У вас вопросы?
У нас ответы:) SamZan.net

Поступательное ~ движение при котором любая прямая жестко связанная с движущимся телом остается паралле

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Моделирование – целенаправленное исследование процессов, явлений, объектов путем построения и изучения их моделей.

Мат. модель – совокупность формул, описаний движения, состояния тел.

 

Мех. движение – это изменение с течением времени взаимного расположения тел или их частей.

Виды движения:

1). Поступательное – движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению.

2). Вращательное – движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

3). Колебательное – движение характеризующееся некоторой степенью повторяемости во времени.

Мат. точка – тело, обладающее размерами которыми можно пренебречь в пределах заданной точности.

Абсолютно твердое тело – тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между частицами этого тела остается постоянным.

Положение мат. точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета.

Система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

Вектор средней скорости: .

Модуль средней скорости: .

Мгновенная скорость: .

Модуль мгновенной скорости: .

Ускорение – физ. величина, характеризующая быстроту изменения скорости по модулю и направлению.

Среднее ускорение: .

Мгновенное ускорение:.

Траектория движения мат. точки – линия, описываемая этой точкой в пространстве.

Тангенциальная составляющая ускорения:

быстрота изменения скорости по модулю (касательная к траектории).

Нормальная составляющая ускорения:

быстрота изменения скорости по направлению (направлена к центру кривизны траектории).

Полное ускорение: .

Абсолютное значение ускорения: .

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени:

.

 Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени:

.

Линейная скорость точки:

.

В векторном виде:.

Тангенциальная составляющая:

.

Нормальная составляющая:

.

Путь: .

Масса – физ. величин, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Сила – векторная величина, являющаяся мерой механ. воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.

Второй закон Ньютона: скорость изменения импульса во времени равна результирующей (сумме всех сил) действующей на тело.

.

Третий закон Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми тела действуют друг на друга материальные точки, равны по модулю, противоположно направленные и действуют вдоль прямой соединяющей эти точки.

Инертность – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Инерциальные системы отсчета – системы, по отношению к которым выполняется первый закон Ньютона.

При движении по криволинейной траектории:

;

.

Центр масс:

;

;

Центр масс системы движется, как материальная точка, с массой , на которую действует сила равная сумме всех сил действующих на систему, на каждую точку в отдельности.

Механическая система – совокупность материальных точек (тел), рассматриваемых как единое целое.

Внутренние силы – силы взаимодействия между материальными  точками механ. системы.

Внешние силы – силы, с которыми на материальные точки системы действуют внешние тела.

Изолированная (замкнутая) система – мех. система тел, на которую не действуют внешние силы.

Импульс: .

Импульс системы: .

Закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

.

Однородность пространства – заключается в том, что при параллельном переносе в пространстве замкнутой системы тел ее физ. свойства и законы движения не изменяются, т. е. не зависит от выбора положения начала координат инерциальной системы отсчета.

Реактивная сила: , где – скорость истечения газов относительно ракеты.

Уравнение Мещерского И. В. ;

Пологая и считая, что скорость выбрасываемых газов постоянна, получим:

или

Это соотношение называется уравнение Циолковского.

Энергия – скалярная физ. величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Виды энергии – механическая, внутренняя, тепловая, электромагнитная, ядерная.

Работа силы: от точки a до b

, т. е. равна площади фигуры от a до b.

Мощность:  или .

Кинетическая энергия мех. системы – энергия мех. движения этой системы.

, используя второй закон Ньютона:

и умножая обе части на перемещение, получим:, .

Потенциальная энергия – мех. энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Консервативными называются силы, работа которых зависит от начального и конечного положения и не зависит от траектории.

Потенциальная энергия: ,

.

Потенциальная энергия упругодеф. пружины:

.

Закон сохранения энергии:

Рассмотрим систему мат. точек с массами со скоростями . Пусть  – равнодействующие внутренних консерв. сил, действующих на точки, а – равнодействующая внешних консерв. сил. Равнодействующие внешних неконсерв. сил:.

По второму ур. Ньютона:

,

. Умножим каждое из ур. скалярно на соответствующее перемещение, учитывая, что и просуммируем:

;

Первый член равен:

;

Второй член равен: ,.

Правая часть задает работу внешних консервативных сил. Получаем: .

Если внешние неконсерв. силы отсутствуют, то получим:

, т. е. полная мех. энергия системы сохраняется постоянной.

Закон сохранения связан с однородностью времени, т. е. инвариантностью физ. законов относительно выбора начала отсчета времени.

Закон сохранения мех. энергии: в системе тел, между которыми действуют только консервативные силы, полная мех. энергия сохраняется, т.е. не изменяется со временем.

Диссипация – процесс постепенного уменьшения мех. энергии за счет преобразования в другие формы энергии.

Удар – это столкновение двух и более тел, при котором взаимодействие длится очень короткое время.

Коэф.  восстановления – отношение нормальных составляющих относительной скорости тел после и до удара.

Если для сталкивающихся тел , то такие тела называются абсолютно неупругими, если – абсолютно упругими.

Линия удара – прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения.

Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры.

Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих телах не остается никаких деформаций и вся кинетическая энергия после удара снова превращается в кинетическую.

;

.

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

.

«Потеря» кинетической энергии:

.

.

