Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

спиралей и четвертой спирали

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Гомеобоксные гены кодируют транскрипционные факторы, содержащие гомеодомен в 60 аминокислот, который обеспечивает соединение с ДНК, обычно посредством 50th остатка, который часто оказывается глютамином (14). Гомеодомен состоит из трех α- спиралей и четвертой спирали. Вторая и третья спирали образуют мотив helix-turn-helix, который распознает и соединяется с большой бороздой ДНК. Все гомеодоменовые транскрипционные факторы соединяются с TAAT ATTA мотивами, но consensus-связывающие мотивы являются специфичными для каждого семейства гомеобоксных генов. более того, специфичность связывания зависит также от кофакторов, связывающих ДНК (15), присутствия др. белок-ДНК-связывающих мотивов, а также от межбелковых взаимодействий и пост-трансляционных модификаций, таких как фосфорилирование и ацетилирование. Гомеобоксные гены из non-HOX 'dispersed' класса далее были субклассифицированы на базе присутствия консервативных доменов, иных чем гомеодомен, таких как в 128-a.a. paired домен, который кодируется членами семейства Pax генов (Fig. 2). Сравнительные геномные исследования оказались бесценными для понимания эволюции гомеобоксных генов и для соотв. интерпретации номенклатуры генов (16, 17).

Мутации и изменения, происходящие в онтогенезе

Если морфология представляет собой проявление сложного комплекса процессов развития, то эти процессы в свою очередь представляют собой проявление действия целого созвездия генов. Таково важное допущение, положенное в основу этой книги, и мы собрали по крайней мере prima facie данные в пользу того, что у Metazoa часть генома специфически участвует в регуляции онтогенеза и что характер эволюции этой части отличается от характера эволюции структурных генов. До сих пор, однако, мы ограничивались изолированными частными примерами генного контроля морфогенеза и не пытались ответить на центральный вопрос: каким образом гены определяют процесс развития?

Здесь мы в весьма прямом смысле возвращаемся к программе механики развития, выдвинутой Ру (Roux), однако, вместо того чтобы удалять клетки или другие структуры зародыша, с тем чтобы определить их роли в развитии, как это делали представители классической экспериментальной эмбриологии, генетика развития использует мутации как очень тонкий скальпель, дающий возможность уничтожать или изменять отдельные гены.

Генетическая модель, с помощью которой можно изучать любую систему, теоретически находящуюся под генетическим контролем, состоит в следующем. Для того чтобы проанализировать какой-либо процесс, в данном случае онтогенез, исследователь выявляет мутации, изменяющие этот процесс. Выявив такие мутации, он проводит фенотипическое сравнение мутантных особей с нормальными. Это сравнение помогает ему понять, как данный ген влияет на нормальное развитие. Однако, прежде чем продолжить описание метода проведения такого сравнения, следует указать, что воздействие мутаций на онтогенез проявляется двумя основными способами. Это, во-первых, дизруптивные изменения, при которых процесс нормального развития нарушается, что приводит к морфологическим аномалиям (например, к отсутствию некоторых структур). В наиболее резко выраженной форме такие мутации оказываются летальными. Во-вторых, это гомеозисные изменения, при которых под действием мутации развитие отклоняется от нормы, в результате чего какая-либо структура данного организма замещается гомологичным органом или конечностью. Мы отложим дальнейшее обсуждение мутаций этого второго типа до следующей главы и займемся здесь главным образом дизруптивными изменениями.

Анализ нарушений, вызываемых какой-либо дизруптивной мутацией, лишь в редких случаях сводится к простому сравнению конечного фенотипа гибнущей особи с нормальным фенотипом, потому что развитие - это сложный и высокоинтегрированный процесс. Огромное большинство происходящих в нем событий тесно связано с другими событиями и, в сущности, зависит от них. Это особенно ясно проявляется в том, что многие мутации обладают плейотропным действием, т. е. отсутствие или изменение одного гена может обусловить несколько морфологических изменений. Примером служат изменения, наблюдаемые у людей с так называемой аномалией Пельгера (Pg).Она наследуется у человека как простой доминантный аутосомный признак. У гетерозигот (Pg/+) нет никаких клинических симптомов, но для их нейтрофилов характерны аномально сегментированные ядра (рис. 7-1). У взрослого человека ядра полиморфноядерных нейтрофилов обычно состоят из четырех или пяти сегментов, у гетерозигот же Pg/+ ядра состоят всего из двух, реже из трех сегментов. Этот же признак обнаружен у кроликов, у которых он наследуется по тому же типу и сходным образом проявляется в картине крови. Скрещивая гетерозиготных кроликов, можно получить гомозиготных особей Pg/Pg. Ядра нейтрофилов у этих особей вообще не разделены на сегменты, и такой генотип сопровождается низкой жизнеспособностью. Для немногих выживших особей помимо этой особенности нейтрофилов характерна крайне выраженная карликовость с недоразвитием конечностей и грудной клетки (рис. 7-1). Здесь следует задать вопрос: какова причинная зависимость, если она существует, между этими двумя плейотропными нарушениями? Не исключена возможность, что оба этих фенотипических проявления представляют собой на самом деле результат третьего, пока еще неизвестного нарушения, вызванного аллелем Pg.

