Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1.Предмет генетики. Понятие о наследственности и изменчивости. Место генетики среди биологических наук. Основные этапы развития генетики. Роль отечественных ученых в развитии генетики и селекции (Н. И. Вавилов, А. С. Серебровский, Н.К.Кольцов, Ю.А.Филипченко, С.С.Четвериков и др.). Методы исследования в генетике.
Наследственность способность организмов порождать себе подобных; свойство организмов передавать свои признаки и качества из поколения в поколение; свойство организмов обеспечивать материальную и функциональную преемственность между поколениями.
Изменчивость появление различий между организмами (частями организма или группами организмов) по отдельным признакам; это существование признаков в различных формах (вариантах).
Предмет генетики. Натурфилософы античного мира пытались объяснить причины сходства и различия между родителями и их потомками, между братьями и сестрами, механизмы определения пола, причины рождения близнецов. Преемственность поколений описывалась терминами «генус» (род), «геннао» (рождаю), «генетикос» (имеющий отношение к происхождению), «генезис» (происхождение). В Новое время в Англии (Т. Найт), Германии (Й. Кёльрейтер), Франции (О. Сажрэ) были разработаны методики постановки опытов по гибридологическому анализу, были открыты явления доминантности и рецессивности, сформулированы представления об элементарных наследуемых признаках. Однако раскрыть механизмы наследственности и изменчивости долгое время не удавалось. Для объяснения феноменов наследственности и изменчивости использовались концепции наследования благоприобретенных признаков, панспермии, изменчивости признаков под прямым влиянием среды и др.
В основу современной генетики легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании различных сортов гороха (1865), а также мутационная теория X. Де Фриза (19011903). Однако рождение генетики принято относить к 1900 г., когда X. Де Фриз, К. Корренс и Э. Чермак вторично открыли законы Г. Менделя.
В 1906 г. на основании корня «ген» У. Бэтсон (Англия) предложил термин «генетика», а в 1909 г. В.Л. Иоганссен предложил термин «ген».
Ещё в 18831884 гг. В. Ру, О. Гертвиг, Э. Страсбургер, а также А.Вейсман (1885) сформулировали ядерную гипотезу наследственности, которая в начале XX в. переросла в хромосомную теорию наследственности (У. Сеттон, 19021903; Т. Бовери, 19021907; Т. Морган и его школа).
Т. Морганом были заложены и основы теории гена, получившей развитие в трудах отечественных учёных школы А.С.Серебровского, которые сформулировали в 19291931 гг. представления о сложной структуре гена. Эти представления были развиты и конкретизированы в исследованиях по биохимической и молекулярной генетике, которые привели к созданию Дж. Уотсоном и Ф. Криком (1953) модели ДНК, а затем и к расшифровке генетического кода, определяющего синтез белка.
Значительную роль в развитии генетики сыграло открытие факторов мутагенеза ионизирующих излучений (Г. А. Надсон и Г. С. Филиппов, 1925; Г. Мёллер, 1927) и химических мутагенов (В. В. Сахаров и М.Е. Лобашёв, 19331934). Использование индуцированного мутагенеза способствовало увеличению разрешающей способности генетического анализа и представило селекционерам метод расширения наследств, изменчивости исходного материала.
Важное значение для разработки генетических основ селекции имели работы Н.И. Вавилова. Сформулированный им в 1920 г. закон гомологических рядов в наследственной изменчивости позволил ему в дальнейшем установить центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.
Работами С. Райта, Дж. Б. С. Холдейна и Р. Фишера (2030-е гг.) были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внёс С. С. Четвериков (1926), объединивший в единой концепции закономерности менделизма и дарвинизма.
На августовской (1948 г.) сессии ВАСХНИЛ власть в науке захватил президент ВАСХНИЛ академик Т.Д. Лысенко. Научной генетике он противопоставил лжеучение под названием «мичуринская биология». Многие ученые-генетики (Н. П. Дубинин, И. А. Рапопорт) были лишены возможности заниматься наукой.
Только в 1957 г. М.Е. Лобашев возобновил преподавание генетики.
В 1965 г. Т.Д. Лысенко под давлением прогрессивной общественности (ученых-математиков, химиков, физиков) утратил монополию на научную истину. Был создан Институт общей генетики АН СССР, создано Общество генетиков и селекционеров им. Н. И. Вавилова.
В конце 1960-х гг. наша страна вновь обрела утраченные позиции в мировой науке.
2.Закономерности наследования при моногибридном скрещивании, открытые Г.Менделем: единообразие гибридов первого поколения, расщепление во втором поколении.
Количественные закономерности наследования признаков открыл чешский ботаник-любитель Г. Мендель. Поставив цель выяснить закономерности наследования признаков, он, прежде всего, обратил внимание на выбор объекта исследования. Для своих опытов Г. Мендель выбрал горох те его сорта, которые чётко отличались друг от друга по целому ряду признаков. Одним из самых существенных моментов во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Г. Мендель впервые осознал, что начав с самого простого случая различия родителей по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей передачи признаков из поколения в поколение, т.е. их наследования. Здесь выявилась строгая математичность его мышления. Именно такой подход позволил Г. Менделю чётко планировать дальнейшее усложнение экспериментов. В этом отношении Мендель стоял выше всех современных ему биологов.
Другой важной особенностью его исследований было то, что он выбрал для экспериментов организмы, относящиеся к чистым линиям, т.е. такие растения, в ряду поколений которых при самоопылении не наблюдалось расщепления по изучаемому признаку. Не менее важно и то, что он наблюдал за наследованием альтернативных, т.е. контрастных признаков. Например, цветки одного растения были пурпурные, а другого белыми, рост растения высокий или низкий, бобы гладкие или морщинистые т.д. Сравнивая результаты опытов и теоретические расчёты, Г. Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей.
Закон единообразия первого поколения гибридов
Моногибридное скрещивание. Для иллюстрации закона единообразия первого поколения первого закона Менделя, воспроизведём его опыты по моногибридному скрещиванию растений гороха.
Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак цвет семян, варианты жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.
Если скрестить растения гороха с жёлтыми и зелёными семенами, то у всех полученных в результате этого скрещивания потомков гибридов семена будут жёлтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян все семена у гибридов будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется.
Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак рецессивным. Доминантный признак принято обозначать прописной буквой (А), рецессивный строчной (а).
Мендель использовал в опытах растения, относящиеся к разным чистым линиям, или сортам, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы. Таким образом, если в генотипе организма есть два одинаковых аллельных гена, т.е. два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называется гомозиготным. Организм может быть гомозиготным по доминантным (АА) или рецессивным (аа) генам. Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например, один доминантный, а другой рецессивный (Аа) такой организм называется гетерозиготным. Первый закон Менделя называют также законом доминирования или единообразия, так как все особи первого поколения имеют одинаковое проявление признака, присущего одному из родителей.
Формулируется он так: При скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозигот), отличающихся друг от друга по паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного родителя.
В отношении окраски Мендель установил, что красный или чёрный цвет будет доминировать над белым, промежуточными цветами будут розовый и серый, разной насыщенности.
Таким образом, метод скрещивания особей, отличающихся альтернативными признаками, т.е. гибридизации, с последующим строгим учётом распределения родительских признаков у потомков, получил название гибридиологического.
Если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом числовом соотношении: 3/4 особей будут иметь доминантный признак, 1/4 рецессивный. По генотипу в F2 окажется 25% особей, гомозиготных по доминантным аллелям, 50% организмов будут гетерозиготны и 25% потомства составят гомозиготные по рецессивным аллелям организмы.
Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть рецессивный, называется расщеплением. Следовательно, расщепление это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.
Таким образом, второй закон Менделя (см. рис.2) можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозигот) во втором поколении наблюдается расщепление в определённом числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.
3. Представление об аллелях и их взаимодействиях: полное и неполное доминирование, кодоминирование. Гомозиготность и гетерозиготность. Анализирующее скрещивание, анализ типов и соотношения гамет у гибридов. Расщепление по фенотипу и генотипу во втором поколении и анализирующем скрещивании при моногенном контроле признака и разных типах аллельных взаимодействий (3:1, 1:1).
Алле́ли (от греч. ἀλλήλων друг друга, взаимно) различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму. Термин «аллель» предложен В. Иогансеном (1909 г.).
Нормальные диплоидные соматические клетки содержат два аллеля одного гена (по числу гомологичных хромосом), а гаплоидные гаметы лишь по одному аллелю каждого гена. Для признаков, подчиняющихся законам Менделя, можно рассматривать доминантные и рецессивные аллели. Если генотип особи содержит два разных аллеля (особь гетерозигота), проявление признака зависит только от одного из них доминантного. Рецессивный же аллель влияет на фенотип, только если находится в обеих хромосомах (особь гомозигота). Таким образом, доминантная аллель подавляет рецессивную. В более сложных случаях наблюдаются другие типы аллельных взаимодействий.
Полное доминирование взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью. Например, в экспериментах Менделя пурпурная окраска цветка полностью доминировала над белой.
Неполное доминирование доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака. Например, если в гомозиготном состоянии один аллель определяет красную окраску цветка, а другой белую, то гетерозиготный гибрид будет иметь розовые цветки. В некоторых источниках неполное доминирование характеризуют как такой тип взаимодействия аллелей, когда признак у гибридов F1 занимает не среднее положение, а отклоняется в сторону родителя с доминирующим признаком. Полностью же средний вариант (как, например, приведённый выше пример наследования окраски цветков) относят к промежуточному характеру наследования, то есть отсутствию доминирования.
Кодоминирование проявление у гибридов нового варианта признака, обусловленного взаимодействием двух разных аллелей одного гена. При этом, в отличие от неполного доминирования, оба аллеля проявляются в полной мере. Наиболее известным примером является наследование групп крови у человека. Некоторые источники также понимают именно под кодоминированием отсутствие доминантно-рецессивных отношений.
Гомозиготность (от греч. "гомо" равный, "зигота" оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.
Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.
Гомозиготность- это состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.
Гетерозиготность - это присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов . Термин "Гетерозиготность" впервые введён английским генетиком У. Бэтсоном в 1902. Гетерозиготность возникает при слиянии разнокачественных по генному или структурному составу гамет в гетерозиготу. Структурная гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе. Выявляется гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, - следствие полового процесса, но может возникнуть в результате мутации. При гетерозиготности эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при гетерозиготности - причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Их выявление (например, путём испытания производителей по потомству) осуществляется при любой племенной и селекционной работе, а также при составлении медико-генетических прогнозов.
Анализирующее скрещивание скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, то есть "анализатором". Смысл анализирующего скрещивания заключается в том, что потомки от анализирующего скрещивания обязательно несут один рецессивный аллель от "анализатора", на фоне которого должны проявиться аллели, полученные от анализируемого организма. Для анализирующего скрещивания (исключая случаи взаимодействия генов) характерно совпадение расщепления по фенотипу с расщеплением по генотипу среди потомков. Таким образом, анализирующее скрещивание позволяет определить генотип и соотношение гамет разного типа, образуемых анализируемой особью.
По генотипу во втором поколении гибридов наблюдается расщепление 1:2:1 (около 50% особей имеют генотип Аа и по 25% - генотипы АА и аа). При неполном доминировании (когда особи с генотипом Аа имеют фенотип, промежуточный между фенотипами гомозигот) расщепление по фенотипу во втором поколении гибридов будет совпадать с расщеплением по генотипу. Так, при скрещивании чистых линий растения ночной красавицы Mirabilis jalapa с красными и белыми цветками все гибриды первого поколения имеют розовые цветки. Во втором поколении наблюдается расщепление 1 белый : 2 розовым : 1 красный.
4.Закономерности наследования в ди- и полигибридных скрещиваниях при моногенном контроле каждого признака. Закон независимого наследования генов. Статистический характер расщеплений. Общая формула расщеплений при независимом наследовании.
Дигибридное скрещивание это скрещивание родительских особей, различающихся по двум парам альтернативных признаков и, соответственно, по двум парам аллельных генов.
Полигибридное скрещивание это скрещивание особей, различающихся по нескольким парам альтернативных признаков и, соответственно, по нескольким парам аллельных генов.
Георг Мендель скрещивал растения гороха, отличающиеся по окраске семян (желтые и зеленые) и по характеру поверхности семян (гладкие и морщинистые). Скрещивая чистые линии гороха с желтыми гладкими семенами с чистыми линиями, имеющими зеленые морщинистые семена, он получил гибриды первого поколения с желтыми гладкими семенами (доминантные признаки). Затем Мендель скрестил гибриды первого поколения между собой и получил четыре фенотипических класса в соотношении 9: 3: 3: 1, т. е. в результате во втором поколении появилось два новых сочетания признаков: желтые морщинистые и зеленые гладкие. Для каждой пары признаков отмечалось отношение 3: 1, характерное для моногибридного скрещивания: во втором поколении получилось 3/4 гладких и 1/4 морщинистых семян и 3/4 желтых и 1/4 зеленых семян. Следовательно, две пары признаков объединяются у гибридов первого поколения, а затем разделяются и становятся независимыми друг от друга.
На основе этих наблюдений был сформулирован третий закон Менделя
Третий закон Менделя.
Закон о независимом наследовании: расщепление по каждой паре признаков идет независимо от других пар признаков. В чистом виде этот закон справедлив только для генов, локализованных в разных хромосомах, и частично соблюдается для генов, расположенных в одной хромосоме, но на значительном расстоянии друг от друга.
При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов первого поколения проявляется только доминантный аллель, однако рецессивный аллель не теряется и не смешивается с доминантным. Среди гибридов второго поколения и рецессивный, и доминантный аллель может проявиться в своем чистом виде, т. е. в гомозиготном состоянии. В итоге гаметы, образуемые такой гетерозиготой, являются чистыми, т. е. гамета А не содержит ничего от аллели а, гамета а чиста от А.
Это соотношение очень близко к соотношению 9:3:3:1.
5. Типы аллельных взаимодействий (полное доминирование, неполное доминирование, кодоминирование, сверхдоминирование, летальное действие гена). Множественный аллелизм.
Полное доминирование взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью. Например, в экспериментах Менделя пурпурная окраска цветка полностью доминировала над белой.
Неполное доминирование доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака. Например, если в гомозиготном состоянии один аллель определяет красную окраску цветка, а другой белую, то гетерозиготный гибрид будет иметь розовые цветки. В некоторых источниках неполное доминирование характеризуют как такой тип взаимодействия аллелей, когда признак у гибридов F1 занимает не среднее положение, а отклоняется в сторону родителя с доминирующим признаком. Полностью же средний вариант (как, например, приведённый выше пример наследования окраски цветков) относят к промежуточному характеру наследования, то есть отсутствию доминирования.
Кодоминирование проявление у гибридов нового варианта признака, обусловленного взаимодействием двух разных аллелей одного гена. При этом, в отличие от неполного доминирования, оба аллеля проявляются в полной мере. Наиболее известным примером является наследование групп крови у человека. Некоторые источники также понимают именно под кодоминированием отсутствие доминантно-рецессивных отношений.
Сверхдоминирование, сверхдоминантность (генетическая), лучшая приспособленность и более высокая селективная ценность (отборное преимущество) гетерозигот от моногибридного скрещивания (например, Аа) по сравнению с обоими типами гомозигот (АА и аа) (см. также Доминантность, Рецессивность). С. можно определить также как гетерозис, возникающий при моногибридном скрещивании. Наиболее известный пример С. взаимоотношения между нормальным (S) и мутантным (s) аллелями гена, контролирующего структуру гемоглобина у человека. Люди, гомозиготные по мутантной аллели (ss), страдают тяжёлым заболеванием крови серповидноклеточной анемией, от которого они гибнут обычно в детском возрасте (эритроциты больного имеют серповидную форму и содержат гемоглобин, структура которого незначительно изменена в результате мутации). Однако в тропической Африке и других районах, где распространена малярия, в популяциях человека постоянно присутствуют все три генотипа SS, Ss и ss (2040% населения гетерозиготы Ss). Оказалось, что сохранение в популяциях человека летальной (смертельной) аллели (s) обусловлено тем, что гетерозиготы (Ss) более устойчивы к малярии, чем гомозиготы по нормальному гену (SS), и, следовательно, обладают отборным преимуществом.
Летальные гены (также летали, более точно летальные аллели) гены, как правило, рецессивные, фенотипический эффект которых вызывает гибель организма при определенных условиях, или на определенных этапах развития (чаще всего на эмбриональных стадиях развития, но существуют летали, вызывающие гибель, например, при окукливании личинки дрозофилы). Летальные аллели возникают в результате т. н. летальных мутаций летальность таких мутаций говорит о том, что данный ген ответственен за какую-либо жизненно необходимую функцию.
Летальными называются аллели, носители которых погибают из-за нарушений развития или заболеваний, связанных с работой данного гена. Между летальными аллелями и аллелями, вызывающими наследственные болезни, есть все переходы. Например, больные хореей Хантингтона (аутосомно-доминантный признак) обычно умирают в течение 1520 лет после начала заболевания от осложнений, и в некоторых источниках предлагается считать этот ген летальным.
Множественный аллелизм это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.
Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот. Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений. Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w белые, we эозиновые, wa абрикосовые, wch вишневые, wm пятнистые и т. д.); серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т. д.); аллели IA, Iв, I°, определяющие группы крови у человека, и т. д. Серия множественных аллелей результат мутирования одного гена.
Обусловленность признака серий множественных аллелей не меняет соотношения фенотипов в гибридном потомстве. Во всех случаях в генотипе присутствует только одна пара аллелей, их взаимодействие и определяет развитие признака.
6.Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Особенности наследования количественных признаков (полигенное наследование).
Неалле́льные ге́ны это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.
При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют четыре формы и взаимодействия неаллельных генов:
Комплемента́рное (дополнительное) действие генов это вид взаимодействия неаллельных генов, доминантные аллели кото¬рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 сферические и 1 удлинённые.
Эписта́з взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.
Полимери́я взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же при¬знака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.
Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопи¬тельной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных алле¬лей генов, тем сильнее выражен тот или иной признак. Расщепление F2 по фенотипу происходит в соотношении 1:4:6:4:1.
При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.
Моногенное - тип наследования, при котором признак определяется ОДНИМ геном.
Количество аллелей одного гена значения не имеет. В частности, наследование групп крови по системе АВО - моногенное наследование.
Полигенное - тип наследования, при котором признак определяется действием НЕСКОЛЬКИХ генов.
Вот как раз комплементарность, эпистаз и полимерия (о которых Вы спрашивали в другом вопросе) и есть разные случаи полигенного наследования.
Полигенное наследование основано на третьем законе наследственности. Оно подразумевает наследование двух генов (пар признаков) и более и относится к неаллельным генам.
7.Представление о генотипе как сложной системе аллельных и не аллельных взаимодействий генов. Плейотропное действие генов. Пенентрантность и экспрессивность.
Представление о генотипе как сложной системе аллельных и не аллельных взаимодействий генов. Взаимодействовать могут гены как одной аллельной пары (внутриаллельное взаимодействие), так и разных (межаллельное взаимодействие). Часто взаимоотношения аллельных генов выражаются в доминантности (полной и неполной) и рецессивности. Полное доминирование наблюдается в том случае, когда доминантный ген полностью подавляет действие рецессивного гена (например, желтый и зеленый цвет горошин). При неполном доминировании доминантный ген не полностью подавляет действие рецессивного гена, наблюдается промежуточное наследование (например, окраска цветков у ночной красавицы). В сериях множественных аллелей (когда аллельных генов больше, чем два) эти отношения более сложные. Один и тот же ген может выступать как доминантный по отношению к одной аллели и как рецессивный по отношению к другой. Например, ген гималайской окраски кроликов доминантен по отношению к белой, но рецессивен по отношению к серой окраске шерсти (шиншилла). При кодоминировании ни один из аллельных генов не подавляет другой, они равноценны. Если два кодоминантных гена находятся в одном генотипе, они оба проявляются фенотипически. Например, четвертая группа крови у человека по АВО-системе детерминируется одновременным присутствием в генотипе двух кодоминантных генов JA и JB. Ген JA детерминирует синтез антигена А в эритроцитах, а ген JB антигена В.
Известно много примеров, когда гены одной аллельной пары влияют на характер проявления генов другой аллельной пары. Например, развитие разной формы гребня у кур определяется взаимодействием двух пар аллелей: присутствие в генотипе доминантного гена А определяет развитие розовидного гребня, доминантного гена В гороховидного; одновременное присутствие в генотипе обоих доминантных генов (АВ) ореховидного, а рецессивные гомозиготы по обоим аллелям (ааbb) имеют листовидный гребень. Вид межаллельного взаимодействия генов, при котором одновременное присутствие в генотипе доминантных (рецессивных) генов разных аллельных пар приводит к проявлению нового признака, называется комплементарностью. Известны случаи, когда доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Такой вид взаимодействия генов называется эпистазом, а подавляющий ген супрессором. Например, у кур доминантный ген С детерминирует синтез пигмента, а доминантная аллель другого гена подавляет действие гена С, и куры с генотипом С-I имеют белое оперение.
Установлено, что многие количественные и некоторые качественные признаки у растений, животных и человека определяются не одной, а несколькими парами взаимодействующих генов, например рост, масса тела, молочная продуктивность крупного рогатого скота, яйценоскость кур, цвет кожи у человека и др. Чем больше в генотипе доминантных генов, тем сильнее проявляется признак. Такой вид взаимодействия генов разных аллельных пар, когда они отвечают за степень проявления одного признака, называется полимерией.
Нередко наблюдается и противоположное явление, когда один ген влияет на проявление нескольких признаков. Такое явление называется плейотропией. Так, у мухи дрозофилы ген, определяющий отсутствие пигмента в глазах (белые глаза), снижает плодовитость и уменьшает продолжительность жизни. У человека аномалия пальцев («паучьи пальцы») сопровождается нарушением строения хрусталика и пороками развития сердечно-сосудистой системы.
Плейотропия влияние одного гена на развитие двух и более признаков. Классический "собачий" пример плеиотропного действия генов фактор Мерля (локусМ; окраса собак). Аллель А/'' в гетерозиготном состоянииМ''?н дает пятнистость типа "арлекин", характерную для догов. Аллель М в гетерозиготе Миг в сочетании с подпалом дает "мраморный" (blue-merle) окрас, типичный для колли, шелти и такс. В гомозиготном состоянии ММ у колли и шелти он ведет к рождению чисто белых щенков (white-merle) со значительными аномалиями органов чувств. Такие щенки часто погибают еще до рождения, а если и рождаются живыми, то их жизнеспособность сильно понижена.
Ильиным (1932) же описан фактор "дункер", встречающийся у норвежских гончих. По своему проявлению он аналогичен фактору Мерля, распространенного у колли и такс. При скрещивании двух серо-пятнистых гончих происходит расщепление на чергю-подпалых (25%), щенков, аналогичных родителям (50%) и крапчатых белых с неправильными серыми пятнами и резко сниженной жизнеспособностью (25%).
Как утверждает Ильин, крапчатость является результатом действия плеиотропного гена, который наряду с ней может обусловливать следующие признаки: микрофтальмию (малый размер глазных яблок), колобому (дефект радужной оболочки), глаукому (повышение внутриглазного давления), слепоту, голубой цвет глаз, глухоту, общую слабость и подверженность заболеваниям, аномалии половой системы самок.
У кошек доминантный аллель W гена белого окраса определяет не только окрас, но и цвет глаз и глухоту у голубоглазых кошек.
Явление плейотропии объясняется тем, что гены плейотропного действия контролируют синтез ферментов, участвующих в многочисленных обменных процессах в клетке и в организме в целом и тем самым одновременно влияющих на проявление и развитие многих признаков.
