распространенных и популярных протоколов позволяющих решать проблемы плохих телефонных каналов связи, становится протокол Х.25.

Протокол Х.25 также задумывается как эффективное средство удаленного доступа к хост машинам. На основе коммутаторов Х.25 несколько пользователей одновременно могут общаться с одним хостом, причем каждый пользователь загружает канал связи хост машиной только на время передачи информации, при этом оставаясь на связи и в другие моменты времени. Поддержка связи обеспечивается благодаря установлению логического соединения или виртуального канала.

Протокол передачи данных с коммутаций пакетов Х.25 разработан комитетом МККТТ (ныне ITU-T) именно для работы по линиям связи с большим уровнем помех, каковыми, например, являются аналоговые телефонные линии. Для обеспечения требуемой достоверности передачи информации используется многоуровневая система обнаружения и коррекции ошибок.
Каждый узел коммутации сети Х.25 на пути движения пакета проверяет целостность пакета читает контрольную сумму, содержащуюся в его заголовке и вычисленную при передачи, находит ее значение для полученного пакета и сравнивает эти два значения. При небольшом количестве ошибок узел способен восстановить пакет и передать его дальше по пути следования. При этом узел посылает подтверждение предыдущему узлу о корректном приеме кета. Если же восстановить пакет невозможно, делается запрос на его повторную передачу. По аналогичной схеме работают все сетевые узлы — коммутаторы Х.25.

Высокий уровень помех на линии приводит к падению скорости передачи, и по этой мине многие сети с пакетной коммутацией работают со скоростью передачи до 64 Кбит/с. Кроме того, скорость передачи информации (не следует ее путать со скоростью передачи данных непосредственно в физическом канале) не остается постоянной и зависит от уровня помех и вызванных ими ошибок. Другими словами, время доставки одного пакета, обусловленное только качеством канала, не является постоянной величиной.


29. Рассказать о том, как ретрансляция кадров используется в глобальных сетях;

Ретрансляция кадров — это технология глобальных сетей, основанная на передаче данных с коммутацией пакетов, как правило, по приемлемым ценам. Часто говорят, что ретрансляция кадров — это вновь выпущенный на рынок протокол Х.25 (технология доступа к сетям с коммутацией пакетов, существовавшая с середины 70-х гг). К счастью, протокол Х.25 распространен достаточно широко, поэтому оборудование и программное обеспечение за многие годы научились работать надежно и эффективно.

В традиционной схеме пользователи, желающие установить соединение с удаленными компьютерами, должны были покупать у телефонной компании выделенный канал, например линию DDS (Digital Data Service — служба цифровой передачи данных) со скоростью 56 Кбит/с или линию Т1. Это каналы передачи данных типа "точка-точка", которые подключены 24 часа в сутки. Увы, такое соединение стоит довольно дорого, так как телефонная компания должна выделять для канала отдельное оборудование и полосу частот.

Ретрансляция кадров, в противоположность традиционной системе, предполагает использование эффекта масштаба. Телефонная компания создает сеть (часто называемую "облаком"), которая соединяет между собой ее центральные станции. Пользователи передают предназначенные для удаленных узлов данные в виде небольших пакетов. Телефонная компания коммутирует пакеты через соответствующие центральные станции и обеспечивает их доставку в пункты назначения. В такой модели пользователь и телефонная компания исходят из того, что в каждую конкретную секунд трафик не превысит пропускной способности сети.

За доставку IP-трафика в сетях с ретрансляцией кадров отвечают маршрутизаторы. Пакеты коммутируются через невидимые постоянные виртуальные каналы (Permanent Virtual Channel, PVC), которые обеспечивают получение пакетов только в тех пунктах, доставка в которые была оплачена. При этом гарантируется определенная степень конфиденциальности, что защищает информацию пользователя от получения ее другими абонентами, подключенными к этой же сети.

Самое большое преимущество технологии ретрансляции кадров заключается в том, что использующие ее сети, как правило, недороги. В реальной жизни, однако, пользователь получает столько, сколько заплатил, — и часто обнаруживает, что производительность таких сетей болезненно низка. Доля накладных расходов на коммутацию пакетов в соединениях с ретрансляцией кадров достаточно высока, поэтому в периоды значительной нагрузки быстродействие канала может ухудшаться.


30. Описать способы применения коммуникаций ISDN для сетей, передающих данные, аудио- и видеосигналы, а также объяснить, как подключиться к сети ISDN;

Сети ISDN

Цифровые сети связи с комплексными услугами (Integrated Services Digital Network, ISDN) появились в 1970-х годах для передачи в цифровом виде речевых сигналов, данных, графики и видеосигналов. В 1984 и 1988 годах они были стандартизованы союзом ITU-T (в то время называющимся Международным консультативным комитетом по телеграфии и телефонии, МККТТ – Consultative Committee on International Telegraph and Telephone, CCITT). Эти стандарты описывали узкополосные сети ISDN (N-ISDN) и при своем появлении явились заметным шагом вперед по сравнению с коммуникациями на скорости 9,6 Кбит/с, широко используемыми в то время для организации телекоммуникационных глобальных сетей. ISDN – это стандарт цифровых телекоммуникаций, который в настоящее время предусматривает передачу пользовательских данных на скорости до 1,536 Мбит/с и имеет теоретический предел в 622 Мбит/с. Клиенты, которым нужно получить услуги ISDN для связи с некоторой точкой, могут получить цифровую ISDN-линию с одноканальным обслуживанием от своей региональной телефонной компании. Одноканальная служба позволяет конечному пользователю подключать к линии несколько устройств (например, факс, компьютер и цифровой телефон). Некоторые компании позволяют подключать до восьми устройств (максимум для данного типа ISDN-служб). Организации, которые через глобальную ISDN-сеть соединяют между собой локальные сети, обычно используют для этого Т-линии. Сети ISDN предоставляют различные услуги, среди которых следующие:

  1.  обеспечение связи между локальными сетями;
  2.  обеспечение работы домашних офисов и надомных работников;
  3.  удаленная архивация и восстановление настольных компьютерных систем;
  4.  подключение частной телефонной системы к региональной телефонной компании;
  5.  передача больших файлов изображений и данных;
  6.  обеспечение работы видео- и мультимедиа-приложений, работающих в нескольких локальных сетях.

«I»-серии стандартов ISDN включают в себя следующие наборы стандартов:

  1.  1.100 – введение в ISDN и глоссарий (список терминов);
  2.  1.200 – перечень возможностей, имеющихся для пользователей, в том числе:
  3.  полная и гарантированная совместимость между оконечными узлами;
  4.  стандартные терминалы и процедуры;
  5.  список абонентов ISDN в международном каталоге;
  6.  стандартные процедуры тестирования и сопровождения;
  7.  правила тарификации и учета;
  8.  1.300 – стандарты, ориентированные на сетевые вопросы (такие как нумерация и адресация);
  9.  1.400 – стандарты, описывающие сетевой интерфейс (такие вопросы, как конфигурации оборудования, скорости передачи и спецификации протоколов);
  10.  1.500 – стандарты, определяющие интерфейс между сетями ISDN и другими типами сетей;
  11.  1.600 – здесь описываются установка абонентов, серверы доступа и общие вопросы архитектуры.

