Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тематики и информатики

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

Сибирский государственный университет телекоммуникации

и информатики

Уральский технический институт связи и информатики

Кафедра физики, прикладной математики и информатики.

КУРСОВАЯ РАБОТА

по информатике:

Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений.

                                                                           Выполнил:

студент гр.: МЕ-61,

Устинов А.В.                                                                                                        

                                                                               Проверил:

                                                                                                   Минина Е.Е.

Екатеринбург

2007 г.

Содержание:

Введение………………………………………………………………….3

1. Постановка задачи…………………………………………………….4

2. Описание методов решения…………………………………………..5

2. 1. Суть задачи………………………………………………………….5

2. 2. Геометрический смысл задачи…………………………………….5

2. 3. Численные методы решения задачи Коши……………………….6

2. 4. Метод Эйлера……………………………………………………….6

2. 5. Метод Эйлера модифицированный……………………………….9

2. 6. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….10

2. 6. 1. Метод Эйлера……………………………………………………10

2. 6. 2. Метод Эйлера модифицированный……………………………12

3. Алгоритм решения задачи…………………………………………...14

3. 1. Алгоритмы подпрограмм.………………………………………....14

3. 1. 1. Подпрограмма метода Эйлера………………………………….14

3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..14

3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………15

3. 2. Алгоритм функции…………………………………………………15

3. 3. Алгоритм программы………………………………………………16

4. Форма программы…………………………………………………….28

5. Листинг программы…………………………………………………..19

6. Решение задачи в MathCad…………………………………………..21

Заключение………………………………………………………………23


Введение.

В настоящее время существует множество технических систем и технологических процессов, характеристики которых непрерывно меняются со временем. Такие явления обычно подчиняются физическим законам, которые формулируются в виде дифференциальных уравнений.

Дифференциальным называется уравнение, содержащие одну или несколько производных. Лишь очень немногие из них удается решить без помощи вычислительной техники. Поэтому численные методы решения дифференциальных уравнений играют огромную роль в практике инженерных расчетов.

Для решения дифференциальных уравнений удобно использовать языки программирования, так как они позволяют быстро и точно найти решения уравнения и построить график интегральной кривой.

Целью моей работы является решение задачи Коши для дифференциального уравнения 1-го порядка.

Задачами моей работы являются:

1. Изучить численные методы решения дифференциальных уравнений;

2. Самостоятельно вычислить первую точку интегральной кривой заданными методами;

3. Написать программу для построения интегральной кривой;

4. Проверить решение в среде MathCad.

     


1. Постановка задачи.

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка на отрезке [X0; Xk] с шагом h и начальным условием: Y(X0) = Y0.

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где Y(1), Y(2) – решения, полученные различными численными методами, YT – точное решение дифференциального уравнения.

Возможно представление результатов решения не в виде таблицы, а в виде списков.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

  

Дифференциальное уравнение

X0

Xk

h

Y0

Общее решение

y=2x2+2y

0

1

0.1

1

y=1.5exp(2x)-x2-x-c


2. Описание методов решения.

2. 1. Суть задачи.

Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.

Задачу Коши можно сформулировать следующим образом:

Пусть дано дифференциальное уравнение  и начальное условие y(x0) = у0. Требуется найти функцию у(x), удовлетворяющую как указанному уравнению, так и начальному условию.

Численное решение задачи Коши сводится к табулированию искомой функции.

График решения дифференциального уравнения называется интегральной кривой.

2. 2. Геометрический смысл задачи.

y’ = f(x,y)  - тангенс угла наклона касательной к графику решения в точке (х, у) к оси 0Х, - угловой коэффициент (рис. 1).

Рисунок 1. Геометрический смысл задачи Коши.

Существование решения:

Если правая часть f(x, y) непрерывна в некоторой области R, определяемой неравенствами

|x-x0| < а; |y-y0| < b,

то существует, по меньшей мере, одно решение у = у(х), определённое в окрестности |х – х0| < h, где h - положительное число.