Некоторые гены выбывают столь сильные отклонения от нормы, что снижают жизнеспособность организма или даже приводят его к гибели. Такие гены называют летальными, то есть смертоносными, или сублетальными снижающими жизнеспособность. В большинстве случаев летальные гены полностью рецессивны, поэтому гетерозиготные носители этих генов фенотипически совершенно неотличимы от нормальных особей. В гомозиготном состоянии такие гены могут нарушать нормальный ход развития эмбриона на любых стадиях. О возможности наличия летальных генов можно косвенно судить по снижению средней численности пометов или по выпадению некоторой ожидаемой части фенотипов в расщеплении.
Пенетрантность - это вероятность проявления одного и того же признака у разных лиц, имеющих ген, контролирующий данный признак. Пенетрантность измеряется в проценте лиц с определенным признаком от общего числа лиц, являющихся носителями гена, контролирующего данный признак. 0на бывает неполной или полной.
Примером заболевания с неполной пенетрантностью служит все тот же ринит при 0РВИ. Так, можно считать, что у больного А нет ринита (но есть другие признаки заболевания), тогда как у больных В и С ринит есть. Поэтому в данном случае пенетрантность ринита составляет 66,6%.
Пример заболевания с полной пенетрантностью - аутосомнодоминантная хорея Гентингтона (4р16). 0на манифестирует преимущественно у лиц в возрасте 31-55 лет (77% случаев), у
остальных же больных - в другом возрасте: как в первые годы жизни, так и в 65, 75 лет и более. Важно подчеркнуть: если ген этой болезни передан потомку от одного из родителей, то болезнь проявится обязательно, в чем заключается полная пенетрантность. Правда, пациент не всегда доживает до манифестации хореи Гентингтона, умирая от другой причины.
Экспрессивность (генетика) степень проявления в фенотипе различных особей одного и того же аллеля определённого гена. Количественные показатели экспрессивности измеряются на основе статистических данных.
8. Сцепленное наследование и кроссинговер. Значение работ школы Т.Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления.
Число признаков организма многократно превышает число хромосом. Следовательно, в одной хромосоме располагается множество генов. Наследование признаков, гены которых находятся в одной паре гомологичных хромосом, называется сцепленным наследованием (закон Моргана). Гены, расположенные в одной хромосоме, образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.
Кроссинго́вер (другое название в биологии перекрёст) процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.
Значение работ школы Т.Моргана в изучении сцепленного наследования признаков. Хромосомная теория наследственности Моргана, объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в сельскохозяйственной науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения хромосомной теории позволяют более рационально вести сельскохозяйственное производство. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека. Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и ab), получается гибрид AaBb, образующий четыре сорта гамет AB, Ab, aB и ab в равных количествах. В отдельных случаях новые комбинации признаков (Ab и aB) в Fa совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление, нарушалось, давая новые комбинации. Совместное наследование генов, ограничивающее их свободное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием. Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом. При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом. У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофилия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери - признак отца получило, название крисс-кросс (или крест-накрест). Определение группы сцепления. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме. Прежде чем определить положение гена, т.е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцеплено, составляют группу сцепления. Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом. К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays) гаплоидный набор хромосом и число групп сцепления составляют 10, у гороха (Pisum sativum) - 7, дрозофилы (Drosophila melanogaster) - 4, домовой мыши (Mus musculus) - 20 и т.п. Принцип определения принадлежности гена к той или иной группе сцепления сводится к установлению характера наследования этого гена по отношению к другим генам, находящимся в уже известной группе сцепления. Однако генетическими методами невозможно определить, какая конкретная пара гомологичных хромосом кариотипа аналогична соответствующей группе сцепления. Для этого требуются дополнительные цитогенетические исследования. В последнее время для определения группы сцепления используют метод гибридизации соматических клеток.
Особенности наследования при сцеплении. Гены могут находиться на половых хромосомах, в этом случае говорят, что они сцеплены с полом. Наследование, сцепленное с полом, имеет некоторые важные особенности. Дело в том, что У-хромосома несет гораздо меньше генов, чем Х-хромосома. Это обстоятельство приводит к тому, что для многих генов наХ-хромо-соме нет соответствующих аллелей на У-хромосоме. В результате если у мужчины наХ-хромосоме оказывается рецессивный аллель, то он проявится в фенотипе. Например, имеется наследственная форма гемофилии - болезни, связанной с нарушением нормальной свертываемости крови. При этих нарушениях у больного возникают длительные кровотечения даже при незначительном повреждении кровеносных сосудов. Существуют две формы гемофилии - А и В, я обе определяются рецессивными генами, локализованными в Х-хромосоме.
Если в брак со здоровым мужчиной вступает здоровая женщина, являющаяся носительницей гена гемофилии, то с одинаковой вероятностью (в 25% случаев) могут родиться здоровая дочь, здоровая дочь - носительница гена гемофилии, здоровый сын, больной сын. Таким образом, носительницами гена гемофилии являются женщины, а болеют ею мужчины. Однако если мужчина-гемофилик вступит в брак со здоровой женщиной, то все его сыновья будут обязательно здоровы (потому что они получат от отца 7-хромосому). Дочери будут тоже здоровыми, но обязательно будут носительницами гена гемофилии.
Теоретически возможна гемофилия и у женщины, но такая вероятность очень невысока, так как для этого необходимо вступление в брак больного-гемофилика с женщиной - носительницей гена гемофилии (и даже в этом случае вероятность рождения больной девочки будет только 0,25). Из-за низкой частоты встречаемости гена гемофилии и того, что больные гемофилией часто умирают до брачного возраста, такие случаи практически не отмечаются.
Итак, если рецессивный ген сцеплен с А-хромосомой, то он гораздо чаще проявляется в фенотипе у мужчин, чем у женщин. Среди других генов, сцепленных с полом, стоит упомянуть гены, связанные с цветовой слепотой.
Встречаются и доминантные гены, сцепленные с Х-хромосомой. Так, существует наследственная форма рахита, которая не поддается лечению витамином D. Если это заболевание есть у отца, то оно передается всем его дочерям, тогда как сыновья все здоровы, так как они получают свою Х-хромосому от матери.
Если гены локализованы в F-хромосоме, то они должны передаваться только от отцов к сыновьям. В качестве примера такого гена обычно упоминают ген, вызывающий появление пучка волос на внешнем крае уха. Недавно сообщалось об обнаружении гена-маркера на F-хромосоме, который сцеплен с геном, ответственным за мужскую гипертонию. Если на хромосоме обнаруживается ген-маркер, то у мужчин систолическое давление выше в среднем на 10 мм ртутного столба.
От наследования, сцепленного с полом, надо отличать наследование, ограниченное полом. В случае наследования, ограниченного полом, гены, определяющие развитие признака, находятся в аутосомах, но на их проявление в фенотипе сильно влияет пол. Например, наследственная предрасположенность к раннему облысению связана с геном, локализованным в аутосоме. Однако его активность сильно зависит от уровня тестостерона (мужской половой гормон). В связи с этим у мужчин этот ген ведет себя как доминантный, а у женщин - как рецессивный.
Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления. Количество групп сцепления каждого вида должно соответствовать числу пар хромосом. Кроссинговер возникает со вполне определенной частотой для каждой пары генов, расположенных в одной группе сцепления. Причем, чем ближе в хромосоме расположены гены друг у другу, тем она выше. На основании анализа частоты кроссинговера между генами можно вычислить расстояние между генами и, таким образом, определить их локализацию в хромосоме План расположения генов в хромосоме называется картой хромосомы.
Хромосомные карты построены для животных ряда видов, однако для собаки их нет, так как для их составления необходимы фундаментальные исследования генетики вида и большой статистический материал, получение которого у собак затруднительно. Для кошки установлено положение на хромосомах приблизительно для 50 генов (Бородин, 1995).
9. Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах. Основные положения хромосомной теории наследственности по Т.Моргану.
Кроссинго́вер (другое название в биологии перекрёст) процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.
Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования.
Гены перемешиваются благодаря слиянию гамет двух различных особей, однако генетические изменения осуществляются не только этим путем. Никакие два потомка одних и тех же родителей (если только это не идентичные близнецы) не будут абсолютно одинаковыми. Во время мейоза осуществляются два различных вида пересортировки генов. Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при первом делении мейоза, каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом. Из этого следует, что клетки любой особи могут в принципе образовать 2 в степени n генетически различающихся гамет, где n - гаплоидное число хромосом. Однако на самом деле число возможных гамет неизмеримо больше из-за кросинговера (перекреста) - процесса, происходящего во время длительной профазы первого деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в 2 - 3 точках.
При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). Рекомбинация происходит в профазе первого деления мейоза, когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой, две из четырех хроматид перекрещиваются Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.
На этой стадии мейоза гомологи в каждой паре (или бивалент) остаются связанными друг с другом по меньшей мере одной хиазмой. Во многих бивалентах бывает большее число хиазм, так как возможны множественные перекресты между гомологами.
Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно двойным, в трёх тройным и т.д., т.е. он может быть множественным.
Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.
Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возникает благодаря двум независимым одинарным разрывам в двух точках.
Интерференция (генетика) подавление кроссинговера на участках, непосредственно соседствующих с точками уже произошедшего обмена; на практике означает понижение частоты двойных кроссинговеров по сравнению с теоретическим значением.
Линейное расположение генов в хромосоме
Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.
Одним из классических опытов Моргана на дрозофиле, докаывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y, белый цвет глаз w и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w; 3,5% − от кроссинговера между генами w и bi и 4,7% между у и bi.
Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w, w и bi, следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.
Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место локус.
Основным положениям хромосомной теории наследственности парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме соответствует однонитчатая модель хромосомы.
Основные положения хромосомной теории наследственности Т.Моргана:
На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:
10. Детерминация пола. Гинандроморфизм. Балансовая теория определения пола К. Бриджеса.
Детермина́ция по́ла биологический процесс, в ходе которого развиваются половые характеристики организма. Большинство организмов имеют два пола. Иногда встречаются также гермафродиты, сочетающие признаки обоих полов. Некоторые виды имеют лишь один пол и представляют собой самок, размножающихся без оплодотворения путём партеногенеза, в ходе которого на свет появляются также исключительно самки.
Половое размножение и проявление полового диморфизма широко распространено в различных таксономических группах. Для механизмов полоопределения характерно большое разнообразие, что свидетельствует о неоднократности и независимости возникновения пола в различных таксонах[2]. Во многих случаях пол определяется генетически. Генетическая детерминация пола наиболее распространённый способ определения пола у животных и растений, пол при этом может определяться серией аллелей одного или нескольких аутосомных генов, или детерминация пола может происходить при помощи половых хромосом с пол-определяющими генами (см. Хромосомное определение пола).
Гинандроморфизм (др.-греч. γυνή женщина + ἀνήρ, род. п. ἀνδρός мужчина + μορφή вид, форма) аномалия развития организма, выражающаяся в том, что в одном организме крупные участки тела имеют генотип и признаки разных полов. Является результатом наличия в мужских и женских клетках организма наборов половых хромосом с разным количеством последних, как например у многих насекомых. Гинандроморфизм происходит как результат неправильного распределения половых хромосом по клеткам в ходе нарушенного созревания яйцеклетки, её оплодотворения или дробления.
Балансовая теория определения пола К. Бриджеса. В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Другие соотношения видны из табл. 128: Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.
Таким образом, фактически было показано, что развитие пола у дрозофил зависит от того, в каком соотношении вырабатываются белки, кодируемые аутосомами и Х-хромосомами. На аутосомах и Х-хромосоме найдены гены, кодирующие эти белки-определители пола. Как известно, пол и у человека, и у дрозофил, определяется половыми хромосомами (женщина имеет генотип XX, мужчина - XY). Однако сравнение людей и дрозофил с необычным числом половых хромосом показало, что в действительности механизм определения пола у них различен.
У человека главным фактором, влияющим на определение пола, является наличие У-хромосомы. Если она есть, организм имеет мужской пол. Даже если в геноме имеются три или четыре Х-хромосомы, но кроме того хотя бы одна Y-хромосома, то из такой зиготы развивается мужчина. Почему же Y-хромосома играет столь разную роль у дрозофил и у человека? Дело в том, что у дрозофил в Y-хромосоме очень мало генов, и это гены, которые отвечают за развитие сперматозоидов у взрослого самца. Напротив, у человека в коротком плече Y-хромосомы лежит ген S, который играет важнейую роль в определении пола. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот ген играет определяющую роль и у других млекопитающих. Когда с помощью генной нженерии ген S ввели в клетку мыши с женским генотипом XX, то из такой клетки развился мышонок не только с внешними признаками самца, но и с соответствующим поведением.
11. Определение пола у дрозофилы. Гены, ответственные за детерминацию пола. Компенсация дозы гена.
Определение пола у дрозофилы. Дрозофилам свойственно XY-определение пола. Важным отличием механизма определения пола дрозофил от человека является то, что на пол влияет не наличие Y-хромосомы, а отношение числа Х-хромосом к числу аутосом. В дальнейшем, имеется в виду гаплоидный набор аутосом (n=4). При отношении равном 1, особь развивается в самку, равном 1/2 в самца. При нарушениях образуются бесплодные особи: так называемые, интерсексы (если отношение X-хромосом к аутосомам промежуточное между единицей и 1/2), суперсамцы (отношение меньше 1/2) и суперсамки (отношение больше 1). Наличие Y-хромосомы никак не влияет на пол, но самцы без нее стерильны, так как в ней находятся гены, ответственные за сперматогенез.
Ключевым геном в определении пола дрозофил является ген sex-lethal (sxl). Именно различие в альтернативном сплайсинге этого гена и порождает различия между двумя полами. В определении варианта сплайсинга гена sxl участвуют так называемые гены-нумераторы (числителя) (sis-a, sis-b (sisterless-a, sisterless-b), runt (runt)), локализованные в X-хромосоме, и гены-деноминаторы (знаменателя) (dpn (deadpan) , da (daughterless) , emc (extramacrohaeta) и др.), локализованные в аутосомах. И те, и те являются факторами транскрипции, от соотношения которых зависит альтернативный сплайсинг гена sxl. Активаторы (нумераторы) и репрессоры (деноминаторы) способны образовывать комплексы. В зависимости от отношения количества этих генов, активаторы либо преодолеют действие репрессоров, либо репрессоры подавят активность активаторов. В первом случае (при соотношении X:A=1, генотип женский) ген sxl начнет считываться с проксимального (раннего) промотора. Тогда при альтернативном сплайсинге будет образовываться активный белковый продукт sxl, который является фактором сплайсинга и, связываясь с собственной пре-иРНК, закрепляет такой вариант сплайсинга. В другом же случае, если репрессоры подавили активаторов (отношение X:A=0,5 генотип мужской), транскрипция sxl начнется с дистального (позднего) промотора При этом образуется неактивный белок, так как не вырезается «мужской экзон» (третий), в котором расположен стоп-кодон UGA, не дающий образоваться полноценной мРНК.
Белковый продукт sxl самки активный фактор сплайсинга не только для собственной РНК, но и для пре-мРНК гена transformer (tra). У самцов sxl неактивен как фактор сплайсинга, поэтому продукт гена transformer тоже неактивный белок.
Следующий этап в каскаде ген Doublesex (dsx). У самок белок tra (совместно с работающим у обоих полов tra-2) модифицирует его сплайсинг, что приводит к образованию белка DsxFem (женский вариант). У самцов такой модификации не происходит, сплайсинг проходит по-другому, и образуется другой белок DsxM (мужской вариант). Эти белки являются факторами транскрипции, влияющие на активность генов, отвечающих за развитие фенотипического пола.
Детерминация пола - направленность наследственных (генетических) и средовых факторов, определяющих конечный результат половой дифференцировки, т. е. развитие первичных и вторичных половых признаков по мужскому или женскому типу и половое самосознание (основными компонентами последнего являются психосексуальная ориентация, выбор сексуального партнера и исполняемая индивидуумом половая роль).
SXL выключает компенсацию гена предотвращая трансляцию самец специфической mRNA lethal-2 (msl) необходимую для дозовой компенсации. У самцов SXL образуется и msl-2 mRNA транслируется и компенсация гена происходит. Присутствие SXL запускает каскады пол-специфичных альтернативных мРНК, что ведет к продукции пол-специфичных doublesex (dsx) и fruitless (fru) продуктов
в случае dsx обе самцов и самок спец dsx мРНК кодируют пол-специфичные цинковые пальцы DSXm и DSXf соответственно, кот имеют одинаковые ДНК-связ домены, но разные С-концы
в случае fru P1fru подвергаются полспецифическому сплайсингу при участии TRA и TRA-2 белков. У самцов с недостатком белков TRA сплайсинг не происходит и P1 кодирует белок с BTB доменом на N-конце и один из альтернативного цинковый палец пару на C-конце. самцовая P1 отличается наличием 101 акты на N-конце к BTB-домена. Самцовая P1транслируется а самочья не транслируется. Образуемый FRU белок участвует в самцовом половом поведении
dsx ответственна за соматическую половую регуляцию вне цнс те морфологический диморфизм - пигментация, абдоминальная сегментация, щетинки, внешние и внутренние гениталии
fru ответственна за поведение
гены нумераторы присутствуют в 4 копиях у самок и в 2 у самцов: sisterless sisA,sisB,sisC и runt (run)
deadpan (dpn) ген деноминатор транскрипционный фактор негативно регулирует Sxl на аутосоме
3 материнских гена: daughterless (da) и hermaphrodite
(her) позитивные регуляторы Sxl тогда как extramacrochaetae (emc)
и groucho (gro) негативные регуляторы
материнские DA и зиготические SISB белки формируют гетеродимеры которые функционирут как транскрипционные активаторы Sxl
GRO вероятно действует как корепрессор связываясь с DPN
EMC вероятно изолирует позитивную регуляцию DA и\илиSISB формируя неактивные гетеродимеры
Компенсация дозы генов. Для экспрессии генов, расположенных на X-хромосоме самцов и самок дрозофилы, характерен одинаковый уровень, хотя содержание (доза) таких генов у самок в два раза выше, чем у самцов. Это равновесие достигается за счет механизма, повышающего вдвое скорость транскрипции сцепленных с X-хромосомой генов у самцов и получившего название дозовой компенсации. Таким образом, компенсация дозы генов - выравнивание экспрессии сцепленных с X генов между двумя полами, механизм, усиливающий транскрипцию большинства генов на единственной Х-хромосоме у самцов.
Изучение компенсации дозы у Drosophila выявляет участие сайт-специфичного ацетилирования гистонов , специфические некодирующие РНК (называемые roX1 и roX2 ) и "нацеливание", в масштабах целой хромосомы, эволюционно консервативной машины, модифицирующей гистоны, которая, как показано на фотографии 16 , локализуется на Х-хромосоме.
12.Определение пола у млекопитающих. Компенсация дозы гена. Лаойнизация. Половой хроматин (Тельца М.Барра).
У млекопитающих, в том числе и человека, развитие мужского организма невозможно без наличия Y-хромосомы, то есть прежде всего половая принадлежность у человека определяется сочетанием половых хромосом в его кариотипе. Однако установлено, что для развития организма мужского пола недостаточно только наличия гена SRY на Y-хромосоме, который определяет дифференцировку мужских половых желёз и синтез ими тестостерона. Ткани-мишени, на которые действует тестостерон, должны быть чувствительны к нему. Для этого необходим белок-рецептор, являющийся продуктом особого гена, локализованного в Х-хромосоме (локус Xq11-Xq12)[110]. Он обеспечивает проникновение гормона в клетки нужных тканей. Если в этом гене происходит мутация, нарушающая образование нормального белка-рецептора, то ткани-мишени становятся нечувствительны к тестостерону. Не использовав возможность формирования мужского фенотипа на определённом этапе онтогенеза, организм осуществляет развитие по женскому типу. В итоге формируется особь с кариотипом XY, но внешне схожая с женщиной. Такие субъекты бесплодны, поскольку их семенники недоразвиты, а выводные протоки нередко формируются по женскому типу (недоразвитая матка, влагалище). Вторичные половые признаки характерны для женского пола. Такое нарушение у человека известно как синдром Морриса[111]. Таким образом, пол у человека формируется как результат комплементарного взаимодействия неаллельных генов[112].
Зародыши млекопитающих развиваются по пути самки, если организм не содержит яичек, в противоположном случае, зародыш развивается по пути самца. В случае, если половые железы удалены до формирования яичек или яичников, организм также развивается в самку, независимо от того, какие хромосомы содержит геном. Для развития женских половых органов требуются и другие факторы, например, яичники млекопитающих не развиваются без сигнального белка Wnt4.
Компенсация дозы генов. Для экспрессии генов, расположенных на X-хромосоме самцов и самок дрозофилы, характерен одинаковый уровень, хотя содержание (доза) таких генов у самок в два раза выше, чем у самцов. Это равновесие достигается за счет механизма, повышающего вдвое скорость транскрипции сцепленных с X-хромосомой генов у самцов и получившего название дозовой компенсации. Таким образом, компенсация дозы генов - выравнивание экспрессии сцепленных с X генов между двумя полами, механизм, усиливающий транскрипцию большинства генов на единственной Х-хромосоме у самцов.
Изучение компенсации дозы у Drosophila выявляет участие сайт-специфичного ацетилирования гистонов , специфические некодирующие РНК (называемые roX1 и roX2 ) и "нацеливание", в масштабах целой хромосомы, эволюционно консервативной машины, модифицирующей гистоны, которая, как показано на фотографии 16 , локализуется на Х-хромосоме.
Лайонизация (lyonisation) [по имени М. Лайон] гипотетический механизм компенсации дозы генов X-хромосомы, выражающийся в инактивации одной из двух Х-хромосом у женщин. Согласно гипотезе М. Лайон (1962 г.), по имени которой назван этот механизм, инактивация X-хромосомы происходит в раннем эмбриогенезе, осуществляется случайным образом (инактивированной может быть либо отцовская, либо материнская X-хромосома), затрагивает целиком всю X-хромосому и характеризуется устойчивостью, передаваясь клеточным потомкам.
Половой хроматин, плотное окрашивающееся тельце, обнаруживаемое в недслящихся (интерфазных см. Интерфаза) ядрах клеток у гетерогаметных (имеющих Х и Y половые хромосомы) животных и человека. П. х. подразделяют на Х-хроматин, или тельце Барра (открыт в 1949 английскими исследователями М. Барром и Л. Бертрамом), и Y-хроматин (открыт в 1970 шведскими учёными Т. Касперсоном и Л. Цех). Х-хроматин интенсивно окрашивающееся основными красителями тельце (0,71,2 мкм), чаще прилегающее к ядерной оболочке и имеющее треугольную полулунную или округлую форму. Y-хроматин значительно меньше по размерам, выявляется при окраске ядра флюорохромами (акрихин, акрихиниприт) и исследовании в ультрафиолетовом свете. У особей женского пола (тип XX) одна из Х-хромосом неактивна, что проявляется в её более сильной спирализации и уплотнении. В интерфазном ядре эта спирализованная Х-хромосома и видна в виде Х-хроматина. Y-хроматин у человека и некоторых приматов имеет большой гетерохроматиновый участок (см. Гетерохроматин), который даёт интенсивную флюоресценцию. Т. о., технически простое исследование интерфазного ядра позволяет судить о состоянии системы половых хромосом. Х-хроматин более или менее часто встречается у женщин в ядрах клеток всех тканей (например, в клетках эпителия слизистой оболочки рта в 1560% ядер). Число ядер с Х-хроматином зависит от интенсивности размножения клеток в данной ткани и от гормонального состояния организма. Изменение количества П. х. свидетельствует об изменении количества половых хромосом, что детальнее выявляется анализом кариотипа.
13. Хромосомное определение пола и наследование признаков, сцепленных с полом. Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола.
Хромосомное определение пола. Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому мужской.
У животных можно выделить следующие четыре типа хромосомного определения пола.
Наследование признаков, сцепленных с полом. Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.
Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.
У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов красноглазые, половина белоглазые.
Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме (ХА красный цвет глаз, Ха белый цвет глаз), а Y-хромосома таких генов не содержит.