Реализация сетей ISDN оказалась дорогой для компаний дальней связи. Поскольку эти сети полностью цифровые, необходимо было заменить устаревшие аналоговые и электромеханические коммутаторы. В США компании дальней связи, такие как AT&T, MCI и Sprint, а также многие региональные телефонные компании предоставляют услуги ISDN для личного пользования, домашних офисов и организаций. Сети ISDN имеют следующие достоинства:

  1.  возможность передачи по одной сети речевых сигналов, данных и видео информации;
  2.  наличие многоуровневого стека протоколов, совместимых с эталонной моделью OSI;
  3.  коммуникационные каналы со скоростями, кратными 64, 384 и 1536 Кбит/с;
  4.  наличие служб коммутируемых и некоммутируемых соединений;
  5.  широкополосные средства ISDN, обеспечивающие скорость 155 Мбит/с и выше. 1

Сетевые службы 1.200

Раздел 1.200 спецификаций ITU-T для сетей ISDN описывает различные сетевые средства, которые делятся на передающие службы, телекоммуникационные службы и вспомогательные службы. Передающие службы имеют сетевые опции и опции пакетов. Сетевые опции перечислены в табл. 7.1. В столбце "Канал" приведены имена коммуникационных ISDN-каналов, используемых для обеспечения работы службы. Опции пакетов передающих служб включают в себя каналы виртуального вызова и постоянные каналы виртуального вызова, которые выполнены по аналогии с коммутируемыми и постоянными виртуальными каналами сетей Х.25.

Таблица 7.1. Сетевые опции ISDN

Скорость передачи информации

Канал

Приложения

64 Кбит/с

В (несущий)

Универсальные коммуникации с частотой 8 кГц

64 Кбит/с

В

Оцифрованная речь с частотой 8 кГц

64 Кбит/с

В

Аудиосигналы с частотой 8 кГц

64 Кбит/с

В

Альтернативная передачи речи с частотой 8 кГц

16 или 64 Кбит/с

D (данные)

Передача сигналов с частотой 8 кГц, коммутация пакетов и верификация кредитных карт

384 Кбит/с

Н0 (шесть В-каналов)

  1.  Передача видеосигналов с частотой 8 кГц и связь с частными телефонными системами
  2.  Быстрая передача факсов
  3.  Передача компьютерных изображений
  4.   Высокоскоростная передача данных
  5.  Связь между локальными сетями

1,472 Мбит/с

Н10 (эквивалентен 23 североамериканским каналам 64 Кбит/с)

  1.  Видеоконференции
  2.  Связь между локальными сетями
  3.  Передача компьютерных изображений
  4.  Высокоскоростная передача данных

1 ,536 Мбит/с

Н11 (эквивалентен 23 североамериканским В-каналам 64 Кбит/с плюс один D-канал 64 Кбит/с)

  1.  Видеоконференции
  2.  Связь между локальными сетями
  3.  Передача компьютерных изображений
  4.  Высокоскоростная передача данных

1,984 Мбит/с

Н12 (эквивалентен 30 европейским В-каналам 64 Кбит/с)                   

Обеспечивает скорость передачи, равную 1 ,920 Мбит/с, что соответствует 30 европейским В-каналам 64 Кбит/с плюс один D-канал 64 Кбит/с)                         

155 Мбит/с

Н4Х

Высокоскоростная передача данных, речевых и видеосигналов

Телекоммуникационные службы предназначены для речевых коммуникации с частотой 3,1 кГц. К ним также относятся службы телекса для интерактивного обмена текстовыми сообщениями, а также службы факса и видеотекс (видеографии), обеспечивающие получение цифровой почтовой информации (включая тексты и графику). Вспомогательные службы в первую очередь предназначены для поддержки речевых коммуникаций. Сюда относятся определение идентификатора вызывающей стороны (caller ID) и групповой вызов.

Цифровые коммуникационные службы

Узкополосная ISDN-сеть (N-ISDN) поддерживает интерфейсы двух типов: интерфейс базового уровня (basic rate interface, BRI) и интерфейс основного уровня (primary rate interface, PRI).

В ISDN-сети с интерфейсом базового уровня (BRI) используется разновидность множественного доступа с уплотнением каналов (также называемого мультиплексированием с разделением времени – см. главу 2). Такая сеть имеет общую пропускную способность, равную 144 Кбит/с. Интерфейс базового уровня состоит из трех каналов: двух несущих (bearer, В) каналов для передачи данных, речи и графики со скоростью 64 Кбит/с и третьего – D-канала (Delta, иногда называемого Demand (запрос)), обеспечивающего скорость 16 Кбит/с и используемого для передачи сигналов управления коммуникациями, коммутации пакетов и верификации кредитных карт. Главная задача D-канала – обеспечить прохождение и снятие ISDN-вызова, а также начало и окончание сеанса передачи данных. Интерфейс базового уровня применяется для выполнения следующих задач:

  1.  обеспечение связи локальных сетей;
  2.  проведение видеоконференций;
  3.  подключение к поставщику услуг Интернета;
  4.   высокоскоростной обмен данными с надомными работниками и домашними офисами.

Несколько BRI-каналов можно связать между собой (сгруппировать) для обеспечения коммуникаций с еще более высокой скоростью. Например, два 64-килобитных В-канала в одной BRI-линии можно сгруппировать и получить соединение с реальной скоростью передачи, равной 128 Кбит/с. При добавлении 16-килобитного D-канала плюс 48 Кбит/с для сопровождения и синхронизации можно получить общую скорость в 192 Кбит/с. Можно сгруппировать три BRI-линии, содержащие 64-килобитных В-канала, и получить общую реальную скорость передачи данных, равную 384 Кбит/с.

Windows 2000, Windows XP и многие системы UNIX поддерживают группировку ISDN-линий с помощью механизма многоканальных РРР-подключений (multilink РРР). Кроме того, если вы хотите стать абонентом сети BRI ISDN, поищите телекоммуникационные компании, реализующие возможность загрузки данных по D-каналу, что на 16 Кбит/с увеличивает скорость нисходящих коммуникаций (от поставщика услуг к клиенту). В практическом задании 7-3 рассказывается о том, как включить режим многоканальных РРР-подключений в системе Windows 2000 Server.

Клиенты подключаются к ISDN-сетям с интерфейсом базового уровня (BRI) при помощи 4-проводного телефонного кабеля на основе витой пары, при этом обычно имеются три способа подключения.

Во-первых, можно просто установить на компьютер терминальный адаптер (описывался в главе 4), который также имеет терминатор сетевого терминала (NT1). Линия подключается к такому компьютеру при помощи коннектора RJ-45.

Во-вторых, можно использовать внешний терминальный адаптер, оборудованный U-интерфейсом, к которому подключается ISDN-линия. U-интерфейс обеспечивает дуплексную связь между терминальным адаптером и коммутатором ISDN, расположенным у поставщика услуг. Терминальный адаптер может иметь последовательный порт RS-232 для подключения к компьютеру и телефонный порт для связи с обычной телефонной линией с помощью коннекторов RJ-11.