Это решение единственно, если в R выполнено условие Липшица

|f(x,y)-f(x,y)| ≤N|y-y|(x,y),

где N - некоторая постоянная (константа Липшица), зависящая, в общем случае, от а и b. Если f(x, у) имеет ограниченную производную

fy(x, y) в R, то можно положить N = мах |fy(х, у)| при (х, y) принадлежащим R.

2. 3. Численные методы решения задачи Коши.

При использовании численных методов выполняется замена отрезка [х0, X] - области непрерывного изменения аргумента х множеством . состоящего из конечного числа точек х0 < х1 < ... < xn = Х - сеткой.

При этом xi называют узлами сетки.

Во многих методах используются равномерные сетки с шагом:

Задача Коши, определённая ранее на непрерывном отрезке [х0, X], заменяется её дискретным аналогом - системой уравнений, решая которую можно последовательно найти значения y1, y2,…,yn - приближённые значения функции в узлах сетки.

Численное решение задачи Коши широко применяется в различных областях науки и техники, и число разработанных для него методов достаточно велико. Эти методы могут быть разделены на следующие группы.

Одношаговые методы, в которых для нахождения следующей точки на кривой у = f(x) требуется информация лишь об одном предыдущем шаге.

Методы прогноза и коррекции (многошаговые), в которых для отыскания следующей точки кривой у = f(x) требуется информация более чем об одной из  предыдущих точек.   Чтобы  получить достаточно точное  численное значение, часто прибегают к итерации. К числу таких методов относятся методы Милна, Адамса - Башфорта и Хемминга.

Явные методы, в которых функция Ф не зависит от yn+1.

Неявные методы, в которых функция Ф зависит от yn+1.

2. 4. Метод Эйлера.

Иногда  этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

Пусть дано дифференциальное уравнение первого порядка:

Y’ = f(x, y)

с начальным условием

y(x0) = y0

Выберем шаг h и введём обозначения:

xi = х0 + ih  и yi = y(xi),   где   i = 0, 1, 2, ...,

xi - узлы сетки,

yi - значение интегральной функции в узлах.

Иллюстрации к решению приведены на рисунке 2.

Проведем прямую АВ через точку (xi, yi) под углом α. При этом tg α = f(xi, yi)

В соответствий с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведем замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда yi+1 = yi + Δy

Из прямоугольного треугольника ABC  

Приравняем правые части tg α = f(xi, yi) и . Получим

Отсюда Δу = hf(xi, yi).

Подставим в это выражение формулу yi+1 = yi + Δy, а затем преобразуем его. В результате получаем формулу расчета очередной точки интегральной функции:

.

Рисунок 2. Метод Эйлера.

Из формулы  видно, что для расчета каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

Блок-схема процедуры решения дифференциального уравнения методом Эйлера приведена на рисунке 3.

F(x, у) - заданная функция – должна

быть описана отдельно.

Входные параметры:

Х0, XK—начальное и конечное

значения независимой переменной;

Y0 – значение y0 из начального условия

y(x0) = y0;

N - количество отрезков разбиения;

Выходные параметры:

У - массив значений искомого решения

в узлах сетки.

Рисунок 3. Блок-схема процедуры решения дифференциального уравнения методом Эйлера.

Метод Эйлера - один из простейших методов численного решения обыкновенных дифференциальных уравнений. Но существенным его недостатком является большая погрешность вычислений. На рисунке 2 погрешность вычислений для io шага обозначена ε. С каждым шагом погрешность вычислений увеличивается.

2. 5. Метод Эйлера модифицированный.

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Пусть дано дифференциальное уравнение первого порядка

с начальным условием:

Выберем шаг h и введём обозначения:

xi = x0 + ih  и yi = y(xi),   где   i = 0, 1, 2, ...,

xi  - узлы сетки,

yi - значение интегральной функции в узлах.