Половые хромосомы, или гоносомы хромосомы, набор которых отличает мужские и женские особи у животных и растений с хромосомным определением пола.
По традиции половые хромосомы в отличие от аутосом, обозначаемых порядковыми номерами, обозначаются буквами X, Y, Z или W. Отсутствие половой хромосомы обозначается цифрой 0. Как правило, один из полов определяется наличием пары одинаковых половых хромосом (XX или ZZ), а другой комбинацией двух непарных хромосом или наличием только одной половой хромосомы (XY, ZW, X0, Z0). Пол, имеющий две одинаковые половые хромосомы, продуцирует гаметы, не отличающиеся по половым хромосомам, этот пол называется гомогаметным. У пола, определяемого набором непарных половых хромосом, половина гамет несёт одну половую хромосому, а половина гамет другую половую хромосому, этот пол называется гетерогаметным. У человека, как у всех млекопитающих, гомогаметный пол женский (XX), гетерогаметный пол мужской (XY). У птиц, напротив, гетерогаметный пол женский (ZW), а гомогаметный мужской (ZZ). В некоторых случаях пол определяется не одной, а несколькими парами половых хромосом. Например, утконос имеет пять пар половых хромосом, женский пол задаётся комбинацией XXXXXXXXXX, а мужской XYXYXYXYXY.
У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомного определения пола:
самки гомогаметны, самцы гетерогаметны
самки гетерогаметны, самцы гомогаметны
У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса содержащие по одной X (Z) хромосоме. У особей гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Z и W), либо только одна X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.
У многих видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. К ним относятся млекопитающие, некоторые насекомые, некоторые рыбы и некоторые растения и др.
Гомогаметный мужской пол и гетерогаметный женский имеют птицы, бабочки и некоторые рептилии.
14. Особенности наследования признаков, сцепленных с полом. Понятие о признаках ограниченных полом и зависимых от пола. Практическое использование признаков, сцепленных с полом.
Гены могут находиться на половых хромосомах, в этом случае говорят, что они сцеплены с полом. Наследование, сцепленное с полом, имеет некоторые важные особенности. Дело в том, что У-хромосома несет гораздо меньше генов, чем Х-хромосома. Это обстоятельство приводит к тому, что для многих генов наХ-хромо-соме нет соответствующих аллелей на У-хромосоме. В результате если у мужчины наХ-хромосоме оказывается рецессивный аллель, то он проявится в фенотипе. Например, имеется наследственная форма гемофилии - болезни, связанной с нарушением нормальной свертываемости крови. При этих нарушениях у больного возникают длительные кровотечения даже при незначительном повреждении кровеносных сосудов. Существуют две формы гемофилии - А и В, я обе определяются рецессивными генами, локализованными в Х-хромосоме.
От наследования, сцепленного с полом, надо отличать наследование, ограниченное полом. В случае наследования, ограниченного полом, гены, определяющие развитие признака, находятся в аутосомах, но на их проявление в фенотипе сильно влияет пол. Например, наследственная предрасположенность к раннему облысению связана с геном, локализованным в аутосоме. Однако его активность сильно зависит от уровня тестостерона (мужской половой гормон). В связи с этим у мужчин этот ген ведет себя как доминантный, а у женщин - как рецессивный.
Так, начнем с признаков сцепленных с полом. Так наследуется гемофилия, дальтонизм, и т.д. Эти болезни в большинстве случаев вознакают у мужчин, и только в случае 2 на рисунке болезнь возникнет у женщины. Можно предупредить наследственные заболевания.
При половом размножнии происходит коньюгация хромасом (в профазе первого деления мейоза если быть точным). Так вот, при коньюгации хромасомы скрещиватюся и меняются гомологичными участками. Отсюда и различные комбинации генов и разнообразие, благодаря которым увеличивается жизнеспособность особи. Все это возможно только при ПОЛОВОМ размножении.
15. Молекулярные основы наследственности. Репликация ДНК. Репликация теломер. Амплификация ДНК у дрозофилы.
Материальным носителем наследственности является молекула дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК состоит из двух нитей, закрученных друг относительно друга. Каждая из цепочек образована отдельными блоками - нуклеотидами, в последовательности которых закодирована генетическая информация. Информация считывается лишь с одной нити, вторая способствует более компактной упаковке огромной молекулы в клетке.
Клетка обладает способностью на основе ДНК строить молекулы белков. Генетический код универсален - у всех организмов, от простейших до самых высоко организованных определенная последовательность нуклеотидов "воплощается" в идентичную структуру белка. Функции белков в организме необыкновенно разнообразны, их специфика прямо или опосредованно влияет на любое свойство индивидуума.
Реплика́ция ДНК (от лат. replicatio возобновление) процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 1520 различных белков, называемый реплисомой (англ. replisome).
Репликация теломер. Теломеры концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию.
У большинства эукариот теломеры состоят из специализированной линейной хромосомной ДНК, состоящей из коротких тандемных повторов. В теломерных участках хромосом ДНК вместе со специфически связывающимися с теломерными ДНК-повторами белками образует нуклеопротеидный комплекс конститутивный (структурный) теломерный гетерохроматин. Теломерные повторы весьма консервативные последовательности, например повторы всех позвоночных состоят из шести нуклеотидов TTAGGG, повторы всех насекомых TTAGG, повторы большинства растений TTTAGGG.
В каждом цикле деления теломеры клетки укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого конца. Она в состоянии лишь добавлять нуклеотиды к уже существующей 3-гидроксильной группе. По этой причине ДНК-полимераза нуждается в праймере, к которому она могла бы добавить первый нуклеотид. Данный феномен носит название концевой недорепликации и является одним из важнейших факторов биологического старения. Тем не менее, вследствие этого явления теломеры должны укорачиваться весьма медленно - по несколько (3-6) нуклеотидов за клеточный цикл, т.е. за количество делений, соответствующее пределу Хейфлика, они укоротятся всего на 150-300 нуклеотидов.
В настоящее время предложена эпигенетическая теория старения, которая предполагает, что эрозия теломер ускоряется в десятки и сотни раз из-за рекомбинаций в их ДНК, вызванных функционированием клеточных систем репарации ДНК. Активность данных систем инициируется повреждением ДНК, обусловленном прежде всего дерепрессирующимися с возрастом мобильными элементами генома, что и предопределяет старение как биологический феномен.
Существует специальный фермент теломераза, который при помощи собственной РНК-матрицы достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных клеток теломераза заблокирована, однако активна в стволовых и половых клетках.
Амплификация - лат. amplificatio - увеличение, распространение.
Амплификация ДНК - это любой процесс, увеличивающий число копий какого-либо гена или последовательности ДНК гораздо выше обычного для организма уровня.
Одним из наиболее продуктивных способов амплификации является репликация по способу катящегося кольца ( Bostock, 1986 ), которая используется в ооцитах амфибий. В этом случае формируется экстрахромосомальная кольцевая ДНК, производящая множество последовательностей, содержащих тандемные повторы исходной копии. Еще одним способом амплификации является проскальзывающая репликация, когда ДНК-полимераза в ходе процесса репликации возвращается назад и использует уже реплицированный участок, производя, таким образом, большое количество тандемно - повторенных копий.
16. Молекулярные основы наследственности. Репарация ДНК. Прямая, эксцизионная и пострепликативная репарация ДНК.
Материальным носителем наследственности является молекула дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК состоит из двух нитей, закрученных друг относительно друга. Каждая из цепочек образована отдельными блоками - нуклеотидами, в последовательности которых закодирована генетическая информация. Информация считывается лишь с одной нити, вторая способствует более компактной упаковке огромной молекулы в клетке.
Клетка обладает способностью на основе ДНК строить молекулы белков. Генетический код универсален - у всех организмов, от простейших до самых высоко организованных определенная последовательность нуклеотидов "воплощается" в идентичную структуру белка. Функции белков в организме необыкновенно разнообразны, их специфика прямо или опосредованно влияет на любое свойство индивидуума.
Репарация (от лат. reparatio восстановление) особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.
У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию прямая, эксцизионная и пострепликативная. У эукариот к ним добавляется еще Miss-mathe и Sos-репарация.
Прямая репарация
Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина.
Эксцизионная репарация
Эксцизионная репарация (англ. excision вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы.
Пострепликативная репарация
Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA.
Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.
17. Молекулярные основы наследственности. Генетическая рекомбинация у вирусов, прокариот и эукариот. Модели Холдея, Мезельсона-Реддинга, Жостака. Генная конверсия. Сайт-специфическая рекомбинация.
Материальным носителем наследственности является молекула дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК состоит из двух нитей, закрученных друг относительно друга. Каждая из цепочек образована отдельными блоками - нуклеотидами, в последовательности которых закодирована генетическая информация. Информация считывается лишь с одной нити, вторая способствует более компактной упаковке огромной молекулы в клетке.
Клетка обладает способностью на основе ДНК строить молекулы белков. Генетический код универсален - у всех организмов, от простейших до самых высоко организованных определенная последовательность нуклеотидов "воплощается" в идентичную структуру белка. Функции белков в организме необыкновенно разнообразны, их специфика прямо или опосредованно влияет на любое свойство индивидуума.
Рекомбинация генетическая, реорганизация генетического материала, обусловленная обменом отдельными сегментами (участками) двойных спиралей ДНК.
Генетическая рекомбинация - главный фактор непостоянства генома, основа большинства его изменений, обусловливающая естеств. отбор, микро- и макроэволюции.
Различают два основных типа генетической рекомбинации: 1) "законную" (общую, или гомологичную), при которой происходит обмен гомологичными (одинаковыми) участками молекул ДНК; 2) "незаконную" (негомологичную), в основе которой лежит обмен негомологичными участками ДНК.
Если обмен между разными молекулами ДНК осуществляется только в участках со строго определенными нуклеотидными последовательностями, генетическая рекомбинация называют сайт-специфичной, если в любых местах молекулы ДНК-сайт - неспецифичной.
Законная генетическая рекомбинация обычно сайт-неспецифична, хотя довольно часто у бактерий и высших организмов она может проявлять черты сайт-специфичности, т. е. избирательности к определенным нуклеотидным последовательностям ДНК (т. наз. горячие точки рекомбинации). Такие последовательности резко повышают частоту генетическая рекомбинация в тех участках генома, в которых они локализованы. Незаконная генетическая рекомбинация может быть как сайт-неспецифичной, так и весьма специфичной относительно участка обмена.
Законная генетическая рекомбинация наблюдается, например, между двумя копиями какой-либо хромосомы. У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) наиболее типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате которого происходит уменьшение числа хромосом в дочерних клетках - основная стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже-законная генетическая рекомбинация осуществляется при обычном делении клеток (с сохранением числа хромосом)-митозе.
У прокариот (бактерии и синезеленые водоросли), у которых отсутствует мейоз, а геном представлен только одной молекулой ДНК, законная генетическая рекомбинация сопряжена с такими естественными. формами обмена и переноса генетического материала, как конъюгация (хромосомы из донорской клетки передаются в рециниентную через протоплазменный мостик-пиль), трансформация (ДНК проникает из среды через клеточную оболочку), трансдукция (передача ДНК осуществляется бактериофагом, или вирусом бактерий). У вирусов генетическая рекомбинация происходит при заражении ими клеток. После лизиса клетки обнаруживаются вирусы с рекомбинантными ДНК. У прокариот генетическая рекомбинация осуществляют специальные клеточные белки (многие из них ферменты).
В основе молекулярного механизма законной генетической рекомбинации лежит принцип "разрыв-воссоединение" двух гомологичных молекул ДНК. Этот процесс (его наз. кроссинговер) включает несколько промежуточных этапов: 1) узнавание участков; 2) разрыв и реципрокное (крест-накрест) воссоединение молекул: замена одних цепей гомологичными; 3) устранение ошибок, возникающих в результате неправильного спаривания участков. Точка обмена может возникать на любом участке гомологичных нуклеотидных последовательностей хромосом, вовлекаемых в обмен. При этом в точке обмена обычно не происходит изменения нуклеотидных последовательностей. Точность разрыва и воссоединения чрезвычайно велика: ни один нуклеотид не утрачивается, не добавляется и не превращается в к.-н. другой.
Основой всех предложенных схем генетическая рекомбинация послужила так называемая модель Холлидея, согласно которой генетическая рекомбинация начинается с разрыва только одной из двух цепей спирали ДНК. Вслед за разрывом один конец цепи вытесняется другим концом, который наращивается ДНК-полимеразой. Вытесненный конец разорванной цепи спаривается со второй молекулой ДНК (образуется т. наз. гетеродуплекс), в свою очередь вытесняя там участок одной из ее цепей. В конце концов одиночные гомологичные цепи обмениваются реципрокно. После этого первонач. этапа спаривания две гомологичные спирали ДНК удерживаются вместе благодаря перекрестному обмену цепями-по одной от каждой спирали (см. рис.). Точка перекрестка далее может мигрировать, в результате чего дополнительно образуются или растут гетеродуплексные участки на обеих молекулах ДНК.
Структура с перекрещенными цепями может существовать в разл. стереоизомерных формах, возникающих в результате вращения составляющих ее элементов относительно друг друга. Изомеризация, которая как и др. стадии генетической рекомбинации контролируется генетически, изменяет положение двух пар цепей: две ранее перекрещивавшиеся цепи становятся неперекрещивающимися и наоборот.
Для того чтобы вновь восстановились две отдельные спирали ДНК и тем самым прекратился процесс спаривания, в каждой из двух перекрещенных цепей должен произойти разрыв. Если он происходит до того, как прошла изомеризация, то две исходные спирали ДНК отделяются друг от друга так, что у каждой из них генетически перестроенной оказывается только одна цепь. Если же разрыв двух перекрещенных цепей происходит после изомеризации, то обе молекулы ДНК претерпевают полную реорганизацию: часть каждой исходной спирали оказывается присоединенной (ступенчатым соединением) к части другой спирали.
Законная генетическая рекомбинация приводит к возникновению новых комбинаций специфических аллелей (различной формы одного и того же гена, обусловливающие различные варианты развития одного и того же признака-группы
Незаконная генетическая рекомбинация имеет выраженный локальный характер. В этом случае весь процесс с его начальным этапом узнавания, который сводит вместе две спирали ДНК, направляется особым рекомбинац. ферментом; спаривания оснований здесь не требуется (даже в тех случаях, когда это все-таки происходит, в процессе участвует не более неск. пар оснований). Интеграция транспозонов, плазмид и умеренных фагов в бактериальный геном может служить примером генетическая рекомбинация этого типа. Подобный механизм существует также и в эукариотич. клетках.
При незаконной генетической рекомбинации в обмен вступают короткие специфические нуклеотидные последовательности одной или обеих спиралей ДНК, участвующих в этом процессе. Таким образом такая генетическая рекомбинация изменяет распределение нуклеотидных последовательностей в геноме-соединяются участки ДНК, которые до этого не располагались в непрерывной последовательности рядом друг с другом. Подобный обмен гетерологич. участками ДНК приводит к возникновению вставок, делеций, дупликаций и транслокаций генетического. материала.
У эукариот перемещения разных генетич. элементов, сопряженные с незаконной генетическая рекомбинация, осуществляются преим. не в мейозе, когда контактируют парные хромосомы. а во время обычных клеточных циклов (митозе). Незаконная генетическая рекомбинация играет важную роль в эволюционной изменчивости, т. к. благодаря ей осуществляются самые разнообразные, нередко кардинальные, перестройки генома и, следовательно, создаются предпосылки для качеств. изменений в эволюции данного организма.
Модель Холидея. Наблюдая в микроскоп хиазмы, анализируя их строение, можно предположить, что процесс рекомбинации начинается с образования двух одноцепочечных разрывов в разных молекулах ДНК. Именно такую гипотезу высказал Робин Холлидей, предложивший в 1964 г. стройную и изящную модель рекомбинационных процессов у эукариот, основанную на принципе «разрыв-воссоединение пар гомологичных молекул ДНК». Согласно этой модели необходимым этапом рекомбинации является конъюгация, т.е. попарное сближение сестринских хроматид гомологичных хромосом с образованием взаимостабильных структур - бивалентов, при котором может происходить обмен генетическим материалом. Процесс обмена одноцепочечными участками между родительскими нитями ДНК состоит из нескольких этапов. Формирование структуры Холлидея. 1. После репликации ДНК и, следовательно, удвоения хромосом, в ранней профазе мейоза наблюдается попарное сближение сестринских хроматид гомологичных хромосом с образованием бивалентов (т.е. конъюгация). 2. В каждой молекуле ДНК на двух сближенных гомологичных участках несестринских хроматид фермент никаза делает симметричные одноцепочечные разрезы. 3. Свободные концы цепей около разрывов отделяются от комплементарных партнеров и перебрасываются на бреши, образовавшиеся в гомологичных молекулах ДНК. 4. Концы переброшенных цепей лигируются с концами цепей реципиентных молекул ДНК, при этом образуется крестообразная структура Холлидея с гибридным районом, гетеродуплексом. Таким образом, две претерпевшие рекомбинацию хроматиды состоят в области концевых отделов из родительских цепей ДНК, а в середине из участков, полученных от противоположных родительских молекул. 5. Центр структуры Холлидея, состоящей из двух полухиазм, может перемешаться вдоль спаренных цепей ДНК подобно замку застежки «молния», размыкая водородные связи между комплементарными основаниями внутри одной родительской молекулы ДНК и замыкая соответствующие связи между основаниями цепей из двух разных молекул ДНК. В результате такой миграции полухиазм в обеих родительских молекулах ДНК могут образовываться протяженные гетеродугшексные участки (у дрожжей зона гибридной ДНК достигает 1 000 п.н). Разрешение структуры Холлидея. 6. Структура Холлидея, состоящая из двух пар цепей (одна пара пересекающихся, другая - непересекающихся), спонтанно и под контролем может подвергаться изомеризации. Чтобы восстановить биспиральную структуру обеих молекул ДНК и таким образом закончить процесс их конъюгации, пересекающиеся цепи должны быть разрезаны. Еще одна изомеризация с поворотом одной из полухиазм вокруг точки перекреста на 180° приводит к образованию второй изомерной формы структуры Холлидея. 7. При разрезании полученного изомера по горизонтальной оси (в цепях, претерпевших обмен) две образовавшиеся молекулы ДНК не являются рекомбинантными по родительским маркерам (АВ и ab), фланкирующим область перекреста, но обе содержат по гетеродуплексному участку. 8. При разрезании по вертикальной оси (в интактных цепях) образовавшиеся линейные молекулы рекомбинантны по родительским генетическим маркерам, расположенным по обеим сторонам от гетеродуплексного участка ДНК. Этапы 7 и 8 завершаются лигированием концов фрагментов, составляющих рекомбинантные и нерекомбинантные молекулы.
Модель Мезельсона-Реддинга. Модель Жостака в генетике. Один из не укладывающихся в модель Холлидея фактов асимметричный обмен цепями ДНК, наблюдающийся у ряда грибов Ascomycetes. Для устранения этого несоответствия в середине 70-х годов теперь уже прошлого XX века М. Мезельсон и К. Рэддинг модифицировали модель Холлидея, предположив, что в начале рекомбинации гетеродуплексный участок образуется не на двух, а только на одной молекуле ДНК. После образования одноцепочечного разрыва в ДНК одной хроматиды происходит репарационный синтез и вытеснение свободного конца разорванной цепи. Вытесняемый конец внедряется в структуру двойной спирали партнера, в свою очередь, вытесняя там участок одной из ее цепей, в результате чего образуется петля. Петля расщепляется нуклеазами, и с концом, образовавшимся при ее деградации, ковалентно соединяется конец внедрившейся цепи. В то же время в ДНК, претерпевшей одноцепочечный разрыв, как результат репарационного синтеза формируется асимметричный гетеродуплекс. Изомеризация приводит к образованию структуры Холлидея. Миграция полухиазм порождает симметричные участки гетеродуплексной ДНК в обоих партнерах. Разрешение структуры Холлидея при расщеплении в области перекреста может завершиться рекомбинацией фланкирующих маркеров или сохранением типа сцепления, характерного для родительских молекул ДНК.
Однако двухцепочечные разрывы ДНК постоянно возникают в процессе нормальной жизнедеятельности клеток. У дрожжей они играют ключевую роль в инициации мейотической рекомбинации. Последовательность событий, приводящих к рекомбинации в данном случае, более сложна, чем в модели Холлидея. 1-2. Вначале частичная деградация разорванных сестринских хроматид под действием экзонуклеаз приводит к образованию выступающих 3'-концов. 3. Затем одна из цепей взаимодействует с несестринской хроматидой и замещает в ней такую же цепь, которая, в свою очередь, образует гетеродуплекс с оставшимся одноцепочечным участком. Область спаривания расширяется, дополнительный синтез восполняет утерянную информацию. 4. В результате возникает промежуточный продукт, содержащий с обеих сторон от сайта двухцепочечного разрыва по две полухиазмы Холлидея. Кроме того, в его составе есть два гетеродуплексных участка. 5. Этот промежуточный продукт разрешается на конечные продукты рекомбинации под действием резольвазы, разрезающей полухиазмы либо в паре цепей, находящихся в точке перекреста, либо в интактной паре. Генная конверсия (gene conversion) [греч. gen(os) род, происхождение; лат. conversio изменение, превращение] рекомбинации между отдельными частями генов, замена некоторой нуклеотидной последовательности ДНК гомологичной ей последовательностью нуклеотидов. Процесс Г.к. обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. В настоящее время используется следующая классификация Г.к.: а) Г.к. между сестринскими хромосомами по гомологичному локусу; б) Г.к. между различными локусами в одной или разных хромосомах. Конверсия такого типа имеет широкое распространение в различных мультигенных семействах. Само явление впервые описано Г. Книпом у нейроспоры в 1928 г., а термин «Г.к.» предложен Г. Винклером в 1930 г. Длительное время термин «Г.к.» применяли только к нарушению стандартного менделевского расщепления 2А : 2а в тетрадах аскоспор у грибов-аскомицетов, обнаруженному К. Линдегреном в 1949 г. В дальнейшем его распространили на все процессы, в которых происходит превращение одного аллеля в другой путем коррекции рекомбинационного гетеродуплекса.
Таким образом, термин генная конверсия означает замену некоторой последовательности ДНК гомологичной ей последовательностью . Процесс генной конверсии обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. Как правило, они обычно принадлежат двум двуцепочечным молекулам ДНК ( Baltimore, 1981 ; Meselson, Radding, 1975 ).
Сайт-специфическая рекомбинация (site-specific recombination) [англ. site участок, местоположение; лат. specificus видоопределяющий, видовой; лат. re- приставка, означающая возобновление, повторность действия, и combinatio соединение] объединение путем разрыва и последующего соединения двух молекул ДНК или участков одной молекулы, происходящее по определенным гомологичным нуклеотидным последовательностям с помощью рекомбиназ. С.-с.р. широко распространена у прокариот и низших эукариот и обычно происходит между определенными нуклеотидными последовательностями ДНК в пределах очень коротких участков гомологии (1530 п.н.), за счет взаимодействия белков, которые специфически связываются с этими сайтами. Напр., она обеспечивает интеграцию (включение) ДНК умеренных фагов в хромосомы бактерий, инверсию (изменение ориентации) отдельных участков ДНК в хромосомах бактерий и бактериофагов и в 2-микронной плазмиде дрожжей, а также другие процессы, играющие важную роль в циклах развития фагов и бактерий. Редкий, если не единственный, пример С.-с.р. у многоклеточных животных перестройки в нуклеотидных последовательностях ДНК, кодирующих иммуноглобулины (см. Иммуноглобулины). Все изученные ферменты, непосредственно осуществляющие С.-с.р. у фагов и бактерий, а также белок, катализирующий инверсию в 2-микронной плазмиде дрожжей, являются сайт-специфическими топоизомеразами I.
18.Молекулярные основы наследственности. Транскрипция ДНК. Структура транскрибируемого участка ДНК у про- и эукариот.
