Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
2
Министерство общего и профессионального образования РФ.
Уральский государственный технический университет УПИ
Кафедра “Технология и средства связи”
"Исследование точности численного интегрирования"
"Research of Accuracy of Numerical Integration"
Отчет
по лабораторной работе
дисциплины
"Информатика",
третий семестр
Преподаватель: Болтаев А.В.
Студенты: Степанов А.Г
Черепанов К.А.
Группа: Р-207
Екатеринбург
2000
Содержание
Провести исследование внутренней сходимости численного интегрирования методом Симпсона и трапеций различных функций, задаваемых с помощью языка С.
Контроль внутренней сходимости заключается в циклическом вычислении приближенных значений интеграла для удваимого по сравнению со значением на предыдущем прохождении цикла числа n. Отношения абсолютной величины разности этих значений к абсолютной величине предыдущего приближенного значения принимается в качестве критерия достижения точности интеграла.
Построить зависимости количеств итераций от различных величин критерия точности.
Построить обратные зависимости критерия точноти от количества итераций.
Повторить все вышеуказанные исследования для случая, когда при вычислении критерия точности разность значений интеграла относится не к предыдущему значению, а к точному значению аналитически вычисленного интеграла.
Исследовать влияние увеличения верхнего предела интегрирования на точность (при прочих неизменных условиях)
, где
Метод Симпсона
, где
Таблица и график зависимости количества итераций от различных значений критерия точности
Для
Критерий точности |
Количество итераций |
-0,1676631 |
14 |
-0,1518916 |
16 |
-0,0046931 |
12 |
-0,0026531 |
11 |
-0,0002639 |
10 |
-0,0001709 |
2 |
-0,0001297 |
9 |
-0,0000557 |
3 |
-0,000025 |
8 |
-0,0000198 |
4 |
-0,0000096 |
5 |
-0,0000038 |
6 |
0 |
15 |
0,0000052 |
7 |
0,071089 |
13 |
Критерий точности
Количество итераций |
|
-0,1127271 |
16 |
-0,0750288 |
15 |
-0,0540677 |
14 |
-0,0021415 |
12 |
-0,0005711 |
11 |
-0,0000458 |
9 |
-0,0000381 |
2 |
-0,0000191 |
3 |
-0,000008 |
4 |
-0,000004 |
5 |
-0,0000019 |
7 |
-0,0000002 |
6 |
0,000005 |
8 |
0,0002983 |
10 |
0,0164377 |
13 |
Критерий точности |
Количество итераций |
-0,0066709 |
|
-0,0042367 |
|
-0,0003561 |
|
-0,0000016 |
|
-0,000001 |
|
0,0000005 |
|
0,0000006 |
|
0,0000009 |
|
0,0000009 |
|
0,0000223 |
|
0,000056 |
|
0,0002782 |
|
0,0003474 |
|
0,005293 |
|
0,0053267 |
Критерий точности |
Критерий точности |
-61,4469795 |
12 |
-5,714047 |
3 |
-1,0215755 |
13 |
-0,7241433 |
2 |
-0,5121117 |
4 |
-0,3222643 |
11 |
-0,2163614 |
7 |
-0,1536629 |
9 |
-0,0930261 |
14 |
0,0353183 |
16 |
0,057059 |
15 |
0,1697371 |
5 |
0,2025534 |
10 |
0,2504728 |
6 |
0,6202592 |
8 |
Критерий точности |
Количество итераций |
-0,0119308 |
16 |
-0,0007834 |
13 |
-0,0000079 |
3 |
-0,0000041 |
4 |
-0,0000037 |
7 |
-0,0000027 |
5 |
-0,0000027 |
6 |
-0,000002 |
8 |
-0,0000016 |
2 |
0,0000003 |
10 |
0,0000062 |
9 |
0,0000385 |
11 |
0,0000802 |
12 |
0,0005452 |
15 |
0,0016689 |
14 |