При использовании модифицированного метода Эйлера шаг h делится на два отрезка.

Иллюстрации к решению приведены на рисунке 4.

Рисунок 4. Метод Эйлера модифицированный.

Проведем решение в несколько этапов:

  1.   Обозначим точки: А(хi, yi,), C(xi + h/2, yi + h/2 ∙ f(xi, yi)) и B(xi+1, yi+1);
  2.   Через точку А проведем прямую под углом α, где tg α = f(xi, yi);
  3.   На этой прямой найдем точку С(хi + h/2, yi + h/2 ∙ f(xi, yi));
  4.   Через точку С проведем прямую под углом α1, где tg α1 = f(xi + h/2,yi + h/2 ∙ f(xi, yi));
  5.   Через точку А проведем прямую, параллельную последней прямой;
  6.   Найдем  точку B(xi+1, yi+1).   Будем  считать   B(xi+1, yi+1)  решением дифференциального уравнения при х = xi+1;
  7.   После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения уi+1:

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi)).

Модифицированный метод Эйлера дает меньшую погрешность. На рисунке 4 это хорошо видно. Так величина εl характеризует погрешность метода Эйлера, а ε - погрешность метода Эйлера модифицированного.

Блок-схема процедуры решения дифференциального уравнения методом Эйлера модифицированным приведена на рисунке 5.

F(x, у) - заданная функция - должна

быть описана отдельно.

Входные параметры:
Х0,
XК - начальное и конечное

значения независимой

переменной;

Y0 – значение y0 из начального условия

y(x0)=y0;

N - количество отрезков разбиения;

Выходные параметры:

Y - массив значений искомого решения

в узлах сетки.

Рисунок 5. Блок-схема процедуры решения дифференциального уравнения методом Эйлера модифицированным.

2. 6. Решение поставленной задачи методами Эйлера и Эйлера модифицированного.

2. 6. 1. Метод Эйлера.

1. Строим оси координат;

2. Отмечаем A(1; 2) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

α0 = 80°;

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,05 = 1,05;

6. Проводим прямую x = x1 = 1,05 до пересечения с прямой l0, отмечаем точку B(x1; y1);

7. Ищем y точки B:Из прямоугольного треугольника ABC ,

Δy = y1 y0,

Δx = x1 – x0 = h,

f(x0; y0) = (y1 – y0)/h =>

y1 = y0 + h · (f(x0; y0)) = 2 + 0,05 · f(1;2) = 2 + 0,05 · 6 = 2,3

Следовательно, точка B имеет координаты (1,05; 2,3).

Рисунок 8. Решение задачи методом Эйлера.

2. 6. 2. Метод Эйлера модифицированный.

1. Строим оси координат;

2. Отмечаем А(1; 2) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

α0 = 80°;

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,05 = 1,05;

6. Отмечаем середину отрезка x0x1: x0 + h/2, проводим прямую из этой точки до прямой l0, отмечаем точку B(xB; yB);

7. Ищем координаты В:

xB = x0 + h/2 = 1 + 0,05/2 = 1,025

yB = y0 + h/2 · f(x0; y0) = 2 + 0,05/2 · 6 = 2,15

Следовательно, точка B имеет координаты (1,025; 2,15);

8. Ищем угол наклона касательной к графику в точке B:

αB = arctg(f(xB; yB)) = arctg((3 · 2,15)/1,025)) = arctg(6,29) = 1,413рад

αB = 81°;

9. Строим касательную l1 в точке B под углом αB;

10. Проводим прямую x = x1 = 1,05 до пересечения с прямой l1, отмечаем точку C(x1; y1);

11. Ищем y точки C:

y1 = yB + h/2(f(xB;yB)) = 2,15 + 0,05/2 · 6,29 = 2,307

Следовательно, точка C имеет координаты (1,05; 2,307).

Рисунок 9. Решение задачи методом Эйлера модифицированного. 

3. Алгоритм решения задачи.

