У вас вопросы?
У нас ответы:) SamZan.net

Теория случайных функций

Работа добавлена на сайт samzan.net: 2016-06-20

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.4.2025

Московский Государственный Институт Электроники и Математики

(Технический Университет)

КУРСОВАЯ РАБОТА

по курсу

“Теория случайных функций“

Студент: Ференец Д.А.

Преподаватель: Медведев А.И.

Вариант: 2.4.5.б

Москва, 1995

Дано:

Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУ равна b.

Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром a.

Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром m.

Тип резервироавния - ненагруженный.

Для описания состояния системы введем двумерный случайный поцесс n(t) = (x(t), d(t)) с координатами, описывающими:

- функционирование элементов

x(t) Î {0, 1, 2}  - число неисправных элементов;

- функционирование КПУ

d(t) Î {0,1} - 1, если исправен, 0 - если нет.

Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.

Определим состояние отказа системы:

Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии  0 процесса d(t) (т.е. отказ какого-либо элемента и отказ КПУ).

Таким образом, можно построить граф состояний системы:

0

1

П

0 - состояние, при котором 0 неисправных элементов,
т.е. состояние
n(t) = (0, d(t))

1 - состояние, при котором 1 неисправный элемент,
т.е. состояние
n(t) = (1, 1)

П - состояние, при котором либо 2 неисправных  элемента, либо 1 неисправный элемент и неисправный КПУ,
т.е. композиция состояний
n(t) = (1, 1), n(t) =(2, 0) - поглощающее состояние.

Найдем интенсивности переходов.

Так как выход из строя каждого из элементов - события независимые, то получим:

вероятность выхода из строя элемента: 1-exp(-5ah) = 5ah + o(h)

вероятность восстановления элемента: 1-exp(-mh) = mh + o(h)

Þ

Пусть

Þ Получим систему дифференциальных уравнений Колмогорова:

Пусть ,

т.е. применим преобразование Лапласа к .

Т.к. , то, подставляя значения интенсивностей, получаем:

Þ

Þ

( - корни  =0)

Представляя каждую из полученных функций в виде суммы двух правильных дробей, получаем:

Применяя обратное преобразование Лапласа, получаем выражения для функций :

Þ

Þ

Þ Искомая вероятность невыхода системы из строя за время t:

,

где

,

Итак,

,
где

Определим теперь среднее время жизни такой системы, т.е. MT
(T - время жизни системы):

Þ




1. Основы работы в Microsoft Word 2007
2. Детский сад 91 компенс
3. Институт необходимой обороны в уголовном праве РФ
4. Основные задачи и функции логистики
5. 77123-24-669140188 МОЛЧАНОВ Володимир Анатолійович ОСОБЛИВОСТІ ФОРМУВАННЯ СТРУКТУРИ ТА ВЛАСТИ
6. They see mny indictions tht the fmily in decline.html
7. Види захворювань нирок та фізична реабілітація
8. МДОУ общеразвивающего вида де
9. Тема - 3 Економічні відносини власності План- 1
10. 10 акций Анализ безубыточности используется для определения объема и стоимости продаж при котором фирма