Широкий диапазон плейотропных воздействий наблюдается и при другом наследуемом изменении крови - при серповидноклеточной анемии. Она также наследуется у человека как простой аутосомный доминантный признак, отличаясь от аномалии Пельгера только тем, что нам точно известно вызывающее ее биохимическое нарушение. У людей, страдающих этим заболеванием, в β-цепях гемоглобина замещена аминокислота в положении 6. В условиях низкого напряжения кислорода эта единственная замена изменяет конформационные свойства образующегося гемоглобинового тетрамера. В капиллярах и в мелких венах эритроциты, содержащие такой мутантный гемоглобин, деформируются, приобретая характерную «серповидную» форму. Такое изменение формы влечет за собой два непосредственных следствия. Во-первых, организм распознает аномальные серповидные эритроциты и разрушает их, что приводит к развитию анемии. Во-вторых, серповидные клетки часто закупоривают капилляры, нарушая кровоснабжение в отдельных участках, а тем самым нормальный рост и функционирование соответствующих органов.

Многочисленные и разнообразные нарушения, вызываемые этой заменой одной аминокислоты, схематически представлены на рис. 7-2. Глядя на этот рисунок, нетрудно понять, что неосведомленный человек, рассматривая схему снизу, может истолковать сам синдром совершенно иначе, чем если бы ему была известна первопричина всех этих нарушений.

Сталкиваясь со сложным фенотипом, образовавшимся к концу ветвящегося и переплетающегося своими ветвями онтогенетического пути, необходимо помнить о существовании дихотомии. Геном можно теоретически разделить на две части. Одна его часть состоит из тех генов, которые определяют так называемые жизненно важные (housekeeping) функции, а другая - из генов, непосредственно участвующих в детерминации, дифференцировке и морфогенезе. Жизненно важные функции - это те обычные метаболические процессы и процессы поддержания жизнедеятельности клетки, которые, хотя и не участвуют прямо в морфогенезе, создают биохимические условия, абсолютно необходимые для жизни. Мутантный индивидуум, у которого отсутствует одна из транспортных РНК (тРНК) или ДНК-полимераза, встречается с серьезными морфогенетическими проблемами. Однако такого рода нарушения основного метаболизма не обязательно затрагивают какой-нибудь конкретный орган, ткань или стадию развития. Такие мутанты следует отличать от тех, которые оказывают прямое воздействие на развитие.

Прежде чем можно будет прийти к каким-то определенным выводам о природе генетических дефектов, необходимо затронуть еще два очень важных момента. Первый из них касается первичного места действия данного гена. Иными словами, существует ли некая специфичная ткань или орган, в которых ген проявляет свою активность? Более того, автономен ли ген в своей активности? Этот вопрос связан с тем, что на самом деле существует плейотропия двух типов: 1) в случае относительной, или зависимой, плейотропии, как при описанной здесь серповидноклеточной анемии, существует одно первичное место действия гена (т. е. эритроциты), а все остальные наблюдаемые нарушения связаны с этим одним дефектом или возникают как его следствие; 2) в случае прямой, или истинной, плейотропии все разнообразные дефекты, возникающие в различных тканях и/или органах, вызываются непосредственным действием одного гена. Грюнберг (Grunberg) на основании своих исследований мутаций у мышей считал преобладающим типом относительную плейотропию. Однако известны также примеры прямых плейотропных эффектов.

Второй момент, который необходимо учитывать при любом серьезном обсуждении генетической регуляции развития, - это время, когда данный ген осуществляет свою активность. Когда начинается эта активность, продолжается ли она непрерывно, занимает ли она один дискретный интервал времени или несколько таких интервалов? Для ответа на этот сложный вопрос необходимо, конечно, установить характер продукта изучаемого гена.

В овогенезе в цитоплазме яйцеклетки синтезируются и откладываются материнские РНК, которые несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позвоночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начинают регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у позвоночных развитие организма регулируется только продуктами деятельности собственных генов зародыша.

Регуляция экспрессии генов в процессе развития организмов осуществляется на всех этапах синтеза белка, как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.




1. Лекция 4 Особенности функционирования и закономерности развития информационного пространства СМИ
2. Теоретическая педагогия после Екатерины II.html
3. Правовое регулирование иностранных инвестиций в России
4. Отраслевая структура мирового хозяйств
5. Республика Грузия
6. Русская философия 20 века Содержание Введение
7. Продукты жизнедеятельности медоносной пчелы
8. Доклад- Наталья Орейро
9. Вариант 17 1 Повышение вероятности наличия болезни у субъекта после получения у него положительного результ
10.  Державний стандарт початкової загальної освіти для дітей які потребують корекції фізичного та або роз
11.  Дані правила розповсюджуються на всі рентгенівські апарати і кабінети медичних установ незалежно від їх ти
12. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата економічних наук Київ ~1
13. Тема- Бюджетные расходы Вопросы- Институт бюджетных расходов в системе финансового права
14. РЕФЕРАТДёнме
15. Человечество впервые осозналочто оно отныне обрнчено жить в одном историческом пространстве в пределах од
16. Тема- Построение диаграмм Цель- Проанализировать объем продаж и прибыли предприятия
17. Особенности маркетинга в сфере туристских услуг Сегодня туризм воспринимается как самый массовый фе
18. Методические рекомендации по составлению отчета по производственной практике по ПМ 01 для специальности 030
19. Лабораторная работа 4 Измерение магнитострикции ферромагнетика с помощью тензодатчика
20. тематичних наук Одеса 2000 Дисертацією є рукопис