В-третьих, ISDN-линию можно подключить к сетевому устройству, называемому оконечным комплектом сети (network termination unit, NTU). NTU имеет U-интерфейс, подключаемый к ISDN-линии через коннектор RJ-45. С помощью S/T-интерфейсов, имеющихся в NTU, можно подключить несколько устройств (до восьми), в том числе компьютеры, факсы и телефоны. На рис. 7.9 показано, как к сети ISDN подключаются компьютеры с ISDN-совместимыми сетевыми адаптерами, факсимильные аппараты и телефоны, разработанные для связи с ISDN

Если терминальный адаптер устанавливается непосредственно на компьютер, работающий под управлением Windows 2000 или Windows XP, то этот адаптер необходимо настроить, указав тип ISDN-коммутатора, применяемого региональной телефонной компанией (например, коммутатор фирм AT&T (АТТ) или North Telecom (NTI)). В большинстве случаев при установке терминального адаптера системы Windows 2000 и Windows XP распознают его и конфигурируют автоматически. После установки адаптера в системе Windows 2000 выберите значок My Computer (Мой компьютер) и щелкните правой кнопкой мыши;  в системе Windows XP в меню Start (Пуск) выберите пункт My Computer (Мой компьютер) и щелкните правой кнопкой мыши. В появившемся контекстном меню выберите команду Manage (Управление). В дереве объектов выберите узел Device Manager (Диспетчер устройств). В правой половине окна выберите название терминального адаптера и дважды щелкните по нему, чтобы настроить тип коммутатора. Если адаптер не виден в этом окне, дважды щелкните по узлу Modems (Модемы) и выберите терминальный адаптер в этой ветке дерева устройств.

ISDN-сети с интерфейсом основного уровня (PRI) обеспечивают более высокую по сравнению с BRI ISDN скорость передачи данных, при этом суммарная полоса пропускания коммутируемых данных достигает 1,536 Мбит/с. В США и Японии интерфейс основного уровня состоит из 23 64-килобитных В-каналов и одного 64-килобитного D-канала для передачи служебных сигналов и коммутации пакетов. Европейские сети PRI ISDN имеют 30 64-килобитных В-каналов и один 64-килобитный канал для служебных сигналов или коммутации. PRI-интерфейсы используются для связи локальных сетей и поставщиков услуг Интернета, а также для проведения видеоконференций и (в корпоративных сетях) для подключения надомных работников, имеющих ISDN-доступ.

Для подключения клиентов к PRI-интерфейсу используется мультиплексор (как показано на рис. 7.10) или частная телефонная система, а также группа из 24 каналов, называемая транком (магистралью). Мультиплексор обычно применяется тогда, когда PRI ISDN обеспечивает связь между локальными сетями, для поставщика услуг Интернета он может представлять собой внешнее устройство или модуль в маршрутизаторе. Частная телефонная система используется для организации видеоконференций и центров обработки телефонных вызовов, имеющих базы абонентских номеров, связанных с пользовательскими службами. Такая телефонная система должна иметь возможность подключения к PRI ISDN. В одной точке можно использовать несколько PRI-магистралей, и в этом случае количество D-каналов, применяемых для передачи служебных сигналов, можно сократить. Например, если компания имеет пять PRI-магистралей для решения коммуникационных задач, то она может приобрести только один или два D-канала (второй D-канал может использоваться в качестве резервного в случае отказа первого канала). В практическом задании 7-4 рассказано о том, как узнать о имеющихся в вашем регионе ISDN-сетях, предоставляющих BRI- и PRI-интерфейсы.

Широкополосные сети ISDN

Развитие высокоскоростных сетей привело к появлению широкополосных ISDN-сетей (broadband ISDN, B-ISDN). Эта развивающаяся технология предназначена для обеспечения совместимости с сетями ATM и SONET (рассматриваемыми в следующих главах). Широкополосные ISDN-сети предназначены для коммуникаций со скоростями от 155 Мбит/с до 1 Гбит/с (и выше) по оптоволоконному кабелю. В них применяется не коммутация пакетов, а коммутация ячеек. На момент написания книги эта технология еще не стала распространенной по причине отдельных успехов в области сетей ATM (в которых используются некоторые элементы, изначально описанные в спецификациях сетей B-ISDN) и SONET.

Принципы работы ISDN-сетей

Сети ISDN совместимы со многими существующими цифровыми сетями телекоммуникационными технологиями, среди которых ATM, X.25, SMDS и линии Т-1. Как было показано в табл. 7.1, сеть ISDN образуется из 64-килобитных каналов: каналов В, С, D, НЮ, НИ, Н12 (применяемых в Европе) и Н4Х (широкополосных).

Для передачи по сети цифровых сигналов используются два метода. Первый из них называется уплотнением с временной компрессией (time-compression multiplexing), когда 16- или 24-разрядные блоки данных передаются в виде  повторяющихся цифровых пакетов. Между пакетами имеется пауза, позволяющая линии подготовиться к передаче следующего пакета. Следовательно, после передачи пакета в одном направлении следует пауза, после которой пересылается пакет в обратном направлении. Скорость передачи пакета равна 288 Кбит/с. Из-за переключения направлений фактическая скорость передачи данных составляет 144 Кбит/с. Пакетами данных управляет центральное устройство синхронизации.

Второй метод передачи – эхоподавление (echo cancellation). В этом случае данные одновременно передаются в обоих направлениях. Для подключения трансивера (приемопередатчика) к абонентской линии используется устройство, называемое гибридным (hybrid). При осуществлении одновременных двунаправленных коммуникаций часто возникает отражение (эхо) передаваемого сигнала. Отраженный сигнал в линии может в три раза превышать по мощности истинные сигналы, из-за чего данные трудно распознать. Для борьбы с отраженными сигналами в ISDN-сетях применяется эхоподавитель, который определяет амплитуду этих сигналов и вычитает ее из амплитуды входящих сигналов. Поскольку мощность эхосигналов может варьироваться, в эхоподавителе используется цепь обратной связи, позволяющая непрерывно измерять амплитуду отраженного сигнала.

ISDN и многоуровневые коммуникации OSI

В ISDN-сетях используются многоуровневые коммуникации, соответствующие Физическому, Канальному, Сетевому и Транспортному уровням эталонной модели OSI (рис. 7.11). Уровень 1 сети ISDN обеспечивает передачу сигналов и обнаружение конфликтов (что необходимо, т. к. два узла могут начать передачу одновременно). Для обнаружения коллизий и определения очередности циклов передачи используется эхоразряд. Передаваемой информации Уровень 1 дает наивысший приоритет. При наличии конфликта между речевыми сигналами и данными более высокий приоритет получает речевая (телефонная) связь. Уровень 2 управляет служебными данными и обеспечивает самое строгое обнаружение коммуникационных ошибок, что позволяет добиться высокой надежности при передаче информации. Уровень 3 управляет установлением и снятием запросов, а также обеспечивает связь между соединениями с коммутацией каналов и соединениями с коммутацией пакетов. Уровень 4 гарантирует надежность коммуникационного маршрута после того, как тот установлен.


31. Описать использование линий DSL в высокоскоростных сетях;Технологии беспроводных сетей

Организация каналов телефонной связи по линии DSL (технология VoDSL).
Несмотря на то, что технологии DSL ориентированы прежде всего на высокоскоростную передачу данных, они могут являться платформой и для одновременной (с передачей данных) организации каналов телефонной (т.е. голосовой) связи. Изначально некоторые технологии DSL поддерживали только один канал традиционной телефонной связи. Новые технологические решения позволяют провайдерам организовать по одной паре медных проводов не только передачу данных, но и до 24-х каналов голосовой телефонной связи. Технология VoDSL в настоящее время успешно используется в разных сегментах рынка предоставления телекоммуникационных услуг, обеспечивая такой уровень гибкости и экономической эффективности, какой просто не мог быть обеспечен более ранними технологиями. Под влиянием эффективности и качества в самое ближайшее время многие провайдеры обязательно включат VoDSL в список предлагаемых пользователю технологических решений.