Систематическое изучение наследственности начиналось со сложных в генетическом отношении объектов - растений и животных. Благодаря этим ранним исследованиям была сформулирована концепция неделимого гена как функциональной единицы наследственности и принято положение, что перенос генов от одного поколения к другому подвержен действию разных случайных факторов. Однако до понимания химической природы генов и механизма их функционирования было еще далеко. Исследование генетических молекул и тонких механизмов регуляции наследственности стало возможным лишь тогда, когда в качестве экспериментальных моделей начали использоваться бактерии и вирусы, о существовании которых первые генетики даже не подозревали. Только благодаря этим организмам впервые было показано, что дезоксирибонуклеиновая кислота, рибонуклеиновая кислота и белок - универсальные детерминанты генетического поведения. Стремительность дальнейшего прогресса в этой области и убедительность полученных результатов стали реальными благодаря особым биологическим свойствам микроорганизмов, которые позволяли проводить манипуляции, необходимые для анализа генетических структур. Аналогичные аналитические исследования более сложных генетических систем тогда были невозможны, поэтому на животных и растения этот прогресс не распространялся. Развитие технологии рекомбинантных ДНК разрушило труднопреодолимые технические и концептуальные барьеры на пути расшифровки и понимания сложных генетических систем. Неудивительно, что наши взгляды на структуру и функцию генов значительно изменились, а новое мышление в свою очередь радикально изменило перспективы биологии.
Некоторые предпосылки последних достижений можно обнаружить, изучая историю создания фундаментальных положений о наследственности и их последующих изменений. Основным препятствием на пути формирования единых принципов наследственности служило исключительное разнообразие живых форм. Первым, кто проследил аналогии между процессами воспроизведения животных и растений и ввел слова "самец" и "самка" применительно к участникам этого процесса, был ученик Аристотеля - Теофраст. Еще раньше греческие философы V в., воззрения которых оказали заметное влияние на последующее развитие научных идей, пришли к заключению, что, поскольку дети похожи на обоих родителей, оба пола вносят определенный вклад в формирование нового индивидуума. Они полагали, что этим вкладом является своего рода информация, сконцентрированная в мужском или женском "семени" и поступившая туда из разных частей тела зрелых индивидуумов. Демокрит, мнение которого не было общепринятым, предположил, что информация заключена в частицах, размер, форма и строение которых влияют на свойства потомства.
В начале XIX в., после создания более совершенных микроскопов, основной унифицирующей единицей в биологии стала клетка. Все организмы могли рассматриваться как одиночные, свободно живущие клетки или как сообщество клеток. Постоянное усовершенствование оптических систем микроскопа и новаторские методы подготовки и окрашивания материала позволяли все более детально описывать содержимое клеток не имеют ядра. Было установлено, что новые клетки появляются только в результате деления предсуществующих клеток.
В настоящее время все живые организмы подразделяют на две группы. Первая-эукариоты - многоклеточные организмы, клетки которых содержат оформленное ядро; внутри ядра заключены хромосомы-хранители генетической информации. Вторая - прокариоты - представлена одноклеточными бактериями, лишенными ядра, с хромосомами, находящимися в цитоплазме. За немногими исключениями, все клетки многоклеточного организма содержат одинаковый полный набор хромосом. Эукариотические организмы имеют более сложное строение и, как правило, содержат больше генетической информации. Кроме того, эукариоты способны к истинному половому воспроизведению и для многих из них этот способ обязателен для образования потомства. Одним из важных моментов процесса полового размножения является наличие в дочерних ядрах двух копий каждой хромосомы; такие эукариотические клетки называются диплоидными. Прокариоты, содержащие только одну хромосому, называются гаплоидами. При некоторых обстоятельствах у прокариот наблюдаются процессы, аналогичные по результату процессу оплодотворения у эукариот, вследствие которых они могут стать частично диплоидными; эти процессы широко используются в генетических исследованиях.
Сразу после принятия клеточной теории в изучении живых организмов выделились три направления: исследование хромосом, статистический анализ наследования одиночных признаков, выделение и характеристика компонентов хромосом.
В анафазе пары сестринских хроматид разделяются и каждый член пары движется по направлению к полюсу веретена. В это же время и нити веретена, и клетка начинают растягиваться. Когда в телофазе хроматиды достигают противоположных полюсов, вокруг каждого набора хроматид формируется новая ядерная оболочка и начинается деконденсация хромосом. Наконец, плазматическая мембрана разделяет два ядра и окружающую цитоплазму на две клетки. Хромосомы приобретают растянутую, диффузную форму, типичную для интерфазы, и процесс деления начинается снова.Б. Микрофотографии митоза в клетках лилии Haemanthus katherinae. Клетки окрашены иммунозолотом/серебром. Увеличение 600. правления параллельно развивались и превращались в важные научные дисциплины до момента их слияния в середине нашего века.
Транскрипция синтез РНК с использованием ДНК в качестве матрицы. В результате возникает 3 типа РНК: - матричная (мРНК); - рибосомная (рРНК); - транспортная (тРНК). Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом ДНК-зави-симой-РНК-полимеразой трех типов и рядом так называемых вспомогательных факторов. Одномоментно транскрибируется не вся молекула ДНК, а лишь отдельные ее отрезки. Они называются единицами транскрипции, или транскриптонами. По сути транскриптон это и есть ген с точки зрения молекулярной биологии. Напомним, что промотор участок ДНК длиной в несколько десятков нуклеотидов, куда присоединяется РНК-полимераза и откуда начинается транскрипция. Терминатор участок ДНК, содержащий сигнал (последовательность) окончания транскрипции. Поскольку у бактерий оперонная организация генома, у них транскрибируются сразу несколько генов, объединенных одной функцией. У эукариот за один раз транскрибируется только один ген. Транскрипция, как и репликация ДНК, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. Аналогично репликации, при транскрипции полимераза (здесь уже РНК-полимераза) шаг за шагом подбирает и “сшивает” нуклеотиды комплементарные матричной последовательности. Отличительной особенностью транскрипции является то, что в РНК нет тимидина, его замещает уридин; соответственно при транскрипции аденозин молекулы ДНК спаривается с уридином синтезируемой РНК. На время транскрипции двойная цепь ДНК разрывается и синтез РНК осуществляется по одной цепи ДНК, которая называется кодирующей. Вторая цепь является некодирующей. Какая цепь будет кодирующей, определяется тем, на какой из них находится промотор. В процессе транскрипции образуется гибрид одноцепочечной ДНК с РНК, который существует короткое время и очень быстро распадается, при этом восстанавливается нативная двуцепочечность ДНК. Цикл транскрипции состоит из трех стадий: - инициации; - элонгации; - терминации. Им предшествует узнавание промотора или подготовительная стадия, на которой РНК-полимераза узнает промотор и связывается с ним. Одновременно происходит локальное расплетение ДНК примерно на 10 пар нуклеотидов. 1 Инициация. На этой стадии происходит образование нескольких начальных звеньев РНК (так называемый синтез критической длины). До этого комплекс полимераза-ДНК не стабилен и способен распадаться. 2. Элонгация. Продолжается дальнейшее расплетение ДНК и синтез РНК по кодирующей цепи. Он, равно как и синтез ДНК, осуществляется в направлении 5- 3. 3. Терминация. Как только полимераза достигает терминатора, она немедленно отщепляется от ДНК, локальный гибрид ДНК-РНК разрушается и новосинтезированная РНК транспортируется из ядра в цитоплазму. На этом транскрипция заканчивается. Созревание РНК Все образовавшиеся РНК непосредственно после трансляции не способны, функционировать, так как они синтезируются в виде молекул-предшественников: пре-р, пре-т и пре-м РНК. Чтобы начать работать, пре-РНК должны подвергнуться процессингу (созреванию). Под процессингом понимают совокупность биохимических реакций, при которых пре-РНК укорачиваются, подвергаются химическим модификациям, в результате которых образуются зрелые РНК. Процессинг т- и рРНК осуществляется по одинаковому плану. В основном вырезаются лишние фрагменты с 3'- и 5'-концов и химически модифицируются азотистые основания. Процессинг мРНК гораздо сложнее. Интересно, что мРНК прокариот (бактерий) процессингу не подвергаются вообще это единственные РНК, способные работать сразу после синтеза. У эукариот Процессинг мРНК осуществляется многоступенчато и включает модификацию 3'- и 5'- концов, а также вырезание интронов. В последнем процессе участвует четвертый известный тип РНК малая ядерная РНК (мяРНК). которая удерживает концы, экзонов при вырезании интронов. |
19.Молекулярные основы наследственности. Трансляция РНК. Генетический код и его свойства. Стадии трансляции.
Трансляция (от лат. translatio перевод) процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.
Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.
Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон CCA, а к этой тРНК будет присоединяться только аминокислота глицин).
Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.
Процесс трансляции разделяют на
Свойства генетического кода:
• Генетический код триплетен.
Триплет (кодон) последовательность трех нуклеотидов, кодирующая одну аминокислоту.
• Вырожденность генетического кода обусловлена тем, что одна аминокислота может кодироваться несколькими триплетами (аминокислот 20, а триплетов 64), исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Три триплета ТК это стоп-сигналы, прекращающие синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), выполняет функцию инициирования (возбуждения) считывания и не кодирует аминокислоту, если стоит в начале цепи ДНК.
• Однозначность каждому данному кодону соответствует одна и только одна определенная аминокислота. Следует отчетливо понимать принципиальное отличие двух важнейших свойств вырожденности и однозначности, одновременно присущих генетическому коду.
• Код не перекрывается, т.е. в последовательности оснований АБВГДЕЖЗИК первые три основания, АБВ, кодируют аминокислоту 1, ГДЕ аминокислоту 2 и так далее. Если бы код был перекрывающимся, то кислоту 2 могла бы кодировать последовательность ВГД. В коде отсутствуют запятые, т.е. нет знаков, отделяющих один кодон от другого.
• Генетический код универсален, т.е. вся информация в ядерных генах для всех организмов, обладающих разным уровнем организации (например, бабочка, ромашка, рак, лягушка, удав, орел, человек), кодируется одинаково.
Стадии трансляции:
Инициация. Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона (последовательность Шайна Дальгарно у прокариот и последовательность Козак у эукариот). Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.
Процесс инициации обеспечивается специальными белками факторами инициации (англ. initiation factors, IF; инициаторные факторы эукариот обозначают eIF, от англ. eukaryotes).
Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.
Элонгация. В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu у прокариот) переносит аминоацилированную («заряженную» аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует перенос пептида, связанного с тРНК в Р-сайте, в А-сайт и образование пептидной связи с находящимся там аминокислотным остатком. Таким образом растущий пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G у прокариот) катализирует так называемую транслокацию. Транслокация перемещение рибосомы по мРНК на один триплет (примерно 20 ангстрем), в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). тРНК из E-сайта диссоциирует спонтанно, после чего рибосома готова к новому циклу элонгации.
Терминация. Терминация окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.
20.Молекулярные основы наследственности. Регуляция синтеза белка у прокариот и эукариот.
У прокариот, если какой-нибудь участок транскрибируется, то он автоматически транслируется, т. е. регуляция синтеза белка у прокариот осуществляется на уровне транскрипции.
У эукариот транскрипция и трансляция пространственно разделены (транскрипция в ядре, трансляция в цитоплазме) , и регуляция синтеза белка происходит в три этапа
Регуляция синтеза белка у эукариот осуществляется в основном на уровне трансляции, когда регуляторные вещества присоединяются к управляющим участкам 3-НТО и 5-НТО.
5'-НТО отвечает за частоту трансляции
3'-НТО отвечает за время жизни иРНК в цитоплазме.
Транскрипция у эукариот регулируется почти так же, как у прокариот. Разница: у эукариот транскрипция может не только подавляться репрессорами, присоединенными к операторам, но и стимулироваться активаторами, присоединенными к энхансерам опероны у эукариот пространственные, т. е. участок, к которому присоединен репрессор, может находиться не в том же участке хромосомы, где лежат промотор и структурные гены, и приближаться к ним за счет укладки ДНК в интерфазном ядре.
21.Развитие представлений о гене. Геном вирусов.
Ген функциональная единица наследственного материала. Ген участок молекулы геномной нуклеиновой кислоты, характеризуемый специфической для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функций других генов, и способный изменяться путем мутирования.
От гипотетических дискретных наследственных факторов до локализованных в хромосомах и молекулах ДНК генов. Долгое время ген рассматривали как минимальную часть наследственного материала (генома), обеспечивающую развитие определенного признака у организмов данного вида. Однако каким образом функционирует ген, оставалось неясным. Термин ген предложен В. Иогансеном в 1909 году, однако проникновение в его сущность связано с именем Г. Менделя, который еще в 1860-х гг. ввел термин «наследственный фактор» и на основе точных экспериментов сделал гениальные обобщения относительно свойств и поведения наследственных факторов при передаче информации от родителей потомкам, которые в последующем легли в основу теории гена. Это следующие фундаментальные свойства наследственных факторов генов:
1) наличие альтернативных наследственных факторов для развития каждого конкретного признака организма (в современном представлении доминантный и рецессивный аллели гена).
2) Парность наследственных факторов, определяющих развитие признака (у диплоидного организма). Существенный вывод: наследуются не признаки, а от родителей к потомкам передаются вместе с гаметами гены. Из этих двух положений был развит принцип аллелизма.
3) Относительное постоянство гена.
Мендель не имел никаких сведений о местонахождении наследственных факторов в клетке, и тем более об их химической природе и механизме влияния на признак, т. е. наследственный фактор в начале 20 века выступал как условная единица наследственности.
Дальнейшая конкретизация представлений о гене связана с работами школы американского биолога Т. Х. Моргана. Введя в генетические исследования плодовую мушку-дрозофилу, удалось существенно увеличить разрешающую способность генетического анализа и на основе синтеза генетических и цитологических представлений доказать существование материальной структуры наследственности хромосом, в которых локализованы гены.
Доказательствами хромосомной локализации генов явились: открытие генов, наследующихся сцеплено с полом (локализация генов в половых хромосомах, X или Y); сцепленное наследование группы признаков. Было показано наличие определенного числа групп сцепления генов, соответственно гаплоидному числу хромосом конкретного биологического вида. Кроме того, были получены генетические и цитологические доказательства кроссинговера обмена генами между гомологичными хромосомами, приводящего к рекомбинации генов. Величина генетической рекомбинации (процент кроссинговера-перекреста) отражает расстояние между генами одной группы сцепления: чем дальше отстоят друг от друга гены, тем больше процент кроссинговера.
Таким образом, было доказано, что гены в хромосоме располагаются в линейном порядке, и каждый ген имеет свое определенное местоположение локус. Соответственно открылась возможность построения плана взаимного расположения в хромосоме известных генов с указанием относительных расстояний между ними, выраженных в процентах перекреста (генетические карты) и идентифицировать местоположение гена в хромосоме (цитологические карты).
В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза, которую можно выразить формулой «Один ген - один фермент». Согласно этой гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.
Позднее было показано, что многие белки имеют четвертичную структуру, в образовании которой принимают участие разные пептидные цепи. Поэтому формула, отражающая связь между геном и признаком, была несколько преобразована: «Один ген - один полипептид».
Изучение химической организации Э. Чаргаффом наследственного материала и процесса реализации генетической информации привело к формированию представления о гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК, которая кодирует аминокислотную последовательность пептида или имеет самостоятельное значение (тРНК и рРНК).
Также ценные сведения о структуре ДНК дали результаты рентгеноструктурного анализа. Рентгеновские лучи, проходя через кристалл ДНК, претерпевают дифракцию, т.е. отклоняются в определенных направлениях. Степень и характер отклонения зависят от структуры самой молекулы. Анализ дифракционных рентгенограмм привел к заключению, что азотистые основания уложены на подобие стопки тарелок. Рентгенограммы позволили выявить в ДНК 3 главных периода: 0,34, 2 и 3,4, которые оказались размерами в модели ДНК, предложенной Дж.Уотсоном и Ф.Криком. 0,34 нм расстояние между последовательными нуклеотидами, 2 нм толщина цепи, 3,4 нм расстояние между последовательными витками спирали.
В конце двадцатых годов советские генетики А. С. Серебровский и Н. П. Дубинин экспериментально показали, что ген не является единицей мутации, что он имеет сложную структуру: состоит из нескольких субъединиц, способных самостоятельно мутировать (ступенчатый аллелизм, или центровая теория гена). Весь ген (базиген) может состоять из отдельных центров, трансгенов, каждый из которых несет сходную функцию. Мутация может нарушать деятельность одного из трансгенов, не затрагивая других.
Несколько позже идея о сложном строении гена была подкреплена экспериментами по внутригенному кроссинговеру на дрозофиле по локусам lozenge, white и др. (работы Э. Льюиса, М. Грина и др.).
Таким образом, к 1950 году ген представлялся как участок хромосомы, контролирующий развитие определенного признака, имеющий определенную линейную протяженность и способный мутировать в разных участках и быть разделенным кроссинговером. Ген комплексен, так как его отдельные участки могут различаться по функциям, и в их совместной деятельности существует определенная субординация.
Геном вирусов. По определению Х. Френкель-Конрата, "вирусы - это частицы, состоящие из одной или нескольких молекул ДНК или РНК, обычно (но не всегда) окруженных белковой оболочкой; вирусы способны передавать свои нуклеиновые кислоты от одной клетки-хозяина к другой и использовать ее ферментативный аппарат для осуществления своей внутриклеточной репликации путем наложения собственной информации на информацию клетки-хозяина; иногда вирусы могут обратимо включать свой геном в геном хозяина (интеграция), и тогда они либо ведут "скрытое существование", либо так или иначе трансформируют свойства клетки-хозяина".
Вирусы являются внутриклеточными паразитами и используют для своего размножения белоксинтезирующий аппарат клетки-хозяина. Жизненный цикл вируса начинается с проникновения внутрь клетки. Для этого он связывается со специфическими рецепторами на ее поверхности и либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на поверхности, либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует освобождение геномных нуклеиновых кислот от белков оболочки, что делает вирусный геном доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса. После проникновения вируса в клетку может происходить его размножение, часто сопровождаемое гибелью самой клетки (вирулентный путь развития). Вирус может длительное время существовать внутри клетки, ничем себя не проявляя (латентная инфекция). В этом случае его геном встраивается в геном клетки- хозяина и реплицируется вместе с ним или находится во внехромосомном состоянии. После проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация должна быть расшифрована генетическими системами хозяина и использована для синтеза компонентов вирусных частиц. Поскольку для своего размножения вирусы используют главным образом ферментные системы клетки-хозяина, их геном характеризуется относительно малыми размерами и кодирует структурные белки вирионов, а также белки и ферменты, которые перестраивают метаболизм клетки для нужд размножения вируса, делая процесс репликации вирусов максимально эффективным.
Геном вирусов, заключенный внутри вирионов, может быть представлен одноцепочечными или двухцепочечными ДНК или РНК. Гены вирусов могут быть заключены в одной хромосоме или разделены на несколько блоков (хромосом), которые все вместе и составляют геном таких вирусов. Например, у реовирусов геном представлен двухцепочечной РНК и состоит из десяти сегментов. Геномы вирусов, содержащих одноцепочечную РНК, также могут быть либо цельными (например, у ретровирусов), либо сегментированными (например, у ортомиксовирусов илиаренавирусов). Геном РНК-содержащих вирусов представлен только линейными молекулами РНК. Все известные ДНК- содержащие вирусы позвоночных имеют геном, заключенный в одной хромосоме, линейной или кольцевой, одно- или двухцепочечной. У некоторых вирусов, например, у вируса гепатита В, геном представлен кольцевой ковалентно замкнутой молекулой двухцепочечной ДНК, в обеих цепях которой в разных местах обнаружены одноцепочечные участки. У нескольких родов, например, адено - ассоциированных вирусов, комплементарные цепи ДНК находятся в различных вирусных частицах.
22.Геном прокариот. Структура гена прокариот. Геном плазмид. Транспозоны и IS- элементы у прокариот.
Основной чертой молекулярной организации прокариот является отсутствие в их клетках ядра, отгороженного ядерной мембраной от цитоплазмы. Отсутствие ядра является лишь внешним проявлением особой организации генома у прокариот.
Геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально. Многие механизмы регуляции экспрессии генов, использующиеся у эукариот, никогда не встречаются у прокариот. Простота строения генома прокариот объясняется их упрощенным жизненным циклом.
Ген единица наследственной информации, занимающая определенное положение в геноме или хромосоме и контролирующая выполнение определенной функции в организме. По результатам исследования прокариот, главным образом Е. сoll, ген состоит из двух основных элементов: регуляторной части и собственно кодирующей части. Регуляторная часть гена обеспечивает первые этапы реализации генетической информации, заключенной в структурной части гена; структурная часть гена содержит информацию о структуре кодируемого данным геном полипептида. Количество некодирующих последовательностей в структурной части гена у прокариот минимально. 5'-конец прокариотического гена имеет характерную организацию регуляторных элементов, особенно на расстоянии 50 70 н.п. от точки инициации транскрипции. Этот участок гена называют промотором. Он важен для транскрипции гена, но сам в РНК не транскрибируется. Противоположный 3'-конец терминаторная область, необходимая для тер-минации транскрипции. В РНК он также не транскрибируется. Транскрипция начинается со стартовой точки (+1).
Последовательности ДНК, являющиеся сигналами остановки транскрипции, находятся на 3'-конце гена и называются транскрипционными терминаторами. Они содержат последовательности, которые в транскрибируемой РНК формируют структуру шпильки.
Кроме хромосомы у большинства бактерий существуют другие способные к автономной репликации структуры плазмиды. Это двуцепочечные кольцевые ДНК размером от 0,1 до 5% размера хромосомы, несущие гены, необязательные для клетки-хозяина, или гены, необходимые лишь в определенной среде. Именно такие внехромосомные элементы и содержат гены, которые придают клеткам наследуемую устойчивость к одному или нескольким антибиотикам. Они получили название факторов резистентности, или К-факторов. Другие плазмиды определяют болезнетворность патогенных бактерий, например патогенных штаммов Е. соli, возбудителей чумы и столбняка. Третьи определяют способность почвенных бактерий использовать необычные источники углерода, например углеводороды нефти.
«Плазмида (внехромосомный генетический элемент) представляет собой репликон, который стабильно наследуется во внехромосомном состоянии». Однако это определение оставляет открытыми вопросы о том, являются ли плазмиды организмами или нет, и о месте плазмид в живой природе.
Поскольку плазмиды имеют собственные гены, которые наделяют их специфическими наследственными признаками и способностью к размножению, они должны быть, несомненно, отнесены к живым организмам. Плазмиды обладают большим сходством с вирусами, поэтому их следует объединить с ними в одно царство в качестве самостоятельного класса. С вирусами их объединяют следующие общие фундаментальные признаки:
1) подобно вирусам, плазмиды не имеют собственной белоксинтезирующей системы;
2) как и у вирусов, у них нет собственной системы мобилизации энергии;
3) плазмиды, как и вирусы, не способны к росту и бинарному делению, они размножаются путем воспроизведения себя из собственного генома (путем саморепликации его);
4) плазмиды, подобно вирусам, являются абсолютными внутриклеточными паразитами.
Вместе с тем плазмиды существенным образом отличаются от вирусов, и поэтому они должны рассматриваться как самостоятельная, обособленная от вирусов группа организмов. Главные отличия их от вирусов следующие:
1. Геном плазмид представлен только двунитевой ДНК, у вирусов же имеется более 10 вариантов РНКи ДНК-геномов. Правда, у некоторых грамположительных бактерий плазмиды существуют не только в виде двунитевых молекул ДНК, но и в виде однонитевых. Однако каждая из них соответствует одной из двух нитей плазмидной ДНК (на долю таких одно нитевых молекул приходится не более 1/3 общего количества копий плаз миды), и в результате репликации, происходящей по типу «крутящегося кольца», однонитевая молекула превращается в двунитевую молекулу плазмидной ДНК.