3. 1. Алгоритмы подпрограмм.

3. 1. 1. Подпрограмма метода Эйлера.

3. 1. 2 Подпрограмма метода Эйлера модифицированного.

 

3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y.

3. 2. Алгоритм функции.

3. 3. Алгоритм программы.

 

4. Форма программы.

 

5. Листинг программы.

Dim x(), e(), em(), o() As Single

Private i, n As Integer

Private x0, xk, y0, h, miny, maxy, minx, maxx As Single

Function f(a, b) As Single

f = (2 * x * x) - 2

End Function

Private Sub Eiler()

ReDim x(n + 1)

ReDim e(n + 1)

e(0) = y0

For i = 0 To n

x(i) = Round(x0 + (i * h), 3)

e(i + 1) = Round(e(i) + h * f(x(i), e(i)), 3)

Next i

End Sub

Private Sub EilerM()

ReDim x(n + 1)

ReDim em(n + 1)

em(0) = y0

For i = 0 To n

x(i) = Round(x0 + i * h, 3)

em(i + 1) = Round(em(i) + h * f(x(i) + h / 2, em(i) + h / 2 * f(x(i), em(i))), 3)

Next i

End Sub

Private Sub Obhee()

ReDim x(n + 1)

ReDim o(n + 1)

maxy = y0

miny = y0

maxx = x0

minx = x0

For i = 0 To n

x(i) = Round(x0 + (i * h), 3)

o(i) = Round(2 * (x(i) ^ 3), 3)

If o(i) > maxy Then maxy = o(i)

If o(i) < miny Then miny = o(i)

If x(i) > maxx Then maxx = x(i)

If x(i) < minx Then minx = x(i)

Next i

End Sub

Private Sub Command1_Click()

x0 = Val(Text1.Text)

y0 = Val(Text2.Text)

xk = Val(Text3.Text)

h = Val(Text4.Text)

n = Round((xk - x0) / h)

MSFlexGrid1.Cols = 4

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.TextMatrix(0, 0) = "x"

MSFlexGrid1.TextMatrix(0, 1) = "y îáù"

MSFlexGrid1.TextMatrix(0, 2) = "y ýéë"

MSFlexGrid1.TextMatrix(0, 3) = "y ýéë ìîä"

Eiler

EilerM

Obhee

For i = 0 To n

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(e(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(em(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(o(i))

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

Next i

Label10.Caption = Str(miny)

Label11.Caption = Str(maxy)

Label8.Caption = Str(minx)

Label12.Caption = Str(maxx)

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1000) / (maxy - miny)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (e(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (e(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

Next i

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (em(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (em(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

Next i

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (o(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (o(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

Next i

End Sub

6. Решение задачи в MathCad.

 

 

 

 

 

Заключение.

В своей работе я решил дифференциальное уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного. Я произвел вычисления первой точки самостоятельно и построил интегральные кривые в языке программирования Visual Basic и среде Mathcad. Исследуя полученные графики, я увидел, что метод Эйлера модифицированного является  более точным методом решения дифференциальных уравнений, так как он дает меньшую погрешность и почти совпадает с графиком общего решения. Также метод Эйлера модифицированного является немного сложнее метода Эйлера.


tg(α) = f(x,y)

α

Эйлер(X0, Xk, Y0, N, Y)

h = (Xk – X0)/N

i = 0, …, N - 1

x = X0 + i ∙ h

Yi+1 = Yi + h ∙ F(x, Yi)

Конец

Лист

Дата

Подпись

End

Yi+1 = Yi + h ∙ F(x + h/2, Yi + h/2 ∙ F(xi, yi))

x = X0 + i ∙ h

i = 0, …, N-1

h = (Xk – X0)/N

EilerM(X0, Xk, Y0, N, Y)