Технология FRoDSL
Исторически технология Frame Relay (высокоскоростная технология, основанная на коммутации пакетов) использовалась на линиях Т1/Е1 (как полноскоростных, так и усеченных) при использовании традиционной технологии Т1/Е1 и HDSL (высокоскоростная цифровая абонентская линия). Эти "старые" технологии отличаются не в лучшую сторону своей сложностью и дороговизной. Но в настоящее время, благодаря доступности технологий SDSL (симметричная линия DSL) и IDSL (линия DSL, базирующаяся на ISDN), провайдеры имеют возможность повысить эффективность и снизить затраты на внедрение Frame Relay. Достаточной узкий рынок Frame Relay в сочетании с новыми возможностями повышения эффективности и снижения затрат делает технологию FRoDSL безусловно привлекательной для провайдеров.

Технология G.Lite - технология, ориентированная на частного пользователя.
По мере того, как компьютерные приложения и технологии все более глубоко проникают в повседневную жизнь, потребительский рынок организации сетей передачи данных продолжает так же быстро расти. Продаваемые частным пользователям модемы DSL уже широко доступны на рынке. Как только конечные пользователи осознают все выгоды и преимущества использования высокоскоростного доступа, этот рынок будет накрыт новой волной потребительского спроса. На рынке частных пользователей могут быть быстро внедрены технологии, обеспечивающие скорость передачи данных до 3 Мбит/с, не требующие при этом ни сложной установки, ни сервисного обслуживания.

Совместное использование линий.
Как это не удивительно, но использование одних и тех же линий различными технологиями во многих странах решается законодательно. Например, в США в ноябре 1999 года вышло постановление FCC (Федеральной комиссии связи США), в соответствии с которым операторы местной связи должны допустить к своим линиям операторов сетей передачи данных. Так как передача сигналов голоса при традиционной телефонной связи осуществляется в очень узкой полосе низких частот, в высокочастотном спектре по той же самой линии может осуществляться передача данных. То есть обе эти технологии могут спокойно сосуществовать в пределах одной линии. Это позволяет исключить необходимость прокладывания отдельного кабеля для организации передачи данных. Проведенное тестирование подтвердило, что высокоскоростная передача данных по технологии DSL совершенно не влияет на обычную телефонную связь, осуществляемую по той же самой абонентской линии. Конечно же, при таком совместном использовании линий возникают определенные организационные сложности (например, связанные с тем, кто будет отвечать за поддержание состояния линий в надлежащем виде), но в любом случае совместное использование линий позволит значительно снизить не только затраты на абонентскую линию, но и сократить время предоставления услуги. Кроме того, это позволяет увеличить конкуренцию на рынке линий DSL для жилых домов.

Международное распространение технологий.
Технологии DSL продолжают свое поступательное движение и во всем мире становятся технологиями, которые позволяют решить проблему передачи данных по абонентской телефонной линии.

Технологии DSL становятся основными технологиями организации высокоскоростного доступа
Технологии DSL в наши дни достаточно широко внедрены в городских регионах США и в большинстве крупнейших городов Европы. Провайдеры конкурируют между собой за возможность увеличить число своих пользователей, причем не только за счет представителей бизнеса, но и за счет частных пользователей, желающих иметь линию высокоскоростной передачи данных прямо у себя дома. В Соединенных Штатах широкая рекламная акция, проведенная рядом крупных национальных и региональных провайдеров в конце 1999 - начале 2000 года, а также большое количество статей в различных периодических изданиях, которые посвящены описанию технологий DSL, значительно повысили уровень технической эрудиции потенциальных пользователей и продемонстрировали все преимущества технологий DSL. Смеем надеяться, что данный материал также входит в число этих публикаций.
Рынок технологий DSL прошел стадию начального развития, и основное внимание при предоставлении данной услуги был перемещено на те возможности, которые предоставляет линия DSL. Провайдеры сфокусировались на расширении рынка соединений на базе технологий DSL, создавая привлекательный коктейль из традиционной телефонной связи, доступа в сеть Интернет и других, не менее ценных, служб. Целью, разумеется, является привлечение как можно более широкого числа пользователей.

Технологии, объединенные под общим названием xDSL
Развитие достаточно большого количества отличающихся друг от друга технологий под общим названием DSL привело к появлению определенных трудностей не только у конечных пользователей, но и у самих провайдеров. Трудности обычно связаны с выбором именно той технологии, которая подходит наилучшим образом для конкретного пользователя или провайдера. Судите сами, в число этих технологий входят ADSL (Asymmetric Digital Subscriber Line - асимметричная цифровая абонентская линия), R-ADSL (Rate-Adaptive Digital Subscriber Line - цифровая абонентская линия с адаптацией скорости соединения), ISDL (ISDN Digital Subscriber Line - цифровая абонентская линия IDSN), HDSL (High Bit-Rate Digital Subscriber Line - высокоскоростная цифровая абонентская линия), SDSL (Symmetric Digital Subscriber Line - симметричная цифровая абонентская линия), VDSL (Very High Bit-Rate Digital Subscriber Line - сверхвысокоскоростная цифровая абонентская линия), G.Lite (являющаяся упрощенным вариантом технологии ADSL) и их вариации. К счастью по мере развития технологий DSL в специализированных изданиях появлялось большое количество материалов, касающихся данных технологий, что позволило хотя бы частично устранить пробел в техническом образовании пользователей.
Рассматривая варианты технологии DSL с высоты принципиальных различий, можно выделить две основные категории этих технологий. Это симметричные технологии и асимметричные технологии. Принцип разделения предельно простой. Если скорости передачи данных в обоих направлениях (то есть из сети к пользователю и от пользователя в сеть) одинаковы, то это симметричная технология. Если же скорости передачи данных не одинаковы (по направлениям), то такая технология называется асимметричной. К числу симметричных технологий относятся технологии HDSL, HDSL2, SDSL и IDSL. В Соединенных Штатах, например, технологии SDSL и IDSL в основном продвигаются аналогами наших операторов сетей передачи данных (CLEC по-американски; следует учитывать, что все аналогии здесь и ниже проводятся путем сравнения основных задач, выполняемых компаниями). Технологии HDSL и HDSL2 используются операторами местной связи (ILEC, опять же по-американски и опять же по аналогии) в качестве альтернативы технологии Т1. Симметричные линии DSL идеально подходят для использования в сфере бизнеса, когда необходимо обеспечить равные скорости передачи данных в обоих направлениях, например, для передачи голоса, электронной почты, файлов и для обеспечения функционирования ЛВС. Асимметричные технологии DSL, такие как ADSL, RADSL и G.Lite, в основном используются операторами местной связи, которые ориентируются на предоставление высокоскоростного доступа частным абонентам. Ведь именно этим абонентам операторы местной связи предоставляют услугу традиционной телефонной связи. Асимметричные линии DSL имеют более высокую скорость передачи данных из сети в сторону пользователя, что очень удобно для работы в сети Интернет.
Также в качестве нового международного стандарта развивается технология G.SHDSL, которая позволяет увеличить длину линии высокоскоростной передачи данных. Эта технология позволяет увеличить длину линии DSL приблизительно на 20 процентов по сравнению со стандартами, используемыми в настоящее время (по которым предельная длина абонентской линии составляет приблизительно 5 - 6 километров).
Ниже очень кратко описываются основные технологии, входящие в семейство DSL.