2. Плазмиды в отличие от вирусов и других микроорганизмов вооб ще не имеют никакой оболочки. Они представляют собой «голые» геномы. Это их главная биологическая особенность.
3. В связи с отсутствием белковой оболочки размножение плазмид происходит только путем саморепликации их ДНК и не требует синтеза структурных белков и процессов самосборки.
4. Средой обитания вирусов являются клетки бактерий, растений и животных. Средой обитания плазмид только бактерии.
5. В отличие от вирусов плазмиды обладают системами генов, которые наделяют их способностью к самопереносу или к мобилизации на пе ренос от клетки к клетке.
Для плазмид как живых существ характерны следующие свойства, частью присущие только им и контролируемые их специфическими генами:
1. Саморегулируемая репликация. Эта функция свойственна всем живым организмам. В составе плазмидных ДНК имеются фиксированная точка ori (точка начала репликации) и соответствующие гены, контроли рующие репликацию. Репликация мелких плазмид требует, очевидно, до полнительного участия генов клетки-хозяина.
2. Явление поверхностного исключения. Этот механизм не позволяет проникнуть в клетку, уже содержащую плазмиду, другой родственной ей плазмиде. Поверхностное исключение обеспечивается синтезом под контролем генов плазмиды особых белков наружной мембраны, которые препятствуют установлению контакта этой клетки с клеткой, несущей такую же плазмиду, или подавляют конъюгативный метаболизм ДНК этой плазмиды.
3. Явление несовместимости. Суть его заключается в том, что две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке, одна из них подвергается элиминации (удалению).
4. Контроль числа копий плазмиды на хромосому клетки. Различают малокопийные (1 4 копии) и многокопийные плазмиды (12 38 копий, например у плазмиды R6K). Наличие собственных генов репликации по зволяет плазмиде осуществлять последнюю независимо от каких-либо со бытий хромосомной репликации или клеточного цикла клетки-хозяина.
5. Контроль стабильного сохранения плазмид в клетке-хозяине (кон троль стабильного поддержания).
6. Контроль равномерного распределения дочерних плазмид в до черние бактериальные клетки.
7. Способность к самопереносу (у конъюгативных плазмид).
8. Способность к мобилизации на перенос (у неконъюгативных плазмид).
9. Способность наделять клетку-хозяина дополнительными важными для него биологическими свойствами, способствующими выживанию бак терий, а следовательно, и плазмид в природе.
Транспозоны это участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.
Транспозоны формально относятся к так называемой некодирующей части генома той, которая в последовательности пар оснований ДНК не несёт информацию об аминокислотных последовательностях белков, хотя некоторые классы мобильных элементов содержат в своей последовательности информацию о ферментах, транскрибируются и катализируют передвижения, например, ДНК-транспозоны и ДДП-1 кодируют белки транспозаза, БОРС1 и БОРС2. У разных видов транспозоны распространены в разной степени: так, у человека транспозоны составляют до 45 % всей последовательности ДНК, у плодовой мухи часть мобильных элементов составляет лишь 15-20 % всего генома. У растений транспозоны могут занимать основную часть генома так, у кукурузы с размером генома в 2,3 миллиардов пар оснований по крайней мере 85 % составляют различные мобильные элементы.
МИГРИРУЮЩИЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ (мобильные гены, прыгающие гены), дискретные фрагменты (сегменты) ДНК, способные встраиваться в разные участки генома; их расположение на хромосомах может меняться как в процессе историч. развития мира организмов, так и в пределах жизни одного индивидуума. Найдены практически во всех изученных организмах - от бактерий до человека. Они весьма разнятся по своему нуклеотидному составу и той роли, к-рую они играют в клетке.
У прокариот (бактерии и синезеленые водоросли) выделено неск. осн. групп мигрирующих генетических элементов-IS- и Tn-элементы, эписомы, а также нек-рые бактериофаги, или фаги (вирусы бактерий, способные ее поражать, репродуцироваться в ней и вызывать ее гибель). IS-элементы-простые вставочные (ин-серционные) последовательности (обозначаются - в зависимости от их нуклеотидного состава номерами IS1, IS2 и т.д.); содержат от 700 до 1500 пар нуклеотидов. Эти сегменты ДНК имеют инвертир. повторы на концах, содержащие обычно неск. десятков нуклеотидных пар, и не содержат никаких генов, кроме тех, к-рые необходимы для их перемещения (транспозиции) по геному. Они встречаются в нек-рых плазмидах (внехромосомные носители наследственности) и умеренных фагах (способны существовать в клетке в форме профага). Так, у разных штаммов бактерии Escherichia coli (E. coli) присутствует в геноме 19 копий IS1-элементов. Большинство др. IS-элементов также представлено в хромосомах разных штаммов E. coli мн. Копиями.
23.Геном эукариот. Последовательности нуклеотидов эукариотического генома. Структура эукариотических генов. Мобильные генетические элементы эукариот.
В отличие от прокариот основная часть генома эукариот находится в специальном клеточном компартменте (органелле), получившем название ядра, а значительно меньшая часть - в митохондриях, хлоропластах и других пластидах. Так же, как и у прокариот, информационной макромолекулой генома эукариот является ДНК, которая неравномерно распределена по нескольким хромосомам в виде комплексов с многочисленными белками. ДНК-белковые комплексы эукариот получили названиехроматина. На протяжении клеточного цикла хроматин претерпевает высокоупорядоченные структурные преобразования в виде последовательных конденсаций-деконденсаций. В соматических клетках при максимальной конденсации в метафазе митоза эти преобразования сопровождаются формированием метафазных хромосом. Морфология и число метафазных хромосом являются уникальными характеристиками вида.
Совокупность внешних признаков хромосомного набора эукариот получила название кариотипа. Эти признаки используются в систематике.
Содержание ДНК у эукариот в расчете на одну клетку в среднем на два-три порядка выше, чем у прокариот, и у разных видов животных изменяется от 168 пг (амфибии) до 1 пг (некоторые виды рыб). У человека имеется около 6 пг ДНК на диплоидный геном, суммарная длина которой приближается к 6*109 п.о. Повышенное содержание ДНК в геноме эукариот нельзя объяснить одним лишь увеличением потребности этих организмов в дополнительной генетической информации в связи с усложнением организации, поскольку большая часть их геномной ДНК, как правило, представлена некодирующими последовательностями нуклеотидов. Размер генома организмов, находящихся на более низких ступенях эволюционного развития, зачастую превышает размеры геномов более высокоорганизованных животных и растений. Известно, что большая часть ДНК генома эукариот не кодирует РНК и белки, и ее генетические функции не вполне понятны.
обильные элементы эукариот
Мобильные генетические элементы эукариот. Вездесущность транспозирующихся элементов может рассматриваться либо как доказательство их важности для эукариот и прокариот, либо как указание на то, что они одинаково успешно размножаются в составе геномов любого типа. Вместе с плазмидами, способными переносить генетическую информацию между бактериями, транспозоны прокариот обеспечивают подвижность генов хозяина (с успехом компенсируя отсутствие истинного полового процесса). В некоторых случаях механизмы, подобные транспозициям, вовлекаются в регуляцию генов. У эукариот, с другой стороны, уже известны отдельные случаи, когда перемещение последовательностей из сайта или в специфические сайты играет роль в регуляции генов. В их геномах найдены также элементы, сравнимые с бактериальными транспозонами, способные перемещаться в случайно выбираемые места генома.
Мобильные элементы, наиболее близкие по своим свойствам к бактериальным транспозонам, были обнаружены у S. cerevisiae и D. melanogaster. Они имеют небольшой размер, содержат концевые повторы и найдены в различных участках геномов. Очевидно, что в состав этих элементов входят гены, продукты которых необходимы для транспозиции; включены ли в них гены, кодирующие второстепенные функции, не связанные с транспозиционным событием, не известно.
Каждый из этих элементов аналогичен бактериальным транспозонам, которые представляют собой последовательности, способные перемещаться в пределах хозяйского генома. Транспозоны про- и эукариот, по-видимому, не могут существовать вне генома.
Функции, связанные с осуществлением транспозиции у эукариот, пока не установлены; нам еще предстоит идентифицировать продукты эукариотических генов, участвующих в этом процессе.
Явление транспозиции было описано много лет назад Мак-Клинток, проводившей генетические исследования на кукурузе. До совсем недавнего открытия этого эффекта у бактерий полученные ею результаты оставались «в вакууме», однако сейчас события, связанные с транспозицией, могут быть изучены на молекулярном уровне и у эукариот. На кукурузе получена значительная информация о генетических взаимодействиях между членами семейства транспозонов, об эффектах их внедрения в определенные локусы и различных результатах транспозиционного события.
В составе геномов животных мобильные элементы еще не найдены, но обнаружены следы транспозиционных событий в форме прямых повторов мишени, фланкирующих диспергированные повторяющиеся последовательности. Механизмы, подобные транспозиции, по-видимому, используются ретровирусами, чтобы внедрять ДНК-копии своего РНК-генома в хромосомы клеток хозяина. Эти случаи обсуждаются вместе с другими примерами вариабельности эукариотической ДНК в гл. 38. Молекулярные механизмы транспозиции в клетках эукариот еще не изучены так тщательно, как у бактерий; в частности, еще не идентифицировали продукты генов эукариотического транспозона. Однако присутствие коротких прямых повторов ДНК мишени позволяет предполагать использование сходного механизма, при котором такая «генерализованная» транспозиция выбирает случайные сайты для внедрения. Нам бы хотелось знать, какова взаимосвязь между транспозирующимися элементами различных видов и могут ли функции транспозиции сохраняться при перемещении элемента из одних видов в другие.
Другой тип событий представляют «направленные» транспозиции, при которых перемещение последовательностей из одного специфического сайта в другой имеет регуляторный эффект. У бактерий существует очевидная взаимосвязь между механизмами сайтспецифической инверсии и транспозиции. У эукариот направленное перемещение ДНК может осуществляться с помощью иных механизмов. Например, у дрожжей наблюдается однонаправленный перенос копий генов, определяющих тип скрещиваемости, из «молчащих» локусов в «активные». Этот процесс напоминает бактериальную транспозицию, когда донорный локус остается интактным, а реципиентный изменяется; однако у дрожжей существует только один реципиентный локус, который сам инициирует перенос, вместо того чтобы остаться «пассивной» мишенью. Иная ситуация имеет место в случае иммуноглобулиновых генов. Здесь в результате рекомбинации меняется содержание генома, создаются активные гены в соответствующих соматических клетках (гл. 39). Диапазон изменений в геноме, таким образом, простирается от случайных транспозиций к тканеспецифичным перестройкам.
24.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина: ДНК, РНК, гистоны, другие белки. Уровни упаковки хроматина, нуклеосомы. Политения.
В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.
Эукариоты (от греч. eu - хорошо и carion - ядро) - организмы, содержащие в клетках четко оформленное ядро. К эукариотам относятся одноклеточные и многоклеточные растения, грибы и животные, то есть все организмы, кроме бактерий. Клетки эукариот разных царств различаются по ряду признаков. Но во многом их строение сходно.
Например, у человека 23 пары.
Число хромосом у грибов колеблется от 2 до 28, у большинства видов от 10 до 12[21].
В общем, разное количество.
Хроматин - форма упаковки ДНК в ядрах клеток эукариот. Хроматин - это сложная смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК и хромосомных белков, в состав которых входят гистоны инегистоновые белки, образующие высокоупорядоченные в пространстве структуры. Соотношение ДНК и белка в хроматине составляет ~1:1, а основная масса белка хроматина представлена гистонами. Термин «Х.» введен У. Флеммингом в 1880 г. для описания окрашиваемых специальными красителями внутриядерных структур.
Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована - примерно в 10000 раз, чтобы поместиться в клеточном ядре - том компартменте клетки, в котором хранится генетический материал. Накручивание ДНК на "шпульки" из гистоновых белков, обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок-ДНК и который известен как хроматин.
Хроматин не однороден по своей структуре; он выступает в различных формах упаковки - от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин).
Полученные в последнее время данные позволяют предполагать, что ncRNA (некодирующие РНК) могут "направлять" переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.
Хроматин активно транскрибируемых генов находится в состоянии постоянного изменения, характеризующемся непрерывным замещением гистонов (Henikoff and Ahmad, 2005).
Элементарной единицей упаковки хроматина является нуклеосома. Нуклеосома состоит из двойной спирали ДНК, обмотанной вокруг специфического комплекса из восьми нуклеосомных гистонов (гистонового октамера). Нуклеосома представляет собой дисковидную частицу с диаметром около 11 нм, содержащую по две копии каждого из нуклеосомных гистонов (Н2А, Н2В, Н3, Н4). Гистоновый октамер образует белковую сердцевину, вокруг которой дважды обмотана двуспиральная ДНК (146 нуклеотидных пар ДНК на гистоновый октамер).
Нуклеосомы, входящие в состав фибрилл, расположены более или менее равномерно вдоль молекулы ДНК на расстоянии 10-20 нм друг от друга. В состав нуклеосом входят четыре пары молекул гистонов: H2a, H2b, H3 и H4, а также одна молекула гистона H1.
ПОЛИТЕНИЯ (от поли... и лат. taenia - лента) - наличие в ядрах некоторых соматических клеток гигантских многонитчатых (политенных) хромосом. Результат многократных удвоений хромосом, не сопровождающихся клеточным делением. Обнаружена в слюнных железах ряда двукрылых, а также у некоторых растений и простейших.
25.Цитологические основы наследственности. Клеточный цикл. Митоз. Типы митоза. Отклонения от нормального митоза. Понятие о кариотипе и гентических картах.
Клеточный цикл. Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии : Митоз - М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза - период синтеза (репликации ДНК). G2-фаза - период между синтезом ДНК и митозом. Интерфаза - период, включающий в себя G1 -, S- и G2-фазы. Цитокинез - деление цитоплазмы. Точка рестрикции, R-point - время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза - состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.
Делению клетки ( митозу или мейозу ) предшествует удвоение хромосом, которое происходит впериоде S клеточного цикла ( рис. 66.2 ). Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид.
Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии ( рис. 66.1 ). Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.
В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы ). Дочерние клетки вступают впериод G1 , и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.
Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0 .
Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом(гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, адиплоидный набор хромосом - 46).
В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговерапроисходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.
Отклонения от типичного протекания митоза. Помимо митоза имеются еще три типа деления ядра соматических клеток: эндомитоз, политения и амитоз.
Эндомитоз. При этом типе деления ядерная оболочка не распадается. Редупликация хромосом происходит как и при митозе. Таким образом, увеличивается многократно число хромосом в ядре и размеры самого ядра. Эндомитоз впервые был описан для клеток тапетума шпината (Spinacia sativa), а затем был обнаружен в антиподах семейств сложноцветных (Compositae) и лютиковых (Ranunculaceae).
Политения. Политению можно рассматривать как частный случай эндомитоза. При политении образуются гигантские хромосомы за счет многократной редупликации хроматид, но без разделения центромеры. При этом степень конденсации хроматид меньше, чем у митотических хромосом. Хроматиды плотно прилегают друг к другу, при этом хромомеры многочисленных хроматид образуют поперечные диски и пуффы (рис. 2.11, 2.12). Впервые политенные хромосомы были обнаружены в слюнных железах личинки комара, а затем и в ядрах эндосперма и антипод различных семейств растений.
Амитоз или прямое деление ядра. При амитозе ядро делится на две части перетяжкой. Затем происходит разделение цитоплазмы клетки и возникает клеточная перегородка.
Амитотическое деление приводит к неравномерному распределению ДНК в дочерних клетках. аМИТОЗ СВОЕСТВЕНЕН ДИФФЕРЕНЦИРОВАННЫМ ТКАНЯМ (КЛЕТКИ СТЕНОК ЗАВЯЗИ, КРАХМАЛЛООБРАЗУЮЩИЕ КЛЕТКИ КЛУБНЕЙ КАРТОФЕЛЯ, клеткам перисперма.
Кариоти́п совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).
Генетической картой хромосом называют схему относительного расположения генов, находя¬щихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.
Генетические карты составляют для каждой пары гомологич¬ных хромосом. Группы сцепления нумеруют.
Для того, чтобы составить карты, необходимо изучить зако¬номерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы более 400 генов, локализован¬ных в десяти группах сцепления и т.д. При составлении гене¬тических карт указывается группа сцепления, полное или сокра¬щенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозна¬чается место центромеры.
26.Цитологические основы наследственности. Мейоз. Типы мейоза и его биологическое значение. Отклонения от типичного мейоза: диплоидные высшие организмы, авто- и аллоплоиды, низшие эукариоты.
Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I имейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называютредукционным, реже гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным(уравнивающим), реже гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.
Интерфаза. Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.
При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.
Первое деление мейоза (редукционное деление, или мейоз I)
Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).
Профаза 1 (профаза первого деления) состоит из ряда стадий:
Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей. Раннюю лептотену, когда нити хромосом видны еще очень плохо, называют пролептотена.
Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы парные: одну хромосому из пары диплоидный организм получает от матери, а другую от отца. При конъюгации образуются биваленты. Каждый бивалент это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называютсятетрады, так как в состав каждого бивалента входит 4 хроматиды.
Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК (образуется особая пахитенная ДНК). Завершается кроссинговер перекрест хромосом, в результате которого они обмениваются участками хроматид.
Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ «хи»).
Диакинез (стадия расхождения бивалентов). Отдельные биваленты располагаются на периферии ядра.
Метафаза I (метафаза первого деления)
В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходитметакинез биваленты перемещаются в экваториальную плоскость клетки.
Анафаза I (анафаза первого деления)
Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом.
Телофаза I (телофаза первого деления)
Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.
В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.
Интеркинез
Интеркинез это короткий промежуток между двумя мейотическими делениями. Отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотическойинтерфазе и, частично, в профазе I.
Второе деление мейоза (эквационное деление, или мейоз II)
В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).
Профаза II (профаза второго деления)
Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей.
Метафаза II (метафаза второго деления)
В каждой из дочерних клеток формируется веретено деления. Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут лежать в одной плоскости, могут быть параллельны друг другу или взаимно перпендикулярны.
Анафаза II (анафаза второго деления)
Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.
Телофаза II (телофаза второго деления)
Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.
Типы мейоза и его биологическое значение
В общем случае в результате мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. При гаметноммейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам или зооспорам. Эти типы мейоза характерны для низших эукариот, грибов и растений. Споровый мейоз тесно связан со спорогенезом. Таким образом, мейоз это цитологическая основа полового и бесполого (спорового) размножения.
Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.
Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).
Отклонения от типичного мейоза
Отклонения от типичного мейоза у диплоидных высших организмов (семенных растений и многоклеточных животных).
У высших организмов отклонение от типичного мейоза обычно рассматривается как аномалия. Наиболее частым отклонением от типичного мейоза является нарушение нормальной сегрегации хромосом: их нерасхождение или в первом, или во втором делении. Нерасхождение хромосом (как и при митозе) может быть обусловлено действием внешних факторов, но может быть и спонтанным. Рассмотрим типичные нарушения сегрегации хромосом.
1. Нерасхождение по всем хромосомам.
а). Сегрегация вообще отсутствует (например, при полном разрушении веретена деления). Тогда из исходной диплоидной клетки образуется одна тетраплоидная клетка, в которой остается весь исходный хроматин.
б). Первое деление мейоза протекает как митоз: в результате из исходной диплоидной клетки образуется диада две диплоидные клетки с однохроматидными хромосомами. Образовавшиеся клетки идентичны по отношению друг к другу и по отношению к материнской клетке. При этом в каждой из диплоидных клеток содержится два разных хромосомных набора (два разных генома, например, Х1 Х2). Эти клетки утрачивают способность к делению и дают начало спорам или гаметам. Подобные нарушения встречаются у гибридов, если невозможно образование бивалентов.
в). Первое деление происходит нормально (с образованием гаплоидных клеток с двухроматидными хромосомами), но второе деление блокируется на стадии метафазы II. В результате происходит диплоидизация гаплоидных клеток: каждая двухроматиднаяхромосома расщепляется на две хроматиды, эти хроматиды не расходятся, и диплоидное число хромосом восстанавливается. Конечным результатом такого мейоза также является образование диады двух диплоидных клеток, которые дают начало спорам или гаметам. При этом в каждой из диплоидных клеток содержится два одинаковых хромосомных набора (два разных генома, например, в одной клетке Х1Х1, а в другой Х2Х2). Подобные нарушения встречаются значительно реже, чем предыдущее.
2. Нерасхождение по отдельным хромосомам. Эти нарушения аналогичны предыдущим, но нарушение сегрегации затрагивает лишь отдельные хромосомы. В результате в одних дочерних клетках появляются избыточные хромосомы, а в других клетках эти хромосомы утрачиваются.
27.Нехромосомная наследственность (пластидная, митохондриальная наследственность, цитоплазматическая мужская стерильность).
Пластидная наследственность
Наиболее характерный пример пластидной наследственности наследование пестролистности у ночной красавицы(Mirabilis jalapa). Этот процесс был изучен в начале XX века К. Корренсом (1908). Аналогичные исследования, но у растений герани (Geranium), проводил и Э. Бауэр (1909).
На зелёных листьях некоторых растений ночной красавицы имеются дефектные участки, лишённые пластид или содержащие дефектные пластиды белые или жёлтые пятна, лишённые хлорофилла. При скрещивании зелёного материнского растения с пестролистным всё потомство было нормальным. Если же в качестве материнской формы взять цветки бесхлорофилльного побега и опылить их пыльцой нормального побега, то в F1 появятся только бесхлорофилльные формы, быстро гибнущие из-за неспособности к фотосинтезу. При опылении цветков пестролистного побега пыльцой зелёной формы в F1 будут и нормальные, и пестролистные, и бесхлорофилльные формы.
Наследование пестролистности у ночной красавицы пример материнского типа наследования. То, какие будут хлоропласты у потомка, целиком определяется тем, какие хлоропласты передаст ему материнское растение. У нормального материнского растения все хлоропласты недефектны, поэтому листья потомства будут зелёными. Если материнской побег несёт дефектные хлоропласты, то и у F1 все листья будут лишены хлорофилла. Пестролистное материнское растение может передать потомку как нормальные, так и дефектные хлоропласты (так как по современнм представлениям хлоропласты разделяются между дочерними клетками случайно при делении цитоплазмы), поэтому от скрещивания пестролистной материнской формы с нормальной в потомстве возможны все три варианта, а в реципрокном скрещивании все растения будут зелёными. При этом то, какие хлоропласты передаёт отцовская форма, не играет никакой роли в определениифенотипа потомства.
Но если у ночной красавицы пластиды передаёт только материнское растение, то у кипрея (Epilobium) их передаёт только отцовское растение (такой отцовский тип наследования встречается значительно реже материнского). Их могут передавать и оба родителя в равном отношении, или преимущественно отцовское растение, как у герани. Это обусловлено тем, какое количество цитоплазмы (а следовательно, и пластид) привносит в зиготу яйцеклетка и спермий.
Цитоплазматическая мужская стерильность
Цитоплазматическая мужская стерильность это наследование признаков, ограничивающих или сводящих на нет фертильность мужских растений (например, из-за образования дефектной пыльцы или даже полное её отсутствие, морфологические особенности цветка и т. п.), по материнскому типу через цитоплазму. Следует отметить, что вообще мужская стерильность у растений может определяться и рецессивным аллелем соответствующего ядерного гена.
У кукурузы существует особый ядерный ген восстановитель фертильности (Rf/rf). Находясь в доминантном состоянии, он обеспечивает развитие нормального фертильного растения даже при наличии в цитоплазме фактора стерильности, а рецессивная аллель влияет на репродуктивную функцию при нормальной цитоплазме. Поэтому стерильными будут только растения, гомозиготные по рецессивному аллелю rf и имеющие в цитоплазме фактор стерильности.
У кукурузы (Zea mays) плазмогены (то есть цитоплазматические факторы) мужской стерильности производят плейотропное действие: уменьшается число листьев, снижается устойчивость к некоторым болезням[1].
