Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Лабораторная работа 1 Генерирование многомерных случайных объектов 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024

Лабораторная работа № 1

Генерирование многомерных случайных объектов

1. Краткие теоретические сведения

В экспериментах по распознаванию образов часто необходимо генерировать объекты, имеющие нормальное распределение с заданным вектором математического ожидания и ковариационной матрицей.

Так как обычно случайные величины-признаки коррелированны, то это создает определенные трудности при генерировании объектов. Однако генерирование нормально распределенных объектов с единичной ковариационной матрицей I и нулевым вектором математических ожиданий является более простой задачей, так как случайные величины в этом случае независимы и одинаково распределены с единичной дисперсией. Поэтому предлагается вначале генерировать такие объекты X, а затем осуществлять их преобразование в Y с помощью уравнения

Y = (–1/2T)–1X = M + 1/2X,

где M – вектор математического ожидания заданного распределения, и – соответственно матрицы собственных векторов и собственных значений ковариационной матрицы заданной распределения. Матрицы и имеют следующий вид:

где 1, 2, …, n, 1, 2, …, n – собственные вектора и соответствующие им собственные значения ковариационной матрицы заданного распределения.

Для определения матриц и можно воспользоваться методом вращения Якоби, предназначенном для симметричных матриц (ковариационная матрица является симметричной).

Метод Якоби заключается в следующем. Пусть дана симметрическая матрица A. Требуется для нее вычислить с точностью все собственные значения и соответствующие им собственные векторы. Алгоритм метода вращения следующий:

Пусть известна матрица A(k) на k-й итерации, при этом для k = 0 A(0) = A.

1. Выбирается максимальный по модулю недиагональный элемент  матрицы A(k).

2. Ставится задача найти такую ортогональную матрицу U(k), чтобы в результате преобразования подобия A(k+1) = U(k)TA(k)U(k) произошло обнуление элемента  матрицы A(k+1). В качестве ортогональной матрицы выбирается матрица вращения, в которой на пересечении i-й строки и j-о столбца находится элемент , где (k) – угол вращения, подлежащий определению. Симметрично относительно главной диагонали  (j-я строка, i-й столбец) расположен элемент . Диагональные элементы  и  равны . Другие диагональные элементы в матрице вращения равны 1, а не диагональные – 0.

Угол вращения (k) определяется из условия  = 0:

,

причем если , то (k) = /4.

3. Строится матрица A(k+1): A(k+1) = U(k)TA(k)U(k), в которой элемент   0.

В качестве критерия окончания итерационного процесса используется условие малости суммы квадратов недиагональных элементов:

.

После останова в качестве искомых собственных значений принимаются диагональные элементы матрицы A(k+1), а собственных векторов – столбцы матрицы U = U(0)U(1)U(k).

2. Задание

Сгенерировать 200 объектов, каждый из которых есть вектор из 8 вещественных значений, распределенных по нормальному закону в соответствии с заданным вектором математических ожиданий и ковариационной матрицей.

Для генерирования объектов написать программу на языке C/C++/C# в среде MS Visual Studio 2005. Обеспечить запись объектов в текстовый файл и проверочное формирование вектора математических ожиданий и ковариационной матрицы по сгенерированным значениям.

Задание 1.

Задание 2.

Задание 3.

Задание 4.

3. Список источников

1. Численные методы / www.uchites.ru.

2. Фукунага К. Введение в статистическую теорию распознавания образов: Пер. с англ. – М.: Наука. Главная редакция физико-математической литературы, 1979.




1. Трипільська культура залишилася до наших часів за цією культурою не зважаючи на те що межі її поширюються
2. Русская кухня
3. Тема- Бытие субстанция материя
4. Полководцы древней Руси.html
5. Задание студентам группы 477 по курсу Источники питания Задания к контрольной работе обосноват
6. темам курса При выполнении заданий нужно придерживаться следующих требований- работа выполняется а
7. история про деда Мороза для детей и взрослых Лежит Сашка ночью
8. Европейское Средиземье
9. Правонарушение1
10. Реферат- Пирамида
11. экономические предпосылки Рост материального производства Развитие товарноденежных отношений
12. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Київ ~
13. Фінансовий менеджмент 1
14. Статья- Господин Загоскин и его сочинения
15. Тверской государственный университет в г
16. Автоматизированные формы
17. на тему Построение аналитической и имитационной моделей непрерывностохастической системы Вариант 7
18. Тема 22 Организация лечебноэвакуационных мероприятий в войсках Занятие 2
19. Курсовая работа- Расчёт общей и местной вибрации корабля
20. Классификация ЧС природного и техногенного характера согласно постановлению Правительства РФ 304 от 21