Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
29 РАЗНОВИДНОСТИ ПОМЕХОУСТОЙЧИВЫХ КОДОВ
Бурный рост теории и практики помехоустойчивого кодирования в последнее десятилетие связан в первую очередь с созданием средств телеобработки данных, вычислительных систем и сетей, региональных автоматизированных систем управления, систем автоматизации научных исследований. Высокие требования к достоверности передачи, обработки и хранения информации в указанных системах диктовали необходимость такого кодирования информации, которое обеспечивало бы возможность обнаружения и исправления ошибки.
В этом случае кодирование должно осуществляться так, чтобы сигнал, соответствующий принятой последовательности символов, после воздействия на него предполагаемой в канале помехи оставался ближе к сигналу, соответствующему конкретной переданной последовательности символов, чем к сигналам, соответствующим другим возможным последовательностям. (Степень близости обычно определяется по числу разрядов, в которых последовательности отличаются друг от друга.)
Это достигается ценой введения при кодировании избыточности, которая позволяет так выбрать передаваемые последовательности символов, чтобы они удовлетворяли дополнительным условиям, проверка которых на приемной стороне дает возможность обнаружить и исправить ошибки.
Коды, обладающие таким свойством, называют помехоустойчивыми. Они используются как для исправления ошибок (корректирующие коды), так и для их обнаружения.
У подавляющего большинства существующих в настоящее время помехоустойчивых кодов указанные условия являются следствием их алгебраической структуры. В связи с этим их называют алгебраическими кодами. (В отличие, например, от кодов Вагнера, корректирующее действие которых базируется на оценке вероятности искажения каждого символа.)
Алгебраические коды можно подразделить на два больших класса: блоковые и непрерывные.
В случае блоковых кодов процедура кодирования заключается в сопоставлении каждой букве сообщения (или последовательности из k символов, соответствующей этой букве) блока из n символов. В операциях по преобразованию принимают участие только указанные k символов, и выходная последовательность не зависит от других символов в передаваемом сообщении.
Блоковый код называют равномерным, если n остается постоянным для всех букв сообщения.
Различают разделимые и неразделимые блоковые коды. При кодировании разделимыми кодами выходные последовательности состоят из символов, роль которых может быть отчетливо разграничена. Это информационные символы, совпадающие с символами последовательности, поступающей на вход кодера канала, и избыточные (проверочные) символы, вводимые в исходную последовательность кодером канала и служащие для обнаружения и исправления ошибок.
При кодировании неразделимыми кодами разделить символы выходной последовательности на информационные и проверочные невозможно.
Непрерывными (древовидными) называют такие коды, в которых введение избыточных символов в кодируемую последовательность информационных символов осуществляется непрерывно, без разделения ее на независимые блоки. Непрерывные коды также могут быть разделимыми и неразделимыми.
Наиболее простыми в отношении технической реализации кодами этого класса являются сверточные (рекуррентные) коды.