Явление восстановления фертильности пыльцы используется на практике для появления гетерозисных двойных межлинейных гибридов кукурузы. Так как кукуруза самосовместима, то, чтобы исключить самоопыление, у некоторых растений приходилось обламывать мужские метёлки, то есть чтобы сделать их исключительно женскими особями. Так что гибриды CytSrf/rf (CytS стерильная цитоплазма, CytN нормальная цитоплазма) являются решением этой проблемы, поскольку имеют цитоплазматическую мужскую стерильность и неспособны к самооплодотворению.
Митохондриальная наследственность
Наследование по материнской линии
У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа несколько сотен тысяч, а в крупных ооцитах лягушки десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения.
При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика, которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе).
Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков. Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву», гипотетическую прародительницу всех живущих в настоящее время людей.
Наследование по отцовской линии
Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий. Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы, медоносных пчел и цикад.
Существуют также данные о митохондриальном наследовании по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей, при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец и клонированного крупного рогатого скота. Также описан единственный случай связанный с бесплодием у мужчины.
28.Классификация изменчивости. Мутационная теория Гюго де Фриза.
Изменчивость бывает ненаследственная и наследственная.
К ненаследственной относятся онтогенетическая и модификационная изменчивости. Суть онтогенетической изменчивости заключается в том, что фенотип организма меняется на протяжении всей жизни, в то время как генотип не меняется, а происходит лишь переключение генов.
Модификационная изменчивость возникает под влиянием средовых факторов, однако ее размах определяется генотипом, т.е. генетически обусловленной нормой реакции.
Наследственна изменчивость подразделяется на комбинативную и мутационную. Комбинативная изменчивость связана с перекомбинацией родительских генов.
Мутационная теория или теория мутаций раздел генетики, закладывающий основы генетической изменчивости и эволюции.
Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после законов Менделя в начале 20 столетия. Можно считать, что она почти одновременно зародилась в умах голландца Хуго де Фриза (1903) и отечественного ученого-ботаника С. И. Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому. Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях.
Основные положения мутационной теории Де Фриза можно свести к следующим пунктам:
29.Геномные мутации. Нуллисомии, моносомии, трисомии. Геномные мутации: ауто-, анеу- и аллополиплоидия. Их биологическая, генетическая и эволюционная роль.
Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.
Нуллисомия, тип геномной мутации, заключающийся в отсутствии в клетках организма какой-либо пары хромосом, в норме присущей данному виду. Организмы с Н. называются нуллисомиками. Н., в особенности у высших животных, обычно ведёт к гибели организма. Среди полиплоидных растений могут быть жизнеспособные нуллисомики, которые используются для т. н. нуллисомного анализа и создания новых хозяйственно ценных форм. С помощью нуллисомного анализа определяют группы сцепления генов и контролируемые ими признаки (в т. ч. и у человека, путём выращивания клеток в культуре тканей); см. также Анеуплоидия.
Анеуплоиди́я изменениекариотипа, при котором число хромосом в клетках не кратно гаплоидному набору (n).
Моносомия
Последствия моносомии являются, как правило, более тяжёлыми по сравнению с трисомией. В случае моносомии негативный эффект анеуплоидии обусловлен не только нарушенным дозовым балансом, но и гемизиготнымсостоянием генов, находящихся на хромосоме, не имеющей пары. Моносомии по аутосомам у человека являются эмбрионально летальными. Моносомия по Х-хромосоме у женщин приводит к синдрому Шерешевского-Тернера.
В случае обширной делеции в какой-либо хромосоме иногда говорят о частичной моносомии. Примером может служить синдром кошачьего крика, причиной которого является утрата части короткого плеча хромосомы 5.
Трисомия
Трисомия это наличие трёх гомологичных хромосом вместо пары в норме. Причиной подавляющего большинства трисомий у человека являются ошибки расхождения хромосом при оогенезе, причём наибольший вклад дают ошибки в мейозе I по сравнению со вторым мейотическим делением. Вероятность трисомий у потомства повышается с возрастом матери:2.
Наиболее часто встречающейся у человека является трисомия по 16-й хромосоме (более одного процента случаев беременности), следствием этой трисомии является спонтанный выкидыш в первом триместре беременности.
Единственной жизнеспособной трисомией по аутосоме у человека является трисомия по хромосоме 21, вызывающая синдром Дауна. Трисомики по хромосомам 13 (синдром Патау) и 18 (синдром Эдвардса) могут дожить до рождения, но характеризуются значительными нарушениями развития и ранней постнатальной смертностью. Трисомии по другим аутосомам приводят к ранней эмбриональной летальности. Характерно, что хромосомы 13, 18 и 21 являются хромосомами, занимающие три последних места по числу генов среди аутосом:2.
Частота новорождённых с трисомией по 21 хромосоме в европейских странах в 19902009 годах составляло 11.2 случаев на 10 000 новорождённых, по 18 хромосоме 1.04 случаев на 10 000, по 13 хромосоме 0.48 случая на 10 000.
Аутоплоидия (Autoploidy) - нормальное состояние клеток живого организма, при котором каждая клетка обладает набором хромосом, содержащим гомологичные пары, позволяющие клеткам нормально делиться.
Гетероплоидия (от гетеро... и греч. -plóos, здесь кратный и éidos вид), изменение генома (набора хромосом), связанное с добавлением к набору одной или более хромосом или с их утратой; то же, что анеуплоидия.
Аллополиплоидия (от греч. állos другой и polýploos многократный), соединение в клетках организма наборов хромосом от разных видов или родов. Т. о., А. сочетание полиплоидии с гибридизацией. Различают аллодиплоиды (совмещающие два генома от разных видов), аллотетраплоиды (амфидиплоиды), сесквиполиплоиды (с полуторным набором хромосом) и др. А. имеет значение в процессах видообразования.
30.Хромосомные перестройки. Внутри- и межхромосомные перестройки: делеции, дупликации, инверсии, транслокации, транспозиции.
Хромосомные перестройки изменения структуры хромосом. Классифицируют делеции (удаление участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую). Хромосомные перестройки носят, как правило, патологический характер и нередко приводят к гибели организма. Показано значение хромосомных перестроек в видообразовании и эволюции.
Делеции
Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранилацентромеру, она аналогично другим хромосомам передается приделении, участки же без центромеры как правило утрачиваются. При конъюгации гомологов во время кроссинговера у нормальной хромосомы на месте делеции в мутировавшей хромосоме образуется т. н.делеционная петля, которая компенсирует отсутствие делетированного участка.
Исследованные делеции редко захватывает протяженные участки хромосом, обычно такие аберрациилетальны. Самым хорошо изученным заболеванием, обусловленным делецией, является синдром кошачьего крика, описанный в 1963 году Джеромом Леженом. В его основе лежит делеция небольшого участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функций сердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000.
Другой интересной делецией является делеция в гене, кодирующем рецептор CCR5. Этот рецептор используется вирусом иммунодефицита человека (ВИЧ) для распознавания своей цели Т-лимфоцитов. Продукта гена с делецией получил название CCR5-Δ32, этот вариант CCR5 не узнается ВИЧ, и носители такой мутации к ВИЧ невосприимчивы (это порядка 10 % европейцев).
Дупликации
Дупликации появляются в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в результате ошибки в ходерепликации. При конъюгации хромосомы с дупликацией и нормальной хромосомы как и при делеции формируется компенсационная петля.
Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0,4 % всего генома, что соответствует 5-10 копиям рибасомальных генов.
Другой пример дупликации мутация Bar у Drosophila, обнаруженная в 20-х годах XX века Т. Морганоми А. Стертевантом. Мутация обусловлена дупликацией локуса 57.0 X-хромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготных самок (B+/B) глаз имеет 350 фасеток, у гомозигот по мутации (B/B) всего 70 фасеток. Обнаружены также самки с трижды повторенным геном double Bar (BD/B+).
В 1970 году Сусумо Оно в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и хемотрипсин, гемоглобин и миоглобин и ряд других белков.
Инверсии
Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (инвертированный фрагмент лежит по разные стороны от центромеры) инверсии. При инверсиях не происходит потери генетического материала, потому как таковые инверсии как правило не влияют на фенотип, но если в инверсионной гетерозиготе (то есть организме, несущем как нормальную хромосому, так и хромосому с инверсией) происходит кроссинговер, то существует вероятность формирования аномальных хроматид. В случае парацентрической инверсии образуется одна нормальная и одна инвертированная (фенотипически нормальная) хроматиды, дицентрическая хроматида с дупликацией и делецией (при расхождении хроматид она обычно разрывается на две) и ацентрическая хроматида с дупликацией и делецией (обычно утрачивается). В случае перицентрической инверсии образуется одна нормальная и одна инвертированная хроматиды, а также две хроматиды с дупликацией и делецией.Гаметы, несущие дефектные хромосомы, обычно не развиваются или погибают на ранних этапахэмбриогенеза. Но гаметы с инвертированной хромосомой развиваются в организмы, 50 % гамет которых нежизнеспособны. Т.о. мутация сохраняется в популяции.
У человека наиболее распространенной является инверсия в 9 хромосоме, не вредящая носителю, хотя существуют данные, что у женщин с этой мутацией существует 30 % вероятность выкидыша.
Транслокации
•собственно транслокация (перенос участка с одной негомологичной хромосомы на другую);
•реципрокная транслокация (две негомологичные хромосомы обмениваются участками);
•робертсоновская транслокация (две негомологичные хромосомы объединяются в одну);
•транспозиция (перенос участка хромосомы на другое место на той же хромосоме).
Транслокация, реципрокная транслокация и транспозиция, которые не сопровождаются утратой генетического материала (т. н. сбалансированные транслокации), часто не проявляются фенотипически. Однако, как и в случае с инверсиями, в процессе гаметогенеза часть сформированных гамет несет летальные аберрации. К примеру, в случае реципрокной транслокации обычно выживает не более 50 % зигот.
Примером транслокации может служить т. н. семейный синдром Дауна. При этом заболевании у одного из родителей обнаруживается фенотипически непроявляющаяся транслокация 21 хромосомы на 14. У такого человека с вероятностью в 1/4 образуются гаметы с двумя 21 хромосомами (одна свободная и одна траслоцированная). При слиянии такой гаметы с нормальной образуется трисомик по 21 хромосоме.
31.Общая характеристика молекулярной природы возникновения генных мутаций: замена оснований, выпадение или вставка оснований. Гомологические ряды изменчивости Н.И. Вавилова.
Генные мутации - это мутации, в результате которых изменяются отдельные гены и появляются новые аллели. Генные мутации связаны с изменениями, происходящими внутри данного гена и затрагивающими его часть. Обычно это замена азотистых оснований в ДНК, вставка лишней пары или выпадение пары оснований.
Конечно, генные мутации могут быть связаны и с заменой, выпадением или вставкой не только одной пары, но и нескольких оснований.
Надо заметить, что даже замена одной пары оснований может повлечь серьезные последствия (пример: серповидно - клеточная анемия).
Мутация замены оснований тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении замен нуклеотидов. Мутации замены оснований относятся к точечным мутациям. Они делятся на транзиции и трансверсии.
Транзиция это мутация замены оснований, когда одно пуриновое основание заменяется другим пуриновым основанием (гуанин аденином или аденин гуанином), либо пиримидиновое основание заменяется на другое пиримидиновое основание (тимин цитозином или цитозин тимином). Трансверсия это мутация замены оснований, когда одно пуриновое основание заменяется пиримидиновым основанием или пиримидиновое основание заменяется пуриновым основанием. Мишенные транзиции происходят чаще, чем мишенные трансверсии. Однако при немишенном мутагенезе резко возрастает количество немишенных трансверсий.
Закон гомологических рядов Вавилова
Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.
Трактовка Н.И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.
Современная трактовка закона
Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).
Значение закона
1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.
2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.
3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.
32.Модификационная изменчивость и роль генотипа и условий внешней среды в её проявлении. Норма реакции.
Модификационная (фенотипическая) изменчивость изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер.
Характеристика модификационной изменчивости
1) обратимость изменения исчезают при смене специфических условий окружающей среды, спровоцировавших их
2) групповой характер
3) изменения в фенотипе не наследуются, наследуется норма реакции генотипа
4) статистическая закономерность вариационных рядов
5) затрагивает фенотип, при этом не затрагивая сам генотип
Внешние условия оказывают огромное влияние на все признаки и свойства развивающегося организма. Это положение подтверждается большим числом специально поставленных опытов, а также повседневными наблюдениями за ростом и развитием растений и животных.
Если молодое растение одуванчика расчленить на две части и высадить одну из них в обычных равнинных условиях, а другую - в горной местности, то развившиеся из них взрослые растения, несмотря на то что имеют одинаковый генотип, будут резко отличаться друг от друга .
Растение, выросшее в горах, примерно в 10 раз меньше; различаются также окраска цветков, строение листьев, их опушение и т. д. Не зная общего происхождения таких растений, их можно отнести к разным видам. В данном случае один и тот же генотип под влиянием разных условий выращивания проявился в резко различных формах. Из семян, собранных в горных условиях, получаются растения, ничем не отличающиеся от тех, которые растут в обычных условиях.
У примулы имеется раса, которая при температуре 15-20 град. цветет красными цветками, а при перенесении ее в условия с температурой 30-35 град. начинает цвести белыми цветками. Если цветущую белыми цветками примулу вновь перенести в условия 15-20 градусной температуры, то новые распускающиеся цветки окажутся также красными.
Но́рма реа́кции способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Один и тот же ген в разных условиях среды может реализоваться в несколько проявлений признака (фенов). В каждом конкретном онтогенезе из спектра проявлений признака реализуется только один. Аналогично один и тот же генотип в разных условиях среды может реализоваться в целый спектр потенциально возможных фенотипов, но в каждом конкретном онтогенезе реализуется только один фенотип. Под наследственной нормой реакции понимают максимально возможную ширину этого спектра: чем он шире, тем шире норма реакции. Фенотипическое значение любого количественного признака (Ф) определяется, с одной стороны, его генотипическим значением (Г), с другой стороны влиянием среды (С):
Ф = Г + С
33. Понятие о виде и популяции. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике. Закон Харди-Вайнберга, возможности его применения.
Сходство заключается в том, что и вид и популяция представляют собой группу особей с одинаковыми особенностями строения, поведения, расселения и т.д.
Но вид - это все особи с такими особенностями, а популяции - небольшие группы выделяемые внутри вида. Популяция - это группа особей, живущих в определённых экоусловиях внутри всей зоны распространения вида. А так как зоны эти обычно большие, то внутри них можно выделить много разных популяций, которые будут отличаться друг от друга, при этом состоя из представителей одного и того же вида.
Частота (концентрация) генов и генотипов
Важнейшая особенность единого генофонда его внутренняя неоднородность. Генофонд (совокупность генов данной популяции, группы особей или вида) популяции может быть описан либо частотами генов, либо частотами генотипов.
Ген это наследственный фактор, функционально неделимая единица наследственности. Участок молекулы ДНК (у некоторых вирусов - РНК), который кодирует первичную структуру полипептида (белка) или молекулу транспортной или рибосомной РНК, либо взаимодействует с регуляторным белком.
Ген (греч. Genos происхождение) характеристика врожденных свойств, единица наследственного материала (генетической информации). Участок молекулы ДНК (у высших организмов) и РНК (у вирусов и фагов), содержащий информацию о первичной структуре одного белка. Совокупность всех генов организма составляет генотип. Каждый ген ответствен за синтез определенного белка (полипептидной цепи). Контролируя его образование, ген управляет всеми химическими реакциями организма, а потому определяет его признаки. На ДНК-матрице гена синтезируется информационная РНК, которая затем сама служит матрицей для синтеза белка. Следовательно, ген служит основой системы ДНК - РНК - белок. [5]
Важнейшее свойство гена - сочетание их высокой устойчивости (неизменяемости в ряду поколений) со способностью к наследуемым изменениям - мутациям, служащим основой изменчивости организмов, дающей материал для естественного отбора. Дискретное наследование задатков было открыто в 1865 году австрийским естествоиспытателем г. Менделем (1822 - 1884). В 1909 г. Датский генетик Иогансен (1857 - 1927) назвал их генами.
Предположим, что нас интересует какой-либо ген, локализованный в аутосоме, например ген А, имеющий два аллеля А и а. При этом аллелизм это парность гомологичных генов, определяющих разные фенотипические признаки у диплоидных организмов. А аллель это одно из возможных структурных состояний гена. В определенном локусе хромосомы представлен только один из аллелей. У диплоидных организмов ген бывает представлен парой аллелей, располагающихся в гомологичных хромосомах. Потенциальное число аллелей в популяции неограниченно.
Предположим, что в популяции имеется N особей, различающихся по этой паре аллелей. В популяции встречаются три возможных генотипа АА; Аа; аа. Генотип это совокупность аллелей клетки или организма, генетическая конституция. Генотип является характеристикой индивида. Фенотип совокупность всех признаков особи в каждый конкретный момент ее жизни. Фенотип формируется при участии генотипа под влиянием условий среды. Фенотип есть частный случай реализации генотипа в конкретных условиях.
Фенотип (греч. фено являю + тип) это совокупность всех внутренних и внешних признаков и свойств особи, сформировавшихся на базе генотипа в процессе ее индивидуального развития (онтогенеза); служит одним из вариантов нормы реакции организма на действие внешних условий. При относительно одном и том же генотипе (абсолютного идентичного генотипа, за исключением однояйцевых близнецов, быть не может) в определенных пределах возможны бесчисленные варианты фенотипов (например, множество пород собак).
Математические методы популяционной генетики
Математические модели популяционной генетики количественно характеризуют динамику распределения частот генов в эволюционирующей популяции [1-4,6,8]. Есть два основных типа моделей: 1) детерминистические модели и 2) стохастические модели.
Детерминистические модели предполагают, что численность популяции бесконечно велика, в этом случае флуктуациями в распределении частот генов можно пренебречь, и динамику популяции можно описать в терминах средних частот генов.
Стохастические модели описывают вероятностные процессы в популяциях конечной численности.
Здесь мы кратко охарактеризуем основные уравнения и математические методы популяционной генетики. Наше изложение будет основываться на рассмотрении наиболее характерных примеров. Уравнения моделей мы будем приводить в основном в демонстрационных целях без вывода, с пояснением смысла этих уравнений; тем не менее, мы будем приводить ссылки на литературу, в которой сделаны соответствующие математические выводы.
Закон Харди-Вайнберга
Закон Харди-Вайнберга сформулировали в 1908 г. Независимо друг от друга математик Г. Харди в Англии и врач В. Вайнберг в Германии. Закон Харди-Вайнберга гласит, что процесс наследственной преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов.
Равновесные частоты генотипов задаются произведениями частот соответствующих аллелей. Если имеются только два аллеля, А и а, с частотами p и q, то частоты трех возможных генотипов выражаются уравнением:
(р + g)2 = р2 + 2рg + g2
А а АА Аа аа,
где буквам во второй строке, обозначающем аллели и генотипы, соответствуют расположенные над ними частоты в первой строке; в котором:
• р частота встречаемости аллеля А;
• g частота встречаемости аллеля а;
• g2 частота встречаемости генотипа аа;
• р2 частота встречаемости генотипа АА;
• рg частота встречаемости генотипа Аа. [1,с.111-112]
Таким образом, если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простым уравнением квадрата суммы. Приведенная выше формула получила название уравнения ХардиВайнберга.
Основные положения закона Харди-Вайнберга
Теперь можно доказать справедливость трех утверждений, содержащихся в законе Харди-Вайнберга:
1. Частоты аллелей не изменяются от поколения к поколению. Это можно легко показать. Частота аллеля А в потомстве в соответствии с таблицей 1 равна сумме частоты генотипа АА и половины частоты генотипа Аа, т.е. равна р2 + рg = р(р + g ) = р (поскольку р + g =1). [1]
2. Равновесные частоты генотипов задаются возведением в квадрат суммы частот аллелей и не изменяются от поколения к поколению. Так как частоты аллелей у потомства остаются такими же (р и g), какими были у родителей, то и частоты генотипов в следующем поколении также остаются неизменными и равными р2, 2рg и g2 .
3. Равновесные частоты генотипов достигаются за одно поколение. При этом в таблице не говорится о частотах генотипов в родительском поколении. Какими бы они не были, частоты генотипов потомков будут р2, 2рg + g2 , если частоты аллелей одинаковы у самцов и самок и равны р и g. [1,с.114]
Применение закона Харди-Вайнберга
Одно из возможных применений закона Харди-Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить А, а аллель альбинизма а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей АА и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10 000. Согласно закону Харди-Вайнберга, частота гомозигот аа равна q2; таким образом, q2 = 0, 0001, откуда q= 0, 01. Из этого следует, что частота нормального аллеля равна 0, 99. Частоты генотипов нормально пигментированных людей составляют р2 = 0, 992 = 0, 98 для генотипа АА и 2рq = 2 х 0,99 х 0,01= 0,02 для генотипа Аа.
34.Генетическая гетерогенность популяций. Факторы динамики генетического состава популяции: отсутствие панмиксии, дрейф генов, мутационный процесс, межпопуляционные миграции.
Генетическая гетерогенность популяции. С.С. Четвериков (1926), исходя из формулы, рассмотрел реальную ситуацию, складывающуюся в природе. Мутации обычно возникают и сохраняются в рецессивном состоянии и не нарушают общего облика популяции; популяция насыщена мутациями, «как губка водой».
Генетическая гетерогенность природных популяций, как показали многочисленные эксперименты, главнейшая их особенность. Она поддерживается за счет мутаций, процесса рекомбинации (только у форм с бесполым размножением вся наследственная изменчивость зависит от мутаций). Происходящая при половом размножении комбинаторика наследственных признаков дает неограниченные возможности для создания генетического разнообразия в популяции. Расчеты показывают, что в потомстве от скрещивания двух особей, различающихся лишь по 10 локусам, каждый из которых представлен 4 возможными аллелями, окажется около 10 млрд особей с различными генотипами. При скрещивании особей, различающихся в общей сложности по 1000 локусам, каждый из которых представлен 10 аллелями, число возможных наследственных вариантов (генотипов) в потомстве составит 101000, т.е. многократно превзойдет число электронов в известной нам Вселенной.
Эти потенциальные возможности никогда не реализуются даже в ничтожной степени хотя бы только из-за ограниченной численности любой популяции.
Генетическая гетерогенность, поддерживаемая мутационным процессом и скрещиванием, позволяет популяции (и виду в целом) использовать для приспособления не только вновь возникающие наследственные изменения, но и те, которые возникли очень давно и существуют в популяции в скрытом виде. В этом смысле гетерогенность популяций обеспечивает существование мобилизационного резерва наследственной изменчивости (СМ. Гершензон, И.И. Шмальгаузен).
ПАНМИКСИЯ (от греческого pan всё и mixis смешивание), свободное скрещивание разнополых особей с разными генотипами в популяции перекрёстнооплодотворяющихся организмов. Та или иная степень панмиксии характерна для подавляющего большинства видов растений и животных. Полная панмиксия возможна лишь в идеальных популяциях (бесконечно больших, где нет отбора, давления мутаций, миграций, не оказывают влияния другие факторы изоляции), в которых достигается случайное комбинирование гамет и равновесное распределение частот генотипических классов особей в соответствии с законом Харди Вайнберга.
Дрейф ге́нов или гене́тико-автомати́ческие проце́ссы явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами.
Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.
Одной из важнейших причин возникновения изменчивости является мутационный процесс, который условно делят на спонтанный и индуцированный. В тех случаях, когда возникновение мутаций подчинено общим стохастическим законам и происходит под влиянием обычных природных факторов внешней среды или в результате нормальных физиологических и биохимических изменений в самом организме, их относят к спонтанным.
Для каждого вида характерна определенная частота возникновения мутаций. Мутации чрезвычайно разнообразны как по фенотипи-ческому проявлению, так и по генетической обусловленности, поэтому их учет зачастую оказывается затруднительным.