Моментом силы F относительно неподвижной точки О наз. физ. величина, определяемая векторным произведением радиуса вектора , проведенного из точки  в точку приложения силы, на силу : ,

Модуль момента силы: , где – кратчайшее расстояние между линией действия силы и точкой – плечо силы.

Моментом импульса материальной точки относительно неподвижной точки О наз. физ. величина, определяемая векторным произведением:, где  – радиус-вектор проведенный из точки в точку .

Модуль момента импульса: .

Моментом силы относительно неподвижной оси называется скалярная величина , равная проекции на эту ось вектора момента силы, определенного относительно произвольной точки данной оси . Значение момента не зависит от выбора положения точки на оси .

Моментом импульса относительно неподвижной оси называется скалярная величина , равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки данной оси . Значение момента не зависит от выбора положения точки на оси .

Закон сохранения момента импульса:

При вращении материальной точки или системы материальных точек вокруг неподвижной оси момент импульса отдельной частицы:.

Момент импульса системы материальных точек относительно оси: .

Продифференцировав по времени получим: , т. е. .

В замкнутой системе момент внешних сил и , откуда .

Это выражение представляет собой закон сохранения импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Этот закон является следствием изотропности пространства (одинаковости свойств пространства по всем направлениям).

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс  материальных точек системы на квадраты их расстояний до рассматриваемой оси: .

В случае непрерывного распределения масс эта сумма сводится к интегралу .

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой оси вращения определяется теоремой Штейнера: , где  – расстояние между осями.

Кинетическая энергия вращательного тела:

.

Работа при вращении тела:

.

Механический принцип относительности (принцип относительности Галилея): во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму.

Док – во:

Пусть система координат (с координатами и ) неподвижна, а система (с координатами и ) движется относительно равномерно и прямолинейно со скоростью . Радиус-вектор, проведенный из О в О1 . Связь между произвольной точкой А в обеих системах: .

Продифференцировав по времени получим: . Ускорение в системе : .

Специальная теория относительности:

Предполагается, что время однородно, а пространство изотропно и однородно.

Постулаты Эйнштейна:

1).  Принцип относительности: никакие опыты, проведенные внутри данной инерциальной системы отсчета, не дают возможность обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

2). Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

– преобразования Лоренца.

Релятивистский закон сложения скоростей:

Длительность события: .

Длина тела: .

Масса тела: .

Основной закон релятивистской механики:

где – релятивистский импульс материальной точки.

Энергия: .

Кинетическая энергия:

.

Энергия связи системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро):

, где –масса покоя -й частицы в свободном состоянии; – масса покоя системы, состоящей из  частиц.

Соотношение между полной энергией и импульсом: .

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени.

Колебания называются свободными, если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

Гармонические колебания – колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса).

Характеристики гармонических колебаний:

Период: .

Частота – число полных колебаний в ед. времени: .

Вывод диф. уравнения гармонических колебаний:

, тогда скорость равна

, а ускорение –

Следовательно

Пружинный маятник – это груз массой , подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под воздействием упругой силы.

Уравнение движения пружинного  маятника:

 

Физический маятник – твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела.

Если маятник отклонен из положения равновесия на некоторый угол , то момент возвращающей силы равен: (где I – момент инерции маятника относительно какой-то оси, - расстояние между точкой подвеса и центром масс маятника, - возвращ. сила ( “-” обозначает, что направление и всегда противоположны) ) . При малых колебаниях физич. маятник совершает гармонич. колебания с циклич. частотой и периодом , где - приведенная длина физич. маятника.

Математический маятник – это идеализированная система, состоящая из материальной точки массой , подвешенной на невесомой нерастяжимой нити, и колеблющаяся под действием силы тяжести. Момент инерции математического маятника . Так как вся масса матем. маятника сосредоточена в одной точке – центре масс, то период маятника равен  Приведенная длина математического маятника – это длина такого математич. маятника, период колебаний которого совпадает с периодом колебаний

  

 

 

  

   

 

    




1. Миф и его аспекты
2. Асоціальна поведінка підлітків.html
3. реферату- Держава і право феодальної АнгліїРозділ- Історія теорія держави і права Держава і право феодальн
4. Машинная память
5. Здесь приблизительно во второй половине VI в
6. Разработка программ и проектов нововведений; создание благоприятных условий нововведений
7. Варианты заданий приведены в таблице.html
8. тема взглядов и широкое течение общественной мысли вызвав подлинный переворот в культуре и мировоззрении лю
9. Понятие ресурсных ограничений в экономике Материальное прво ~ основа жизни человеческого общества
10. Бизнес-планирование деятельности предприятия
11.  ОБЗОРНЫЙ РАЗДЕЛ РЕЗЮМЕ 2
12. Токката Евгений Петрович Дербенко родился 17 марта 1949 года город Павловский Посад Московская область
13.  Специальная часть
14. модуль визначається як сума оцінок поточної навчальної діяльності в балах та оцінки підсумкового модульног.
15. установил право стране
16. Органы международных конференций
17. тема российского финансового права это объективно обусловленное системой общественных финансовых отношен
18. і Птицю розміщують в надійно ізольованих від зовнішнього середовища безвіконних пташниках З штучним мікрок
19. Правила знакомства в русском речевом этикете
20. 3 РАСЧЕТ ПЛАНОВОЙ ТРУДОЕМКОСТИ РАБОТ Чо ~ численность рабочих в бригаде 14 человек Др ~ число раб