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

ε

yi+1

yi

h

α

B

A

0

x

xi+1

xi

y=y(x)

y

C

Δy

α1

α

ε

ε1

xi+1

xi

h

h/2

В

С

А

0

y=y(x)

x

y

Δx

1

1,05

2

2,1

2,2

2,3

l0

Δy

Δx

α0

A

B

1,1

x

y

y

x

1,1

С

A

α0

Δx

Δy

l0

2,3

2,2

2,1

2

1,05

1

B

l1

αB

Начало

y0, x0,xk,h

n = Round((xk - x0) / h)

MSFlexGrid1.Cols = 4

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.TextMatrix(0, 0) = "x"

MSFlexGrid1.TextMatrix(0, 1) = "y общ"

MSFlexGrid1.TextMatrix(0, 2) = "y эйл"

MSFlexGrid1.TextMatrix(0, 3) = "y эйл Эмод"

iler

EilerM

Obhee

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (em(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (em(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (e(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (e(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

i = 1, …, n-1

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1000) / (maxy - miny)

miny

minx

maxy

maxx

i = 1, …, n-1

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(e(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(em(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(o(i))

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

i = 1, …, n

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (o(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (o(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

i = 1, …, n-1

Конец

Eiler

ReDim x(n + 1)

ReDim e(n + 1)

e(0) = y0

x(i) = Round(x0 + (i * h), 3)

e(i + 1) = Round(e(i) + h * f(x(i), e(i)), 3)

i = 1, …, n

Конец

Конец

x(i) = Round(x0 + i * h, 3)

em(i + 1) = Round(em(i) + h * f(x(i) + h / 2, em(i) + h / 2 * f(x(i), em(i))), 3)

i = 1, …, n

ReDim x(n + 1)

ReDim em(n + 1)

em(0) = y0

EilerM

Конец

x(i) = Round(x0 + (i * h), 3)

o(i) = Round(2 * (x(i) ^ 3), 3)

If o(i) > maxy Then maxy = o(i)

If o(i) < miny Then miny = o(i)

If x(i) > maxx Then maxx = x(i)

If x(i) < minx Then minx = x(i)

i = 1, …, n

ReDim x(n + 1)

ReDim o(n + 1)

maxy = y0

miny = y0

maxx = x0

minx = x0

Начало

Конец

Label1

Labe21

f = (2*x*x)-2

f(a,b)

Labe31

Labe41

Text1

Text2

Text3

Text4

Command1

Label5

Label6

MSFlexGrid16

Picture1

Labe71

Label11

Label10

Labe81

Label12

Labe91

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

  

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.




1. ВосточноСибирский государственный университет технологий и управления ФГБОУ ВПО ВСГУТУ П Р И К А З
2. История Белгородчины Донецкооскольская лесостепь в древности
3. Контрольная работа по финансам Вариант 4 Выполнил- студент группы ЭЭПЗС 12 Мирускина Юлия
4. занятость означает трудовую деятельность или выполнение определенных функций
5. Что такое паевой инвестиционный фонд ПИФ 2
6. Реферат- Сезонные цветник
7. тема финансового механизма и важнейшая составная часть экономического и социального планирования
8. Торговый дом Ресурс Поволжье
9. 1ngulus mndibule 2
10. ПРОСВЕЩЕНИЕ 1980 ББК 85
11. а популяции Популяция является наименьшей эволюционной единицей
12. правовых форм и других физических лиц занятых техническим обслуживанием электроустановок проводящих в них.
13. Решение глобальных проблем связанных с автомобилем
14. Экономика Основные понятия
15. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Київ 1998 Дис
16. Практическая энциклопедия бухгалтера
17. Банковский кредит, проблемы и перспективы развития в Республике Беларусь
18.  ПРИНЦИПИ КРЕДИТУВАННЯ Принцип поверненості ~ передбачає що кредит має бути повернений назад кредитор
19. Об утверждении порядка уведомления федеральными государственными гражданскими служащими Росмолодежи о фак
20. Лабораторная работа по дисциплине ldquo;Интегрированные программные средстваrdquo; Тема rdquo;Разр