Большинство вновь возникающих мутаций, как правило, вредны или но крайней мере бессмысленны. Их влияние на жизнеспособность или иные важные признаки особи-носителя могут находиться в интервале от пользы до катастрофичности. Вероятность возникновения мутации в отдельном гене очень мала.
При рассмотрении же особи или вида в целом вероятность возникновения мутации возрастает. Теоретически вероятность возникновения мутации в одном гене в одной гамете у одной особи составляет от 1 х 10~5 до 1 х 10"6. Учитывая, что каждая особь млекопитающего имеет десятки или даже сотни тысяч генов (у человека), можно утверждать, что в популяции возникает довольно много мутаций в каждом поколении.
Для каждого вида характерна определенная частота возникновения мутаций. Мутации чрезвычайно разнообразны как по фенотипическому проявлению, так и по генетической обусловленности, поэтому их учет зачастую оказывается затруднительным.
Большинство возникающих мутаций ввиду своего неадаптивного характера (снижающего приспособленность особи к условиям существования) отметаются естественным отбором. Особи, несущие такие мутации, гибнут уже на этапе оплодотворения яйцеклетки и далее в критические периоды эмбриогенеза, постнатальный период и т. д. В лучшем случае такая особь не оставляет после себя потомства.
Безразличные мутации не снижающие адаптивности особи, а также повышающие ее подхватываются естественным отбором и сохраняются, а затем и умножаются в популяции. Мутация редкое и ненаправленное событие, поэтому мы крайне редко наблюдаем в поголовье появление новых признаков. Показательным является следующий пример: мутация, как опечатка в книге практически мало вероятно, чтобы ее появление улучшило текст. Вероятнее всего она его испортит.
Различные гены в одном генотипе мутируют с разной частотой. Принято выделять мутабильные и стабильные гены. Однако в разных генотипах различную частоту мутирования могут иметь и сходные гены. Как правило, одновременно может мутировать лишь один ген из аллельной пары; одновременное мутирование ее обоих аллелей весьма маловероятно. Каждый ген подвергается мутационному изменению достаточно редко, но так как число генов в геноме огромно, то суммарная частота мутирования всех генов оказывается довольно высокой.
Одной из возможных причин спонтанного мутагенеза может быть и накопление в генотипе мутаций, блокирующих биосинтез тех или иных веществ, вследствие чего будет происходить чрезмерное накопление предшественников таких веществ, которые может обладать мутагенными свойствами.
В условиях возросшей численности интенсифицируются межпопуляционные миграции особей, что также способствует перераспределению аллелей. Рост количества организмов обычно сопровождается расширением занимаемой территории.
На гребне популяционной волны некоторые группы особей выселяются за пределы ареала вида и оказываются в необычных условиях существования. В таком случае они испытывают действие новых факторов естественного отбора. Повышение концентрации особей в связи с ростом их численности усиливает внутривидовую борьбу за существование.
При спаде численности наблюдается распад крупных популяций. Возникающие малочисленные популяции характеризуются измененными генофондами. В условиях массовой гибели организмов редкие мутантные аллели могут быть генофондом потеряны. При сохранении редкого аллеля его концентрация в генофонде малочисленной популяции автоматически возрастает. На спаде волны жизни часть популяций, как правило, небольших по размерам, остается за пределами обычного ареала вида. Чаще они, испытывая действие необычных условий жизни, вымирают. Реже, при благоприятном генетическом составе, такие популяции переживают период спада численности. Будучи изолированными от основной массы вида, существуя в необычной среде, они нередко являются родоначальниками новых видов.
35.Естественный отбор как направляющий фактор эволюции популяций. Понятие о приспособленности и коэффициенте отбора
Естественный отбор единственный фактор, определяющий направленность эволюционного процесса, приспособление организмов к определенной среде обитания. Благодаря отбору в популяции сохраняются и размножаются особи с полезными, то есть соответствующими среде обитания, мутациями. Особи, менее приспособленные к среде обитания, гибнут или выживают, но потомство их немногочисленно.
Генотипы особей в популяции различны, различна и частота их встречаемости. Эффективность отбора зависит от проявления признака в генотипе. Доминантный аллель сразу проявляется фенотипически и подвергается действию отбора. Рецессивный же аллель не подвергается отбору до тех пор, пока не окажется в гомозиготном состоянии. И.И.Шмальгаузен различал две основные формы естественного отбора: движущий и стабилизирующий.
Движущий отбор приводит к устранению особей со старыми признаками, не соответствующими изменившейся среде обитания, и формированию популяции особей с новыми признаками. Он происходит в медленно изменяющихся условиях среды обитания. Примером действия движущего отбора служит изменение окраски крыльев у бабочки березовой пяденицы. Обитающие на стволах деревьев бабочки имели преимущественно светлую окраску, незаметную на фоне светлых лишайников, покрывающих стволы деревьев
Стабилизирующий отбор сохраняет особи с установившейся в данных условиях нормой реакции и устраняет все отклонения от нее. Он действует в том случае, если условия среды долго не меняются. Так, цветки растения львиного зева опыляются только шмелями. Размеры цветка соответствуют размерам тела шмелей. Все растения, имеющие очень крупные или очень мелкие цветки, не опыляются и не образуют семян, то есть устраняются стабилизирующим отбором.
Приспособленность способность к размножению особей с определенным генотипом. В моделях популяционной генетики приспособленность обозначают как w. Понятие приспособленности является центральным в эволюционной теории.
Если генетические различия влияют на приспособленность, частоты генотипов будут меняться в ряду поколений, и менее приспособленные генотипы будут элиминироваться в результате естественного отбора. Приспособленность отдельной особи проявляется через её фенотип. Так как фенотип особи определяется генотипом и средой, приспособленность различных особей с одним и тем же генотипом может различаться в зависимости от условий жизни. Однако, поскольку приспособленность является средней величиной, она отражает результаты размножения всех особей с данным генотипом. Основной мерой приспособленности особи может являться её плодовитость.
Коэффициент отбора
Селективное преимущество одного аллеля перед альтернативным аллелем (или аллелями) можно выразить в процентах или в виде коэффициента отбора (s), величина которого изменяется в диапазоне от 0 до 1.
Количественное значение коэффициента отбора выводится из относительных темпов репродукции альтернативных аллелей. Допустим, что в некой большой популяции а предпочитаемый аллель, а А аллель, которому отбор не благоприятствует. В этой популяции на каждые 100 аллелей ,а, передаваемых следующему поколению, будет передаваться также некоторое число аллелей А (от 100 до 0). Коэффициент отбора есть функция этого отношения
36. Генетика развития. Онтогенез как реализация наследственно детерминированной программы развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе. Роль гомейозисных генов в онтогенезе.
Генетика развития
в течение трех первых десятилетий XX в., когда и генетика, и биология развития находились в центре внимания ученых, мало кто пытался объединить эти науки. Эмбриологи были поглощены механикой процесса онтогенеза, а генетики занимались выяснением законов, по которым происходит передача признаков.
Такое, казалось бы, странное отсутствие синтеза этих двух наук было вызвано двумя обстоятельствами. Первым, которое уже обсуждалось, было отрицание экспериментальными эмбриологами биогенетического закона, а вторым - отрыв эмбриологии от генетики
Важнейшая проблема развития - это именно та дифференцировка в пространстве и во времени на протяжении всей жизни данного индивидуума, которую генетика, по-видимому, явно игнорирует.
Такое категорическое отрицание было обусловлено тремя причинами. Во-первых, ранние менделисты представляли себе ген как некую частицу, передаваемую потомкам в сперматозоиде и яйце. Именно эти корпускулярные гены, или факторы, обеспечивают развитие индивидуума в процессе онтогенеза. Такое представление, по мнению экспериментальных эмбриологов, попахивало преформизмом - теорией, давно уже впавшей в немилость.
Во-вторых, менделевское направление молчаливо допускало, что при делении соматических клеток компоненты ядра-хромосомы, а следовательно, и гены, точно реплицируются и все клетки получают совершенно идентичные их наборы. Было хорошо известно, что процесс онтогенеза состоит в последовательном распределении цитоплазмы яйца между клетками, которое сопровождается постепенным сужением ее морфогенетических потенций. Эти два факта, с точки зрения эмбриологов, означали, что гены не могут управлять онтогенезом. Эмбриологи считали, что главная роль принадлежит не ядру, а цитоплазме
И наконец, в-третьих, между менделистами и эмбриологами существовало глубокое изначальное расхождение: менделевскую генетику интересовала главным образом передача признаков из поколения в поколение, тогда как эмбриология занималась развитием признаков в пределах одного поколения. Те и другие исследования достигли быстрых успехов в начале XX в.
Хотя большинство экспериментальных эмбриологов не занимались проблемами эволюции и генетики, было несколько ученых, предпринимавших попытки к их синтезу с эмбриологией.
Первым среди них был Дриш (Driesch), пытавшийся примирить расхождение, связанное с противопоставлением друг другу ядра и цитоплазмы. В 1894 г. он построил гипотезу, в которой постулировал, что развитие не обусловливается одним лишь ядром или одной лишь цитоплазмой, а представляет собой результат взаимодействия между ними
Вторую попытку синтеза сделал спустя несколько лет, в 1932 г., Морган. Его книга «Эмбриология и генетика» была написана с этой целью.
Вероятно, самую значительную попытку полного синтеза предпринял Рихард Гольдшмидт-. Его интересовала не только передача признаков, но также и физиологические аспекты генетики: каким образом унаследованные факторы реализуются в фенотипе, т.е. как функционируют гены. Главный вклад в науку этой и других его работ - концепция, согласно которой гены регулируют скорость процессов развития и могут таким образом оказывать сильное влияние на зависящие от них события в течение онтогенеза. Онтогенез слагается из связанных между собой и взаимозависимых процессов; т.е. формирование каждой отдельной структуры зависит как во времени, так и в пространстве от формирования других структур. Таким образом изменения в сроках возникновения одного морфогенетического события могут иметь глубокие последствия, изменяя многие дальнейшие зависящие от него ступени онтогенеза
«В хромосомном веществе любого организма имеются постоянные места для многих тысяч функциональных единиц, или генов, способных мутировать. Любое изменение или утрата того или иного гена угрожает жизни развивающегося организма. Самым убедительным доказательством значения этих хромосомных факторов служит установление того, что утрата одного-единственного гена может полностью нарушить развитие, а то обстоятельство, что ни один из многих тысяч остальных генов не может принять на себя роль этого недостающего фактора, свидетельствует о высокой индивидуальности структуры и функции отдельного гена. Кроме того, процесс развития, очевидно, предъявляет огромные требования к гармоничному сотрудничеству многочисленных отдельных процессов, берущих начало в генетической субстанции хромосом».
Гомеозисные гены гены, определяющие процессы роста и дифференцировки в организме. Гомеозисные гены кодируют транскрипционные факторы, контролирующие программы формирования органов и тканей. Гомеозисные гены контролируют работу других генов и определяют превращение внешне неразличимых участков зародыша или определённого органа (ткани, участка тела). В частности, гомеозисные гены контролируют появление различий сегментов многоклеточных животных в раннем эмбриональном развитии. У насекомых гомеозисные гены играют ключевую роль в определении особенностей строения эмбриональных сегментов и структур на них (ноги, антенны, крылья, глаза)
37.Гомеобоксы у человека. Индукция и органогенез (на примере развития почки).
Гомеобокс последовательность ДНК, обнаруженная в генах, вовлеченных в регуляцию развития у животных, грибов и растений. Гены, которые содержат гомеобокс, образуют отдельное семейство.
Наиболее изученными и наиболее консервативными белками, содержащими гомеодомен, являются Hox-гены, которые контролируют сегментацию во время развития. Однако не все белки, содержащие гомеодомен, являются белками Hox.
У человека
Гены, содержащие гомеобокс у человека, подразделяют на четыре кластера, расположенные в разных хромосомах:
Название Хромосома Гены
HOXA (иногда HOX1) -HOXA@ хромосома 7 HOXA1, HOXA2, HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXA10, HOXA11, HOXA13
HOXB - HOXB@ хромосома 17 HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8, HOXB9, HOXB13
HOXC - HOXC@ хромосома 12 HOXC4, HOXC5, HOXC6, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12, HOXC13
HOXD - HOXD@ хромосома 2 HOXD1, HOXD3, HOXD4, HOXD8, HOXC9, HOXD10, HOXD11, HOXD12, HOXD13
Гомологичные последовательности найдены в ДНК амфибий, мыши и человека. Продуктом их является белок, связывающийся с ДНК и выполняющий регуляторные функции (репрессия-дерепрессия ДНК). Тестирование геномов различных Metabioia радиоактивной ДНК гена Antp с помощью Саузерн-блоттинга позволило выявить у них гены с гомеобоксом. Такие гены удалось обнаружить у кольчатых червей, моллюсков, иглокожих, лягушек, мыши и человека. При этом удивительное сходство можно обнаружить, сравнивая гомеодомены гена ММЗ лягушки и гена Antp дрозофилы: 59 из 60 аминокислотных остатков одинаковы, несмотря на то, что мухи и лягушки развивались независимо 600 млн. лет.
ОРГАНОГЕНЕЗ - образование зачатков органов и их дифференцнровка в ходе онто- или филогенеза многоклеточных организмов. Почти у всех многоклеточных животных онтогенетич. О. предшествует разделение тела зародыша на экто-, энто- и мезодерму. У позвоночных из материала эктодермы возникают зачатки ЦНС, органов чувств, покровов, из энтодермы кишечная трубка, из к-рой позже вычленяются зачатки печени, поджелудочной железы, органов дыхания, из мезодермы зачатки скелета, мускулатуры, кровеносной системы, половых органов и органов выделения. Как правило, зачатки органов возникают под индукционными воздействиями приходящего с ними в контакт материала ранее возникших зачатков и развиваются путём образования впячиванцй или выпячиваний и их более или менее полного отшнуровывания, а также путём местных сгущений клеток. В определении местоположения зачатков органов, помимо индукционных воздействий, важное значение имеют и другие, более диффузные влияния окружения, часто обозначаемые как морфогенетич. градиенты. Напр., расчленение мезодермы на зачаток хорды, мышечные сегменты, боковые пластинки и кроветворные клетки происходит под влиянием спинно-брюшного градиента. После образования общей формы и структуры органов в них дифференцируются клетки разл. типов. На всех стадиях О. большое значение имеют взаимодействия клеток, входящих в состав зачатка органа. Изучение изменения органов в эволюции, их преобразований, разделения, прогрессивного развития и редукции, процессов рудиментации, а также развития формы в связи с их функцией привело к открытию осн. закономерностей филогенетич. О. Онтогенетич. О. до известной степени воспроизводит филогенетич. О.. У растений термином «О.» обычно обозначают формирование и развитие осн. органов (корня, стебля, листьев, цветков) в процессе онтогенеза из меристемы.
ИНДУКЦИЯ - в физиологии, термин, используемый для обозначения возбуждающих и тормозящих взаимовлияний нервных центров. Явление И. характерно для всех отделов нервной системы. В эмбриологии И. взаимодействие между частями развивающегося организма у мн. беспозвоночных и всех хордовых, в процессе к-рого одна часть индуктор, приходя в контакт с другой частью реагирующей системой, определяет направление развития последней. Явление И. открыто в 1901 X. Шпеманом при изучении образования зачатка хрусталика глаза из эктодермального эпителия у зародышей земноводных. Позже он показал, что и для образования у этих животных нервной пластинки из эктодермы гаструлы необходим контакт эктодермы с хордомезодермой. Это взаимодействие наз. первичной эмбриональной И., а индуктор материал спинной губы бластопора организатором. В эксперименте было показано, что реагирующая система, дифференцируясь под влиянием индуктора, часто сама становится индуктором для возникающих позже зачатков органов и тканей и всё развитие зародыша представляет собой как бы цепь следующих друг за другом индукционных взаимодействий. В ряде случаев установлено не только воздействие индуктора на реагирующую систему, но и влияние последней на дальнейшую дифференцировку индуктора. Для осуществления И. необходимо, чтобы клетки, подвергающиеся действию индуктора, обладали соответствующей компетенцией. Действие индукторов, как правило, лишено видовой специфичности внеш.
38.Генетика человека. Особенности человека как объекта генетических исследований. Доминантные, рецессивные признаки у человека. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
Генетика человека это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. В настоящее время твердо установлено, что законы генетики носят всеобщий характер. Однако, поскольку человек это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей: для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний); поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы; для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности; благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).
Особенности человека как объекта генетических исследований состоит в том что: у человека не может быть произведено искусственного направленного скрещивания в интересах исследователя. Во-вторых, низкая плодовитость делает невозможным применение статистического подхода при оценке немногочисленного потомства одной пары родителей. В-третьих, редкая смена поколений, происходящая в среднем через 25 лет, при значительной продолжительности жизни. Особенности человека делают невозможным применение для изучения его наследственности и изменчивости классического гибридологического метода генетического анализа, с помощью которого были открыты все основные закономерности наследования признаков и установлены законы наследственности.
К методам, широко используемым при изучении генетики человека, относятся генеалогический, популяционно-статистический, близнецовый, метод дерматоглифики, цитогенетический, биохимический, методы генетики соматических клеток:
Рецессивный признак признак, не проявляющийся у гетерозиготных особей вследствие подавления проявления рецессивного аллеля.
Рецессивные признаки признаки, проявление которых у гибридов первого поколения подавлено при условии скрещивания двух чистых линий, одна из которых гомозиготна по доминантному аллелю, а другая по рецессивному. В этом случае (при моногибридном скрещивании) в соответствии с законом расщепления во втором поколении рецессивный признак вновь проявляется примерно у 25 % гибридов.
Доминантный признак признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Результат наличия доминантного аллеля. Обычно «дикий тип», то есть вариант, присущий большинству особей природных популяций это доминантный признак. Доминантные признаки могут быть обусловлены генами, расположенными в неполовых (аутосомах) хромосомах или в половых хромосомах (признаки, сцепленные с полом). В первом случае признак называется доминантно-аутосомным.
Методы генетики человека Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.
В генетике человека используется ряд методов исследования.
Генеалогический метод Использование этого метода возможно в том случае, когда известны прямые родственники предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям. Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные
Близнецовый метод Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) идизиготными (разнояйцевыми).
Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью) по многим признакам. Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью несходством по многим признакам.
Цитогенетический метод. Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры.
Биохимический метод. Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.
Популяционно-статистический метод. Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях. Изучением генетической структуры популяций занимается особый раздел генетики популяционная генетика.
39. Проблемы медицинской генетики. Врожденные и наследственные болезни, их распространение в человеческих популяциях. Хромосомные и генные болезни.
Медицинская генетика это наука о наследственности в патологии человека, закономерностях передачи от поколения к поколению наследственных болезней, которая разрабатывает методы диагностики, лечения и профилактики наследственных болезней.
Задачи медицинской генетики заключается в изучении следующих вопросов:
-какие наследственные механизмы поддерживают гомеостаз организма и определяют здоровье индивида, - каково значение наследственных факторов (мутации или сочетания определенных аллелей) в этиологии болезней,
-каково соотношение наследственных и средовых факторов в патогенезе болезней
-какова роль наследственных факторов в определении клинической картины болезней (наследственных и ненаследственных),
- каково влияние наследственной конституции на процесс выздоровления человека и исход болезни, -как наследственность определяет специфику фармакологического и других видов лечения.
Насле́дственные заболева́ния заболевания, возникновение и развитие которых связано с дефектами в наследственном аппарате клеток, передаваемыми по наследству через гаметы. Термин употребляется в отношении полиэтиологических заболеваний, в отличие от более узкой группы генные болезни. Наследственные заболевания обусловлены нарушениями в процессах хранения, передачи и реализации генетической информации
В основе наследственных заболеваний лежат нарушения (мутации) наследственной информации хромосомные, генные и митохондриальные. Отсюда классификация наследственных заболеваний. Наследственные болезни многочисленны (известно свыше 6000) и разнообразны по проявлениям. Для значительной части наследственных болезней тип наследования установлен патологические признаки, также как и нормальные, могут наследоваться аутосомно-доминантно, аутосомно-рецессивно и сцепленно с полом (Х-сцепленный доминантный, Х-сцепленный рецессивный и Y-сцепленный типы наследования). Термин «аутосомный» указывает на то, что мутантный ген локализован в аутосоме, «Х-сцепленный» в половой Х-хромосоме, а «Y-сцепленный» в половой Y-хромосоме.
Врождённые болезни
заболевания и пороки развития, имеющиеся в явной или скрытой форме уже при рождении ребенка. Часть врожденных болезней, в т.ч. Ферментопатии, наследуются. Причинами других В. б, являются заболевания матери или употребление ею во время беременности алкоголя, некоторых лекарственных препаратов (цитостатиков, стероидных гормонов, салицилатов и др.), воздействие на плод ионизирующего излучения, возбудителей инфекций и т.д. В структуре перинатальной заболеваемости и смертности В. б. занимают одно из первых мест.
При подозрении на В. б. показано Медико-генетическое консультирование. Современная антенатальная диагностика таких В. б., как ферментопатии и некоторые другие наследственные болезни, основана на определении ряда метаболитов, гормонов, клеток в околоплодных водах, биопсии хориона; для выявления пороков развития (Пороки развития) используют ультразвуковую диагностику (Ультразвуковая диагностика), фетоамниографию и другие диагностические методы. В профилактике В. б. важную роль играет Антенатальная охрана плода.
Хромосомные болезни наследственные заболевания, обусловленные изменением числа или структуры хромосом. К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 35 %
Болезни, связанные с нарушением числа половых хромосом
Синдром Шерешевского Тёрнера отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);
Синдром Клайнфельтера полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.
Генные болезни это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена
Причины генных заболеваний
Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов белков. Любая мутация гена ведет к изменению структуры или количества белка.
Начало любой генной болезни связано с первичным эффектом мутантного аллеля.
Основная схема генных болезней включает ряд звеньев:
мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм
В результате мутации гена на молекулярном уровне возможны следующие варианты:
• синтез аномального белка;
• выработка избыточного количества генного продукта;
• отсутствие выработки первичного продукта;
• выработка уменьшенного количества нормального первичного продукта.
Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека.
Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды (питание, охлаждение, стрессы, переутомление) и других факторов.
40.Задачи медико-генетических консультаций. Современные методы пренатальной диагностики наследственных заболеваний: амниоцентез, кордоцентез и др.
Медико-генетическое консультирование - специализированная медицинская помощь - наиболее распространенная форма профилактики наследственных болезней. Генетическое консультирование - состоит из информирования человека о риске развития наследственного заболевания, передачи его потомкам, а также о диагностических и терапевтических действия. Задача медико-генетического консультирования:
1. Установления точного диагноза врожденного или наследственного заболевания;
2. Определение типа наследования заболевания в данной семье
3. Расчет величины риска повторения заболевания в семье;
4. Объяснение содержания медико-генетического прогноза тем людям, которые обратились за консультацией;
5. Диспансерное наблюдение и выявление группы повышенного риска среди родственников индивида с наследственной болезнью;
6. Пропаганда медико-генетических знаний среди врачей и населения;
Пренатальная диагностика врожденных и наследственных болезней - это комплексная отрасль медицины, которая быстро развивается. Она использует и ультразвуковую диагностику (УЗИ), и оперативную технику (хорионбиопсию, амнио-и кордоцентез, биопсию мышц и кожи плода)
Инвазивные методы исследования в пренатальной диагностике.
Амниоцентез - прокол плодного пузыря с целью получения околоплодной жидкости и слущенных клеток амнионе плода. Диагностическое значение метода не вызывает сомнений. Эта процедура выполняется на 15-18 неделях беременности. Риск возникновения осложнений беременности при амниоцентезе составляет 0,2%.