ADSL (Asymmetric Digital Subscriber Line - асимметричная цифровая абонентская линия)
Данная технология является асимметричной (что это такое, можно было прочитать чуть выше). Такая асимметрия, в сочетании с состоянием "постоянно установленного соединения" (когда исключается необходимость каждый раз набирать телефонный номер и ждать установки соединения), делает технологию ADSL идеальной для организации доступа в сеть Интернет, доступа к локальным сетям (ЛВС) и т.п. При организации таких соединений пользователи обычно получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость "нисходящего" потока данных в пределах от 1,5 Мбит/с до 8 Мбит/с и скорость "восходящего" потока данных от 640 Кбит/с до 1,5 Мбит/с. Абоненты имеют возможность использовать одну и ту же телефонную линию для высокоскоростной передачи данных и традиционной телефонной связи.

R-ADSL (Rate-Adaptive Digital Subscriber Line - цифровая абонентская линия с адаптацией скорости соединения)
Технология R-ADSL обеспечивает такую же скорость передачи данных, что и технология ADSL, но при этом позволяет адаптировать скорость передачи к протяженности и состоянию используемой витой пары проводов. При использовании технологии R-ADSL соединение на разных телефонных линиях может иметь разную скорость передачи данных. Скорость передачи данных выбирается при синхронизации линии, во время соединения или по специальному сигналу, поступающему от станции.

ADSL Lite
ADSL Lite представляет собой вариант технологии ADSL, обеспечивающий скорость "нисходящего" потока данных до 1,5 Мбит/с и скорость "восходящего" потока данных до 512 Кбит/с. Технология ADSL Lite позволяет передавать данные по более длинным линиям, чем ADSL, более проста в установке и имеет меньшую стоимость, что обеспечивает ее привлекательность для массового пользователя. Абоненты имеют возможность использовать одну и ту же телефонную линию для высокоскоростной передачи данных и традиционной телефонной связи.

ISDL (ISDN Digital Subscriber Line - цифровая абонентская линия IDSN)
Технология IDSL обеспечивает полностью дуплексную передачу данных на скорости до 144 Кбит/с. В отличие от ADSL возможности IDSL ограничиваются только передачей данных.

HDSL (High Bit-Rate Digital Subscriber Line - высокоскоростная цифровая абонентская линия)
Технология HDSL предусматривает организацию симметричной линии передачи данных, то есть скорости передачи данных от пользователя в сеть и из сети к пользователю равны. Благодаря свойственной данной технологии скорости передачи телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1. (Линии Т1 используются в Северной Америке и обеспечивают скорость передачи данных 1,544 Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2,048 Мбит/с.) Хотя расстояние, на которое система HDSL передает данные (порядка 3,5 - 4,5 км), меньше, чем при использовании технологии ADSL, для недорогого, но эффективного, увеличения длины линии HDSL телефонные компании устанавливают специальные регенераторы. Использование для организации линии HDSL двух или трех витых пар телефонных проводов делает эту систему идеальным решением для соединения УАТС, серверов Интернет, локальных сетей и т.п. Технология HDSL II является логическим результатом развития технологии HDSL, обеспечивает характеристики, аналогичные технологии HDSL, но при этом использует только одну пару проводов.

SDSL (Symmetric Digital Subscriber Line - симметричная цифровая абонентская линия)
Также как и технология HDSL, технология SDSL обеспечивает симметричную передачу данных со скоростями, соответствующими скоростям линии Т1/Е1, но при этом технология SDSL имеет два важных отличия. Во-первых, используется только одна витая пара проводов, а во-вторых, максимальное расстояние передачи ограничено 3 км. Технология обеспечивает необходимые для представителей бизнеса преимущества: высокоскоростной доступ в сеть Интернет, организация многоканальной телефонной связи (технология VoDSL) и т.п.

VDSL (Very High Bit-Rate Digital Subscriber Line - сверхвысокоскоростная цифровая абонентская линия)
Технология VDSL является наиболее высокоскоростной технологией xDSL. Она обеспечивает скорость передачи данных "нисходящего" потока в пределах от 13 до 52 Мбит/с, а скорость передачи данных "восходящего" потока в пределах от 1,5 до 2,3 Мбит/с, причем по одной витой паре телефонных проводов. Технология VDSL может рассматриваться как экономически эффективная альтернатива прокладыванию волоконно-оптического кабеля до конечного пользователя. Однако, максимальное расстояние передачи данных для этой технологии составляет от 300 до 1300 метров. Технология VDSL может использоваться с теми же целями, что и ADSL; кроме того, она может использоваться для передачи сигналов телевидения высокой четкости (HDTV), видео по запросу и т.п.
Как уже отмечалось выше, одним из наиболее быстро развивающихся направлений в технологиях DSL является обеспечение возможности осуществления многоканальной телефонной связи и передачи данных по одной паре медных проводов. В традиционной телефонной сети для организации одной аналоговой телефонной линии нужна одна пара проводов. Технология VoDSL ломает это строгое аналоговое соотношение, позволяя использовать медную пару проводов гораздо более эффективно. Она обеспечивает работу до 22 каналов традиционной телефонной связи плюс передачу данных по одной паре проводов. При этом разработчики обещают к 2001 году увеличить количество каналов телефонной связи до 30 - 40 (причем все это - при сохранении хорошего качества телефонной связи).
Возможность создания большого количества каналов телефонной связи по одной паре проводов является очень важным преимуществом данных технологий, потому что во всем мире большую часть прибыли телекоммуникационных компаний приносит именно традиционная телефонная связь. Технология VoDSL представляет собой гораздо более выгодную с экономической точки зрения модель по сравнению с обычной моделью организации телефонной (голосовой) связи. При этом она является как бы промежуточным этапом от традиционной аналоговой телефонной линии к линии, используемой для высокоскоростной передачи данных.
Технологии DSL очень быстро стали основной технологией, выбираемой представителями малого и среднего бизнеса для организации канала высокоскоростной передачи данных. Это гарантирует еще больший рост конкурентной борьбы на рынке местной связи.
32. Рассказать о современных технологиях беспроводных сетей;

В настоящее время для создания беспроводных сетей применяются следующие  технологии :

  1.   технологии , использующие радиоволны;
  2.   технологии  на базе ИК-излучения;
  3.  микроволновые (СВЧ)  технологии ;
  4.  сети на базе низкоорбитальных спутников Земли (специальный космический проект с использованием СВЧ-волн).

 Технологии , использующие радиоволны, очень распространены и представляют собой быстро растущий сектор беспроводных сетевых коммуникации. Сюда же входит стандарт беспроводных сетей 802.11, а также альтернатив промышленные стандарты,  такие  как BluetoothHiperLAN и НотеShared Wireless Access Protocol (SWAP).

 Технологии  на базе ИК-излучения не так распространены, как  радиосетям  однако они имеют некоторые преимущества, поскольку позволяют создавав относительно более защищенные беспроводные сети (т. к. сигнал сложнее перехватить незаметно). Обе технологии (радиоволны и ИК-излучение) используются для организации коммуникаций на малых расстояниям в пределах офиса, здания или между зданиями.

Микроволновые (СВЧ) технологии применяются для связи на больших расстояниях и могут обеспечить сетевые коммуникации между континентами через спутники).

Сети на базе низкоорбитальных спутников являются еще одной разновидностью беспроводных сетей, на основе которых в определенный момента может быть создана "всемирная сеть", доступная во всех точках планеты.

Обо всех перечисленных технологиях будет рассказано в этой главе. Однако сначала мы обратимся к истории развития беспроводных сетей и узнаем об их преимуществах.


33. Изложить историю развития беспроводных сетей и их преимущества;

Историю беспроводных сетей можно рассматривать формально и неформально. Неформальным прародителем беспроводных сетей является любительская радиосвязь, операторы которой получают от Федеральной комиссии связи (FCC) лицензии на передачу речи, азбуки "Морзе, данных, спутниковых и видеосигналов с использованием волн радио- и СВЧ-диа-пазонов. Хотя радиолюбительство обычно считается хобби, Федеральная комиссия связи рассматривает его как важный источник идей и опыта для развития коммуникаций.

Радиоволны и СВЧ-волны представляют собой один из диапазонов спектра электромагнитных волн, который включает в себя видимый свет, радиоволны, ИК-излучение, рентгеновские лучи, СВЧ-волны (микроволны) и гамма-лучи. Все это – разновидности электромагнитного излучения, которое распространяется в атмосфере Земли и в космосе. Оно имеет и свойства волны, и свойства частицы. 

В 1980-х годах лицензированные радиолюбители получили от Федеральной комиссии связи разрешение на передачу данных на нескольких радиочастотах в диапазонах от 50,1–54,0 МГц (нижний диапазон) до 1240–1300 МГц (верхний диапазон). Большинству людей эти частоты знакомы, т. к. они используются для передачи музыки радиостанциями AM- и FM-диапазонов. Эти частоты представляют собой лишь малую часть возможных радиочастот, на которых можно передавать сигналы. Основной единицей измерения радиочастоты является герц (Гц) (Hertz (Hz)). В технике одному герцу соответствует один период переменного напряжения или излученного сигнала за секунду.

Радиочастоты представляют диапазон волн с частотой свыше 20 кГц, с помощью которых электромагнитный сигнал может излучаться в пространство.

С тех пор, когда в начале 1980-х годов компания IBM создала персональный компьютер, прошло немало времени, пока радиолюбители не связали персональные компьютеры в сеть, используя радиоволны (обычно в более высоких диапазонах 902–928 МГц и 1240–1300 МГц). Для этого они создал устройство, названное контроллером терминального узла (terminal node controllerTNC). Это устройство помещалось между компьютером и приемопередатчиком и служило для преобразования компьютерного цифрового сала в аналоговый сигнал, усиливаемый приемопередатчиком и излучаемый через антенну. Полученная в результате технология была названа пакетной радиосвязью. Обнаруженный радиолюбителями факт, что пакетная радиосвязь хорошо работает на частотах 902 МГц и выше, был вскоре проанализирован компаниями, предоставляющими коммерческие услуги беспроводных сетей. В 1985 году Федеральная комиссия связи разрешила длякоммерческого использования в беспроводных компьютерных сетях частотой для промышленных, научных и медицинских приложений (IndustrialScietfJtitle and MedicalISM), которые можно применять для маломощных нелицензируемых общедоступных коммуникаций на фиксированных частотах» диапазоне от 902 МГц до 5,825 ГГц. В Телекоммуникационном а 1996 года Конгресс подготовил следующий этап в развитии беспроводный! коммуникаций, закрепив понятие "узел (местоположение) беспроводной связи" и установив для нее стандарты, а также создав стимулы для дальнейшего развития телекоммуникационных технологий, в т. ч. и беспроводный коммуникаций (дополнительную информацию можно найти по адрес www.fcc.gov/telecom.html). Вскоре после этого институт IEEE создал групп по стандартам беспроводных сетей 802.11, которая отвечала за первый стандарт 802.11, установленный в 1997 году. В настоящее время беспроводный сети разрабатываются и внедряются для обеспечения многих потребностей в числе которых можно назвать следующие:

  1.  реализация коммуникаций в тех областях, где сложно развернуть кабельную сеть;
  2.  снижение затрат на развертывание;
  3.  обеспечение "произвольного" доступа тем пользователям, которые не могут быть привязаны к определенному кабельному подключению;
  4.  упрощение процедуры создания сетей в небольших и домашних офисах;
  5.  обеспечение доступа к данным, необходимым в конкретной конфигурации


34. Описать технологии радиосетей;

Сетевые данные передаются с помощью радиоволн подобно тому, как вещает местная радиостанция, однако для сетевых приложений используются волны

гораздо более высоких частот. Например, местная радиостанция АМ-диапазона (средние и длинные волны) может вести вещание на частоте 1290 кГц, поскольку интервал частот для широковещания с амплитудной модуляцией составляет 535–1605 кГц. Интервал частот для FM-вещания (УКВ) имеет границы 88–108 МГц. В США сетевые сигналы передаются на более высоких частотах в интервалах 902-928 МГц, 2,4–2,4835 ГГц или 5-5,825 ГГц.

Примечание

Каждый из упомянутых интервалов частот также называется диапазоном: диапазон 902 МГц, диапазон 2,4 ГГц и диапазон 5 ГГц. Диапазон 902 МГц в первую очередь используется в старых нестандартизованных беспроводных устройствах и далее в книге не рассматривается.


35. Рассказать о радиосетях стандарта 802.11;

Для реализации беспроводных коммуникаций используются различные типы радиосетей, однако в плане совместимости и надежности значительные преимущества имеет стандарт IEEE 802.11. Многие пользователи беспроводных сетей применяют устройства, отвечающие этому стандарту, поскольку такие устройства не связаны с нестандартизованными коммуникациями (особенно в нижнем и медленном диапазоне 902–928 МГц, типичном для старых беспроводных устройств) и устройства стандарта 802.11, выпущенные разными производителями, являются взаимозаменяемыми. Такие устройства отвечают открытому стандарту, поэтому различные модели могут взаимодействовать друг с другом, и в них легче реализовать новые функции беспроводной связи. Поэтому разработчику беспроводных сетей важно понимать стандарт IEEE 802.11 и принципы работы устройств, соответствующих этому стандарту.

Стандарт IEEE 802.11 также носит название IEEE Standard for Wireless LANledium Access (MAC) and Physical Layer (PHY) Specifications. Этот стандарта распространяется на стационарные и мобильные станции беспроводным коммуникаций. Стационарной называется станция, которая не перемещается мобильной называется станция, которая может перемещаться быстро, или медленно, как шагающий человек.

Стандарт 802.11 предусматривает два типа коммуникаций. Первый тип синхронные коммуникации, когда передача данных происходит отдельны блоками, начало которых отмечено стартовым разрядом, а конец – стоповым разрядом. Ко второму типу относятся коммуникации, осуществляет в определенных временных рамках, когда сигналу дается определенной для достижения точки назначения, а если сигнал не укладывается Я >то время, то он считается потерянным или искаженным. Временные ограничения делают стандарт 802.11 похожим на стандарт 803.11, согласно которому сигнал также должен достигнуть заданного целевого узла за указанной время. Стандарт 802.11 предусматривает поддержку служб управления сеть пример, протокола SNMP). Также обеспечивается аутентификация сети, стандарт 802.11 ориентирован на использование Канального и Физического уровней модели OSI. На MAC- и LLC-подуровнях Канального уровня определены стандарты на метод доступа (о котором будет рассказано далее этой главе), адресацию и способы проверки данных с использованием контрольных сумм (CRC). На Физическом уровне стандарт 802.11 определял скорости передачи данных на заданных частотах. Также предусмотрены методы (например, технологии с расширенным спектром) для передачи цифровых сигналов с помощью радиоволн и ИК-излучения.