Кордоцентез, т.е. взятия крови из пуповины, стали использовать шире после того, как эту процедуру начали проводить под контролем УЗИ, т.е. без фетоскопии. Процедуру проводят в период с 18 по 22 недели беременности. Образцы крови являются объектом для цитогенетических (культивируются лимфоциты), молекулярно-генетических и биохимических методов диагностики наследственных болезней. Кордоцентез используют для диагностики хромосомных болезней, гематологических наследственных болезней (гемоглобинопатии, коагулопатии, тромбоцитопении), иммунодефицитов, гематологического статуса при резус-сенсибилизации, внутриутробных инфекций. Процедура с первой попытки успешна в 80-97% случаев. Преимущество кордоцентеза по сравнению с амниоцентезом заключается в том, что кровь является более удобным объектом для исследования, чем клетки амниотической жидкости. Лимфоциты культивируются быстрее (2-3 дня) и надежнее, чем амниоциты.
41.Понятие о виде и популяции. Популяция как естественно-историческая структура.
Вид основная структурная единица биологической систематики живых организмов (животных, растений и микроорганизмов) таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды.
Популяция одно из центральных понятий в биологии и обозначает совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию. Она является первой надорганизменной биологической системой. С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.
типы популяций. Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций: элементарную, экологическую, географическую.
Элементарная (локальная) популяция это совокупность особей одного вида, занимающих небольшой участок однородной площади. Между ними постоянно идет обмен генетической информацией.
Популяция является генетической единицей вида, изменения которой осуществляет эволюция вида. Как группа совместно обитающих особей одного вида, популяция выступает первой надорганизменной биологической макросистемой. У популяции приспособительные возможности значительно выше, чем у составляющих ее индивидов. Популяция как биологическая единица обладает определенными структурой и функциями.
Структура популяции характеризуется составляющими ее особями и их распределением в пространстве.
Функции популяции аналогичны функциям других биологических систем. Им свойствен рост, развитие, способность поддерживать существование в постоянно меняющихся условиях, т.е. популяции обладают конкретными генетическими и экологическими характеристиками.
42. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике.
Ген структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.
Частота гена выраженное в процентах содержание данной аллели (гена) в популяции организмов. Скорость уменьшения Ч.г. под действием отбора зависит от процента особей в популяции, у которых данный ген проявился. Напр., если полностью доминантный ген у человека снижает жизнеспособность в два раза (и соответственно передается следующему поколению вдвое реже, чем нормальный), то через 20 поколений, или примерно через 500 лет, его частота будет в 1 млн раз меньше первоначальной. Процесс случайного, не направленного изменения Ч.г. в популяциях получил название дрейфа генов
Геноти́п совокупность генов данного организма, которая, в отличие от понятия генофонд, характеризует особь, а не вид. Сходное понятие геном обозначает совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Вместе с факторами внешней среды геном определяет фенотип организма.
Термин «генотип» наряду с терминами «ген» и «фенотип» ввёл генетик В. Л. Иогансен в 1909 году в работе «Элементы точного учения наследственности»[1].
Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена. Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых услов
Математические методы популяционной генетики
Математические модели популяционной генетики количественно характеризуют динамику распределения частот генов в эволюционирующей популяции. Есть два основных типа моделей:
1) детерминистические модели
2) стохастические модели
Детерминистические модели предполагают, что численность популяции бесконечно велика, в этом случае флуктуациями в распределении частот генов можно пренебречь, и динамику популяции можно описать в терминах средних частот генов.
Стохастические модели описывают вероятностные процессы в популяциях конечной численности.
43.Закон Харди-Вайнберга, возможности его применения. С.С.Четвериков - основоположник экспериментальной популяционной генетики.
Закон Харди Вайнберга это закон популяционной генетики в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:
Закон Харди-Вайнберга основа математических построений генетики популяций и современной эволюционной теории. Сформулирован независимо друг от друга математиком Г. Харди (Англия) и врачом В. Вайнбергом (Германия) в 1908 г. Этот закон утверждает, что частоты аллелей и генотипов в данной популяции будут оставаться постоянными из поколения в поколение при выполнении следующих условий: 1) численность особей популяции достаточно велика (в идеале бесконечно велика), 2) спаривание происходит случайным образом (т. е. осуществляется панмиксия), 3) мутационный процесс отсутствует,
4) отсутствует обмен генами с другими популяциями,
5) естественный отбор отсутствует, т. е. особи с разными генотипами одинаково плодовиты и жизнеспособны. Иногда этот закон формулируют иначе: в идеальной популяции частоты аллелей и генотипов постоянны. (Поскольку описанные выше условия выполнения данного закона и есть свойства идеальной популяции.) Математическая модель закона отвечает формуле: p2+2pq+q2=1
Главное применение закона ХардиВайнберга в генетике природных популяций вычисление частот аллелей и генотипов. Рассмотрим пример использования этого закона в генетических расчетах. Известно, что один человек из 10 тыс. является альбиносом, при этом признак альбинизма у человека определяется одним рецессивным геном. Давайте вычислим, какова доля скрытых носителей этого признака в человеческой популяции. Если один человек из 10 тыс. является альбиносом, то это значит, что частота рецессивных гомозигот составляет 0,0001, т. е. q2 = 0,0001. Зная это, можно определить частоту аллеля альбинизма q, частоту доминантного аллеля нормальной пигментации р и частоту гетерозиготного генотипа (2pq). Люди с таким генотипом как раз и будут скрытыми носителями альбинизма, несмотря на то что фенотипически этот ген не будет у них проявляться и они будут иметь нормальную пигментацию кожи.
Из приведенных простых расчетов видно, что, хотя число альбиносов крайне невелико всего лишь один человек на 10 тыс., ген альбинизма несет значительное количество людей около 2% . Иными словами, даже если признак фенотипически проявляется очень редко, то в популяции присутствует значительное количество носителей этого признака, т. е. особей, имеющих этот ген в гетерозиготе.
Благодаря открытию закона ХардиВайнберга процесс микроэволюции стал доступен непосредственному изучению: о его ходе можно судить по изменениям из поколения в поколение частот генов (или генотипов). Таким образом, несмотря на то что этот закон действителен для идеальной популяции, которой нет и не может быть в природе, он имеет огромное практическое значение, так как дает возможность рассчитать частоты генов, изменяющиеся под влиянием различных факторов микроэволюции.
Серге́й Серге́евич Четверико́в (24 апреля [6 мая] 1880, Москва 2 июля 1959, Горький) выдающийся русский и советский биолог, генетик-эволюционист, сделавший первые шаги в направлении синтеза менделевской генетики и эволюционной теории Чарльза Дарвина.
Он раньше других учёных организовал экспериментальное изучение наследственных свойств у естественных популяций животных. Эти исследования позволили ему стать основоположником современной эволюционной генетики. В этой области Сергей Четвериков выступает как подлинный новатор, смотревший далеко вперед и определивший на многие десятилетия пути развития мировой биологической науки.
44.Генетическая гетерогенность популяций. Методы изучения природных популяций.
Генетическая гетерогенность наличие в популяции разных аллелей генов (множественный аллелизм). Генетический полиморфизм наличие отдельных аллелей с частотой выше 1 %, т.е. с частотой заведомо более высокой, чем частота спонтанных мутаций.
Генетическая гетерогенность популяции.
С.С. Четвериков (1926), исходя из формулы Харди, рассмотрел реальную ситуацию, складывающуюся в природе. Мутации обычно возникают и сохраняются в рецессивном состоянии и не нарушают общего облика популяции; популяция насыщена мутациями, «как губка водой».
Генетическая гетерогенность природных популяций, как показали многочисленные эксперименты, главнейшая их особенность. Она поддерживается за счет мутаций, процесса рекомбинации (только у форм с бесполым размножением вся наследственная изменчивость зависит от мутаций). Происходящая при половом размножении комбинаторика наследственных признаков дает неограниченные возможности для создания генетического разнообразия в популяции. Расчеты показывают, что в потомстве от скрещивания двух особей, различающихся лишь по 10 локусам, каждый из которых представлен 4 возможными аллелями, окажется около 10 млрд особей с различными генотипами. При скрещивании особей, различающихся в общей сложности по 1000 локусам, каждый из которых представлен 10 аллелями, число возможных наследственных вариантов (генотипов) в потомстве составит 101000, т.е. многократно превзойдет число электронов в известной нам Вселенной.
Эти потенциальные возможности никогда не реализуются даже в ничтожной степени хотя бы только из-за ограниченной численности любой популяции.
Генетическая гетерогенность, поддерживаемая мутационным процессом и скрещиванием, позволяет популяции (и виду в целом) использовать для приспособления не только вновь возникающие наследственные изменения, но и те, которые возникли очень давно и существуют в популяции в скрытом виде. В этом смысле гетерогенность популяций обеспечивает существование мобилизационного резерва наследственной изменчивости
45.Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
Динамика популяции
Мутационный процесс. Это основа возникновения гетерогенности популяции. Из-за наличия мутационного процесса трудно говорить о существовании истинных чистых линий в течение длительного времени. Генотипы организмов в популяции насыщены различными мутациями, которые чаще всего находятся в гетерозиготном состоянии. По мере повышения концентрации мутаций повышается вероятность их перехода в гомозиготное состояние. В каждом поколении генофонд может пополняться значительным числом новых мутаций. Этот процесс называется мутационным давлением. Следовательно, частота аллелей разных генов в популяции будет изменяться в зависимости от мутационного давления, т.е. соотношения частот прямых и обратных мутаций. Распространение мутации в популяции зависит не только от мутабильности данного локуса (т.е. сильной или слабой изменчивости данного гена под различными воздействиями), но и от степени её влияния на жизнеспособность особи.
Отбор. Генетическая гетерогенность, широко распространённая в природных популяциях, составляет основу эффективности естественного отбора. Отбор действует на фенотипы и косвенно сказывается на изменении частот аллелей. В зависимости от того, какое влияние оказывает отбор на признаки, различают три типа отбора:
-. стабилизирующий способствует сохранению среднего значения признака;
- дизруптивный способствует стабилизации крайних значений признака;
- движущий, или направленный способствует непрерывному изменению признака в определённом направлении. Скорость устранения доминантных и рецессивных аллелей из популяции различна. Организмы, несущие доминантные летальные гены или гены стерильности, устраняются отбором даже в гетерозиготе, т.е. доминантный ген в каждом поколении находится под контролем отбора. Рецессивные мутации в отличие от доминантных, могут находиться в популяции в скрытом, гетерозиготном состоянии, накапливаться в ней, создавая огромный мутационный резерв. Они подвергнуться отбору только в случае выхода в гомозиготное состояние. Следовательно, отбор рецессивных генов оказывается менее эффективным, чем доминантных. Довольно часто гетерозиготы более жизнеспособны. В силу этого гетерозиготы обладают селективным преимуществом. Таким образом, отбор является решающим фактором для дивергенции вида. Сам же естественный отбор обусловлен абиотическими и биотическими факторами, составляющими внешнюю среду как для отдельного организма, так и для популяции в целом. Единственный направляющий фактор.
Дрейф ге́нов или гене́тико-автомати́ческие проце́ссы явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленноеслучайными статистическими причинами.
Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.
46.Взаимодействие факторов динамики генетической структуры в природных популяциях.
Факторы генетической динамики популяций
В ходе эволюции организмов происходит непрерывная замена одних генотипов другими путем изменения в популяции численного соотношения качественно различающихся генотипов, что и составляет сущность динамики генетической структуры популяции. Генетическая изменчивость популяции складывается из мутационной и комбинативной изменчивости.
Равновесие генотипов в панмиктической популяции, основанное на сохранении относительных частот генов, изменяется под влиянием ряда постоянно действующих факторов, к которым относятся:
В природных популяциях
Важные и оригинальные исследования генетической структуры природных популяций D. melanogaster были выполнены в конце 30-х годов на Украине Гершензоном (1939, 1941б).
Гершензон впервые осуществил полную гомозиготизацию выделенных из природы линий мух и дал тем самым точную оценку концентрации летальных мутаций и мутаций стерильности. Он привлек внимание к широкому распространению в популяциях доминантных и полудоминантных мутаций.
Любая популяция представляет собой непрерывный поток поколений благодаря обмену генами, который происходит в результате скрещивания особей друг с другом. Признаки, появившиеся в ходе независимого комбинирования генов, определяют формирование фенотипа организмов и обусловливают изменчивость в популяции. В ходе естественного отбора адаптивные фенотипы сохраняются, а неадаптивные исчезают. Так формируется генетическая реакция всей популяции, которая определяет выживание данного вида. Только те особи популяции, которые выжили и оставили потомство, вносят вклад в будущее своего вида.
Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формахназываемых аллелями. Число особей в конкретной популяции, несущих определенный аллель, определяет частоту данного аллеля
47. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
Внутрипопуляционный полиморфизм. Существование двух (или более) генетически различных форм в популяции в состоянии длительного равновесия в таких соотношениях, что частоту даже наиболее редкой формы нельзя объяснить только повторными мутациями, называется полиморфизмом.
Полиморфизм существование в единой панмиксной популяции двух и более резко различающихся фенотипов. Они могут быть нормальными или аномальными. Полиморфизм явление внутрипопуляционное. Полиморфизм бывает: - генный; - хромосомный; - переходный; - сбалансированный. Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример системы групп крови. Хромосомный полиморфизм между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий хромосомный полиморфизм, характер мутаций нейтрален.
Переходный полиморфизм замещение в популяции одного старого аллеля новым, который более полезен в данных условиях.
Сбалансированный полиморфизм возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.
Генетический груз накопление летальных и сублетальных отрицательных мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель. В более строгом смысле генетический груз в популяционной генетике это выражение уменьшения селективной ценности для популяции по сравнению с той, которую имела бы популяция, если бы все индивидуальные организмы соответствовали бы наиболее благоприятному генотипу. Обычно выражается в средней приспособленности по сравнению с максимальной приспособленностью.
48. Формы отбора: движущий, стабилизирующий, дизруптивный
ДИЗРУПТИВНЫЙ ОТБОР
разрывающий отбор, одна из форм естеств. отбора, благоприятствующая двум или нескольким направлениям изменчивости (классам фенотипов), но не благоприятствующая среднему (промежуточному) состоянию признака (фенотипа). При действии Д. о. внутри поиуляпии обычно возникает полиморфизм неск. отчётливо различающихся фенотипич. форм. Если же разные направления Д. о. обусловлены различиями условий внеш. среды в разных частях ареала данного вида, то населяющие их аллопатрич. популяции приобретают устойчивые фенотипич. и генотипич. различия, имеющие приспособит, значение. При снижении возможности скрещивания между такими популяциями в результате изоляции друг от друга происходит их дальнейшая дивергенция, вплоть до обособления в качестве новых видов. Один из примеров действия Д. о. развитие индустриального меланизма, описанного более чем у 70 видов бабочек в Европе и Сев. Америке. Иногда Д. о. рассматривают как частный случай движущего отбора, поскольку обе эти формы отбора приводят к изменению фенотипич. облика популяций в противоположность стабилизирующему отбору.
Стабилизирующий отбор
Стабилизирующий отбор наблюдается в том случае, если условия внешней среды длительное время остаются достаточно постоянными. В относительно неизменной среде преимуществом обладают типичные, хорошо приспособленные к ней особи со средним выражением признака, а отличающиеся от них мутанты погибают. Известно много примеров стабилизирующего отбора.
Стабилизирующий отбор ведет к большой фенотипической однородности популяции. Если он действует длительное время, то создается впечатление, что популяция или вид не изменяются. Однако эта неизменность кажущаяся и касается лишь внешнего облика популяции, генофонд же ее продолжает изменяться на основе появления мутаций с тем же значением средней, но с более узкой нормой реакции.
Стабилизирующая форма отбора характерна и для человека. Известно, что нарушения по самым мелким 2122-й парам хромосом ведут к тягчайшему наследственному заболеванию синдрому Дауна
Стабилизирующий и движущий отборы взаимосвязаны и представляют две стороны одного процесса. Популяции постоянно вынуждены приспосабливаться к изменениям условий среды. Движущий отбор будет сохранять генотипы, которые наиболее соответствуют изменениям среды- Когда условия среды стабилизируются, отбор приведет к созданию хорошо приспособленной к ней формы. С этого момента в действие вступает стабилизирующий отбор, который будет поддерживать типичные, преобладающие генотипы и устранять от размножения уклоняющиеся от средней нормы мутантные формы.
Движущая форма естественного отбора
Движущий отбор был описан еще Ч. Дарвином. Само название «движущий» говорит о том, что такой отбор выступает в качестве творческой силы эволюции. При движущей форме отбора происходит отсев мутаций с одним значением среднего признака, которые заменяются мутациями с другим средним значением признака. Эта форма отбора выявляется легче других. В итоге действия движущей формы отбора, например, возникает увеличение размеров потомков по сравнению с предками (в эволюционном ряду лошадиных от имевшего размеры с лисицу ископаемого фенакодуса до современных осла, зебры, лошади). Другие формы могут уменьшаться в размерах..
49.Роль генетических факторов в эволюции
Современное эволюционное учение основано на фундаменте достижений генетики, раскрывшей материальную природу наследственности. Эволюционирующей единицей с таких позиций является не особь и не вид, а популяция, т.е. совокупность особей одного вида, длительно населяющих определенную территорию и свободно скрещивающихся между собой. В основе наследственных изменений в популяции лежит мутационная изменчивость как следствие внезапных мутаций - наследственных изменений генетического аппарата. Мутации могут возникать в любой клетке, на любой стадии развития как в обычных условиях существования (спонтанные мутации), так и под воздействием каких-либо физических или химических факторов (индуцированные мутации). Следовательно, с современных позиций движущими факторами эволюции являются мутагенез (т.е. процесс образований мутаций) и естественный отбор. Последний дает возможность выжить организмам, мутационные изменения которых обеспечивают наибольшую приспособленность к конкретным условиям окружающей среды. В выяснении роли мутаций в эволюционном процессе большую роль сыграли работы советских ученых С.С.Четверикова, Н.И.Вавилова, И.И.Шмальгаузена.
Одно из главных мест в современном эволюционном учении занимает генетический анализ популяций человека. Своеобразием их генетики является то, что естественный отбор потерял роль ведущего фактора в эволюции человека. Однако значение генетики для человека исключительно велико, так как она занимает ключевое место при анализе распространения наследственных болезней, при оценке эффекта радиации и других физических, а также химических воздействий на генетический аппарат.
Дальнейшее развитие эволюционного учения связано, прежде всего с успехами популяционной генетики, изучающей преобразование генетических систем в процессе исторического развития организмов. Новейшие достижения молекулярной биологии позволяют по-новому взглянуть на механизм эволюции. Открытие молекулярных механизмов, лежащих в основе мутагенеза, изучение проблемы развертывания генетической информации в процессе онтогенеза, закономерностей филогенеза подготовили почву для нового качественного скачка в развитии эволюционного учения и всей биологии в целом. Таким образом, эволюционное учение является основным оружием биологов-материалистов, постоянно обогащающихся новыми фактическими и теоретическими данными, развивающихся по мере углубления знаний в живой природе.
50.Молекулярно-генетические основы эволюции. Задачи геносистематики.
Молекулярно-генетические основы эволюции
Произошедшая на рубеже тысячелетий революция в области молекулярной биологии, завершившаяся расшифровкой структуры геномов многих сотен видов микроорганизмов, а также некоторых видов простейших, дрожжей, растений, животных и человека, перевернула многие традиционные представления классической генетики и вплотную приблизила возможность исследования молекулярных механизмов эволюции и видообразования. Родилась новая наука - сравнительная геномика, позволяющая регистрировать появление в различных филогенетических линиях эволюционно значимых событий, происходящих на уровне отдельных молекул. Оказалось, что в общем случае эволюционный прогресс ассоциируется не только, и не столько с увеличением числа, протяженности и даже сложности структурной организации генов, но в гораздо большей степени с изменением регуляции их работы, определяющей координацию и тканеспецифичность экспрессии десятков тысяч генов. Это, в конечном счете, и привело к появлению у высших организмов более сложных, высоко специфичных, многофункциональных комплексов взаимодействующих белков, способных выполнять принципиально новые задачи.
51. Значение генетики популяций для медицинской генетики, селекции, решения проблем сохранения генофонда и биологического разнообразия.
Методы, используемые для установления частот генов и генотипов в популяции, демонстрирующие характер их изменения под влиянием окружающей среды и различных факторов популяционной динамики, носят название популяционно-статистических. С помощью этих методов можно:
• определить частоты генов, степень гетерозиготности и полиморфизма,
• установить, как меняются частоты генов под действием отбора,
• выявить влияние факторов популяционной динамики на частоты тех или иных генотипов и фенотипов,
• проанализировать влияние факторов внешней среды на экспрессию генов,
• определить степень межпопуляционного генетического разнообразия и вычислить генетическое расстояние между популяциями.
Так же методы популяционно-статистического анализа могут быть использованы для определения и подтверждения типов наследования заболевания, являясь основой применения математической статистики в клинико-генетическом анализе. Популяционно-генетические исследования включают следующие этапы: 1) подбор популяции с учетом демографических характеристик, 2) сбор материала, 3) выбор метода статистического анализа. Генетическое изучение популяций человека предполагает знание их демографических характеристик (размер популяций, рождаемость, смертность, возрастная структура, национальный состав), а также географических и климатических условий жизни, религиозных убеждений и т.д. Это связано с некоторыми особенностями популяций человека, которые могут быть панмиксными (случайные браки) и инбредными (высокая частота кровнородственных браков). В популяциях человека формирование субпопуляций связано с такими формами изоляции, которые свойственны только человеку, например, расовая, социальная (социальное положение, экономические, этнические, языковые, административные), конфессиональная и идеологическая. Все это необходимо учитывать при интерпретации полученных при популяционно-генетических исследованиях результатов. Во избежание получения недостоверных результатов, выбираемая для изучения популяция также не должна быть очень большой или очень малой. Чем больше по размеру популяция (но не до бесконечности), тем выше уровень ее разнообразия и тем сложнее ее генетическая структура, а также ближе соответствие между реально наблюдаемыми и ожидаемыми генными частотами. Так для генетических исследований оптимальным считается размер популяции с численностью от 0,55,0 млн. человек. В настоящее время для сбора материала при проведении популяционно-генетического исследования используется обзорный метод и его различные модификации, т.е. можно исследовать всю наследственную патологию, или отдельную группу заболеваний, или только одно заболевание, но изучая все население выбранного региона. Наследственные заболевания распределены по различным регионам земного шара, среди разных рас и народностей неравномерно, а знания о распределении частот заболеваний и количестве гетерозигот в регионе способствуют правильной организации профилактических мероприятий. Если известна частота заболевания в популяции, и при допущении, что эта популяция находится в генетическом равновесии по данному признаку, для расчета частот генотипов и фенотипов наиболее широко применяется формула Харди-Вайнберга. Для диаллельной системы - она имеет вид р2 + 2pq + q2 = {р + q)2 1, для трехаллельной- (a + b + с)2 = ]). (Подробнее о законе Харди-Вайнберга и условиях его выполнения см. гл. 17). Например, частота ФКУ в популяции составляет 1:10000, т.е. q2 = 0,0001, значит q = 0,01. По закону Харди-Вайнберга р +q= 1, отсюда р= 1 -q = 1-0,01 = 0,99, a 2pq = 2 х 0,99 х 0,01 = 0,0198.
Значение коэффициента наследуемости для селекции
Наследственная гетерогенность популяции является едва ли не главной предпосылкой эффективности отбора. Поэтому знание наследуемости признаков в конкретном стаде или популяции является обязательным для селекционера, выбирающего пути повышения продуктивности и племенной ценности организмов. Если выявляется, что популяция состоит из особей с идентичными генотипами, то станет очевидным, что отбор в такой популяции бесперспективен. Вся наблюдаемая фенотипическая изменчивость обусловлена в такой популяции влиянием среды. И как бы велики ни были внешние различия между особями в этом случае, они не отражают главных для отбора различий генотипических.