С точки зрения рабочей среды стандарт 802.11 различает беспроводный коммуникации в помещении (комнатные) и на открытом воздухе (наруби ). Комнатные коммуникации могут, к примеру, осуществляться в здания офиса, промышленной зоне, магазине или частном доме (т. е. везде, где не распространяются дальше отдельного здания). Наружные коммуникаций могут выполняться в пределах университетского кампуса, спортивной площадки или автостоянки (т. е. там, где передача информации ведется меж зданиями). Далее вы познакомитесь со следующими аспектами, касающимися функционирования беспроводных сетей стандарта 802.11:

  1.  беспроводные компоненты, используемые в сетях IEEE 802.11;
  2.  методы доступа в беспроводных сетях;
  3.  способы обнаружения ошибок при передаче данных;
  4.  коммуникационные скорости, используемые в сетях IEEE 802.11;
  5.  методы обеспечения безопасности;
  6.  использование аутентификации при разрыве соединения;
  7.  топологии сетей IEEE 802.11;
  8.  использование многоячеечных беспроводных локальных сетей.

36. Описать альтернативные технологии радиосетей (такие как Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol);

К числу самых распространенных коммуникационных технологий с использованием радиоволн относятся следующие технологии, альтернативные стандарту IEEE 802.11:

  1.  Bluetooth;
  2.  HiperLAN;
  3.  HomeRF Shared Wireless Access Protocol (SWAP).

Каждая перечисленная технология представляет собой спецификацию беспроводных сетей и поддерживается определенными производителями. Все эти технологии рассматриваются в следующих разделах.

Bluetooth

Bluetooth – это технология беспроводной связи, описанная особой группой Bluetooth Special Interest Group. Данная технология привлекла внимание таких производителей, как 3Com, AgereIBM,IntelLucentMicrosoftMotorolaNokia и Toshiba. В ней используется перестройка частоты в диапазоне 2,4 ГГц (2,4–2,4835 ГГц), выделенном Федеральной комиссией связи для нелицензируемыхISM-коммуникаций2. Метод перестройки частоты предполагает изменение несущей частоты (выбирается одна из 79 частот) для каждого передаваемого пакета. Достоинством этого метода является уменьшение вероятности возникновения взаимных помех в случаях одновременной работы нескольких устройств.

При использовании многоваттных коммуникаций технология Bluetooth обеспечивает передачу данных на расстояния до 100 м, однако на практике большинство устройств Bluetooth работают на расстоянии до 9 м. Обычно используются асинхронные коммуникации со скоростью 57,6 или 721 Кбит/с. Устройства Bluetooth, обеспечивающие синхронные коммуникации, работают со скоростью 432,6 Кбит/с, однако такие устройства менее распространены.

В технологии Bluetooth применяется дуплексная передача с временным разделением каналов (time division duplexingTDD), при которой пакеты передаются в противоположных направлениях с использованием временных интервалов. Один цикл передачи может задействовать до пяти различных временных интервалов, благодаря чему пакеты могут передаваться и приниматься одновременно. Этот процесс напоминает дуплексные коммуникации. Одновременно могут взаимодействовать до семи устройств Bluetooth (некоторые производители утверждают, что их технологии обеспечивают подключение восьми устройств, однако это не соответствует спецификациям). Когда устройства обмениваются информацией, одно из них автоматически выбирается ведущим (master). Это устройство определяет функции управления (например, синхронизацию временных интервалов и управление пересылками). Во всех других аспектах коммуникацииBluetooth напоминают одноранговую сеть.

HiperLAN

Технология HiperLAN была разработана в Европе, и в настоящее время существует ее вторая версия, названная HiperLAN2. Эта технология использует диапазон 5 ГГц и обеспечивает скорости передачи данных до 54 Мбит/с. Помимо скорости, достоинством HiperLAN2 является совместимость с коммуникациями Ethernet и ATM.

Технология HiperLAN2 поддерживает Data Encryption Standard (DES) – стандарт шифрования данных, разработанный институтами National Institute on Standards and Technology (NIST) (Национальный институт стандартов и технологий) и ANSI. В нем используется открытый (public) ключ шифрования, доступный для просмотра всеми сетевыми станциями, а также частный.(private) ключ, выделяемый только передающим и принимающим станциям. Для дешифрации данных необходимы оба ключа.

Технология HiperLAN2 обеспечивает качество обслуживания (QoS), предоставляя гарантированный уровень коммуникаций для различных классов обслуживания (например, для передачи речи или видеоизображений). Это возможно благодаря тому, что точки доступа централизованно управляют беспроводными! коммуникациями, и планируют все сеансы передачи информации.

Сеть HiperLAN2 работает в двух режимах. Непосредственный режим (directlmode) представляет собой топологию одноранговой сети (подобную 1В58 топологии в сетях 802.11), которая образуется только взаимодействующим станциями. Другой режим называется централизованным (centralized mode) поскольку он реализуется в больших сетях, где имеются точки доступа, концентрирующие сетевой трафик и управляющие им. Методом коммуникаций для обоих режимов служит дуплексная передача с временным разделением каналов (TDD) – та же технология, которая применяется в Bluetooth.

HomeRF Shared Wireless Access Protocol (SWAP)

HomeRF Shared Wireless Access Protocol (SWAP) (Протокол совместного беспроводного доступа HomeRF) – это технология, поддерживаемая такими компаниями, как Motorola, National Semiconductor, Proxim и Siemens. Эта

технология работает в диапазоне 2,4 ГГц и обеспечивает скорость в сети до 10 Мбит/с. В качестве метода доступа она использует CSMA/CA (как и стандарт 802.11) и предназначена для домашних сетей, где передаются данные, речь, видеоизображения, мультимедийные потоки и другая информация.

Примером типичного использования технологии HomeRF SWAP является беспроводная сеть, объединяющая несколько персональных компьютеров и обеспечивающая им доступ в Интернет. Другой областью применения является реализация беспроводных соединений для центров развлечений (например, для связи друг с другом нескольких телевизоров и стереосистем). СетьHomeRF SWAP может связать между собой несколько телефонов. Также с ее помощью можно обеспечить связь между устройствами управления домом (освещением, кондиционерами, кухонными агрегатами и т. д.). Для обеспечения безопасности в сетях HomeRF SWAP используется 128-битное шифрование данных и 24-разрядные сетевые идентификаторы.

На момент написания книги в процессе разработки находилась технология HomeRF SWAPS, обеспечивающая коммуникации со скоростью 25 Мбит/с. Создатели этой технологии стремятся к тому, чтобы встроить ее в телевизоры и мультимедийные серверы с целью расширения возможностей сложных видеосистем.


37. Обсудить беспроводные технологии, использующие инфракрасное излучение;

Все инфракрасные беспроводные сети используют для передачи данных инфракрасные лучи. В подобных системах необходимо генерировать очень сильный сигнал, так как в противном случае значительное влияние будут оказывать другие источники, например окна. Этот способ позволяет передавать сигналы с большой скоростью, поскольку инфракрасный свет имеет широкий диапазон частот. Инфракрасные сети способны нормально функционировать на скорости 10 Мбит/с. Существует четыре типа инфракрасных сетей

  1.  Сети прямой видимости.

Как говорит само название, в таких сетях передача возможна лишь в случае прямор видимости между передатчиком и приемником.

  1.  Сети на рассеянном инфракрасном излучении.

При этой технологии сигналы, отражаясь от стен и потолка, в конце концов достигают приемника. Эффективная область ограничивается примерно 30 м (100 футами), и скорость передачи невелика из-за большого уровня внешних помех.

  1.  Сети на отраженном инфракрасном излучении.

В этих сетях оптические трансиверы, расположенные рядом с компьютером, передают сигналы в определенное место, из которого они переадресуются соответствующему компьютеру.

  1.  Широкополосные оптические сети.

Эти инфракрасные беспроводные сети предоставляют широкополосные услуги, соответствуют жестким требованиям мультимедийной среды и практически не уступают кабельным сетям.

Хотя скорость и удобство использования инфракрасных сетей очень привлетельны, возникают трудности при передаче сигналов на расстояние более 30 м (100 футов). К тому же такие сети подвержены помехам со стороны сильных источников света, которые есть в большинстве организаций.
38. Рассказать о микроволновых сетях;
Микроволновые системы работают в двух режимах. Наземные сверхвысокочастотные (СВЧ) каналы (terrestrial microwave) передают сигналы между двумя направленными параболическими антеннами, которые имеют форму тарелки (рис. 9.7). Такие коммуникации осуществляются в диапазонах частот 4–6 ГГц и 21–23 ГГц и требуют, чтобы оператор связи получал лицензию от Федеральной комиссии связи (FCC).

Спутниковые микроволновые системы передают сигнал между тремя антеннами, одна из которых располагается на спутнике Земли (рис. 9.8). Спутники в таких системах находятся на геосинхронных орбитах на высоте 35000 км над Землей. Чтобы некоторая организация могла использовать такую технологию связи, она должна либо запустить спутник, либо арендовать канал у компании, предоставляющей подобные услуги. Из-за больших расстояний задержки: при передаче составляют от 0,5 до 5 секунд. Коммуникации ведутся в диапазоне частот 11–14 ГГц, которые требуют лицензирования.

Как и другие среды беспроводной связи, микроволновые технологий используются тогда, когда кабельные системы стоят слишком дорого или если прокладка кабеля невозможна. Наземные СВЧ-каналы могут оказаться хорошим решением при прокладке коммуникаций между двумя большими зданиями в городе. Спутниковые системы связи являются единственно возможным способом объединения сетей, находящихся в разных странах или на разных континентах, однако это решение очень дорогое.

Микроволновые коммуникации имеют теоретическую полосу пропускания до 720 Мбит/с и выше, однако на практике в настоящее время скорости обычно лежат в диапазоне 1–10 Мбит/с. Микроволновые системы связи имеют некоторые ограничения. Они дороги и сложны в развертывании и эксплуатации. Качество микроволновых коммуникаций может ухудшаться из-за условий атмосферы, дождя, снега, тумана и радиопомех. Более того, микроволновый сигнал может быть перехвачен, поэтому при использовании данной передающей среды особо важное значение имеют средства аутентификации и шифрования.

39. описать беспроводные сети, использующие низкоорбитальные (LEO) спутники Земли.

Орбиты спутников связи находятся на расстоянии примерно 30000 км над Землей. Из-за большого удаления этих спутников и возмущений в верхних слоях атмосферы могут возникать задержки в передаче сигнала, которые недопустимы для коммуникаций с высокими требованиями к этому параметру связи (в т. ч. для передачи двоичных данных и мультимедиа).

В настоящее время несколько компаний разрабатывают низкоорбитальные спутники (Low Earth Orbiting (LEO) satellite), орбиты которых должны находиться на расстоянии от 700 до 1600 км от поверхности Земли, что должно ускорить двустороннюю передачу сигналов. Из-за своей более низкой орбиты LEO-спутники охватывают меньшие территории, и, следовательно, для того чтобы полностью покрыть поверхность планеты, необходимо около тридцати LEO-спутников. В настоящее время компании Teledesic, Motorola и Boeing разрабатывают сеть таких спутников, с помощью которых Интернет и другие услуги глобальных сетей станут доступными в любой точке Земли. Пользователи взаимодействуют с LEO-спутниками при помощи специальных антенн и аппаратуры декодирования сигналов. Начиная с 2005 года, LEO-спутники можно будет использовать в следующих областях:

  1.  широковещательные интернет-коммуникации; проведение всепланетных видеоконференций;
  2.   дистанционное обучение;
  3.   другие коммуникации (передача речи, видео и данных).

Ожидается, что скорости коммуникаций на базе LEO-спутников составят от 128 Кбит/с до 100 Мбит/с для восходящих потоков (к спутнику) и до

 720 Мбит/с для нисходящих потоков (от спутника). LEO-спутники используют ультравысокие частоты, утвержденные Федеральной комиссией связи в США и аналогичными организациями в разных частях света. Электромагнитный спектр коммуникаций с использованием LEO-спутников также одобрен союзом ITU. Рабочие частоты лежат в диапазоне 28,6–29,1 ГГц дли восходящих каналов и 18,8–19,3 ГГц для. нисходящих каналов. Когда эта сеть войдет в эксплуатацию (архитектура сети представлена на рис. 9.9), руководитель проекта, например, из Бостона сможет проводить видеоконференции или обмениваться важными двоичными файлами с исследователем живущим в горной хижине в Вайоминге, а хозяин животноводческой фермы из Аргентины сможет обращаться за сельскохозяйственными данными сети Университета Северной Каролины (Колорадо).




1. ЭЛЕМЕНТЫ СОСТАВА ПРЕСТУПЛЕНИЯ
2. Доказательственное значение судебно-фотографических снимков и видеолент, приобщаемых к материалам уголовного дела
3. Противоречия глобализации
4. был злой тролль Однажды он смастерил зеркало отражаясь в котором все доброе и прекрасное исчезало а все ни
5. Харчова цінність та оцінка якості зерн
6. Основы финансового менеджмента
7. Бюджетный дефицит- сущность причины виды
8. Военное дело в античности.html
9. IКіріспе II
10. тематической модели Содержание Введение
11. реферату- Механізм створення бізнесуРозділ- Підприємництво Механізм створення бізнесу Створення власної
12. і. Аллотропия дегеніміз не А Сырт~ы ~серлерді~ ~згеруі н~тижесінде кристалл торыны~ ~згеруі Аса берік.html
13. Зоопсихология и сравнительная психология Формы контроля
14. распрна все процессуальные отношения в процессе судопроизводства
15. тема Типы экономических систем- традиционная экономика плановая экономика чистый капитализм смешанная эк
16. Методические рекомендации по составлению и оформлению отчета о прохождении производственной практики для.html
17. Реферат- Финансовый анализ рентабельности и ликвидности предприятия на примере ООО X
18. to be mde up of состоять из 2
19. Практика ~ шаг к работодателю 1
20. Что любят СМИ