У вас вопросы?
У нас ответы:) SamZan.net

О символика Определение прядка малости

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024

 БИЛЕТ № 1

   

1.

Бесконечно малые функции, их свойства.  Сравнение бесконечно малых функций. «О» - символика. Определение прядка малости.

2.

Теорема Ролля.

3.

Сравнить две бесконечно малые функции в точке, не используя правило Лопиталя. Ответ записать через «О» - символику.

4.

Применяя метод логарифмического дифференцирования, найти производную

 БИЛЕТ № 2

 

  

1.

Первый  замечательный предел и следствия из него.

2.

Теорема Лагранжа.

3.

Вычислить предел функции, не используя правило Лопиталя

4.

Найти первую и вторую производную параметрически заданной функции

 БИЛЕТ № 3

 

  

1.

Второй замечательный предел.

2.

Теорема Коши для двух функций, непрерывных на отрезке и дифференцируемых в интервале

3.

Вычислить предел функции, не используя правило Лопиталя.         

4.

Найти производную неявно заданной функции. (Относительно  не разрешать)

 БИЛЕТ №4

 

  

1.

Непрерывность функции в точке, геометрическая иллюстрация. Основные элементарные функции. Теорема о непрерывности элементарных функций.

2.

Правило Лопиталя и следствия из него.

3.

С помощью правила Лопиталя найти предел

4.

Найти производную сложной функции 

 БИЛЕТ №5

 

  

1.

Точки разрыва функции и их классификация.

2.

Понятие точки экстремума и экстремума функции. Определение критической точки функции по первой производной. Необходимый признак существования экстремума функции в точке.

3.

Найти точки разрыва функции и определить их характер

4.

Найти дифференциал первого порядка сложной функции

 БИЛЕТ №6

 

  

1.

Понятие производной функции в точке. Геометрическая иллюстрация точек, в которых производная не существует. Понятие дифференцируемости функции в точке. Теорема о связи дифференцируемости и непрерывности функции.

2.

Формулы Тейлора и Маклорена для функции. Остаточный член в форме Лагранжа и Пеано.

3.

Найти производную              

4.

Разложить по формуле Маклорена функцию    

 БИЛЕТ №7

 

  

1.

Понятие дифференциала первого порядка, его геометрический смысл. Приложение дифференциала к приближенным вычислениям.  Теорема об инвариантности дифференциала  1-го порядка.

2.

Уравнение касательной и нормали к кривой.

3.

Найти дифференциал первого порядка 

4.

Составить уравнение касательной и нормали к кривой

 БИЛЕТ №8

 

  

1.

Монотонные функции. Теорема о взаимосвязи характера монотонности дифференцируемой на интервале функции со знаком производной.

2.

Понятие асимптоты к графику функции. Виды асимптот, их отыскание.

3.

Найти производную 

4.

Найти все виды асимптот, которые существуют у функции

 БИЛЕТ №9

 

  

1.

Первый достаточный признак существования локального экстремума для непрерывной функции.

2.

Точки разрыва и их классификация.

3.

С помощью первого достаточного признака найти промежутки монотонности графика функции и точки экстремума, если они есть.

4.

Найти точки разрыва функции и определить их характер

 БИЛЕТ №10

 

  

1.

Второй достаточный признак существования экстремума функции в терминах высших производных.

2.

Понятие предела функции в точке (по Коши, по Гейне), предела в бесконечности и бесконечного предела. Понятие левого и правого предела.

3.

Вычислить предел функции, не используя правило Лопиталя ,

4.

С помощью второго достаточного признака найти промежутки монотонности графика функции и точки экстремума, если они есть .

 БИЛЕТ №11

 

  

1.

Выпуклые и вогнутые функции. Критерий строгой выпуклости (вогнутости) функции. Критерий строгой выпуклости (вогнутости) для дважды дифференцируемой в интервале функции.

2.

Определения непрерывности функции в точке. Непрерывность элементарных функций в своей области определения.

3.

Вычислить предел функции, не используя правило Лопиталя

4.

С помощью первого достаточного признака, найти у функции промежутки  выпуклости (вогнутости) и точки перегиба, если они есть .

 БИЛЕТ №12

 

  

1.

Понятие точки перегиба графика функции. Первый и второй достаточные признаки существования у функции точек перегиба.

2.

Сравнение двух бесконечно малых функций в точке. Понятие эквивалентных функций. Метод замены эквивалентных. Основные эквивалентные функции в точке   .

3.

С помощью второго достаточного признака найти промежутки выпуклости (вогнутости) графика функции и точки перегиба, если они есть .

4.

С помощью замены эквивалентных вычислить предел   

 БИЛЕТ № 13

 

  

1.

Бесконечно малые функции, их свойства.  Сравнение бесконечно малых функций. «О» - символика. Определение прядка малости.

2.

Теорема Ролля.

3.

Сравнить две бесконечно малые функции в точке. Ответ записать через «О» - символику.

4.

Применяя метод логарифмического дифференцирования, найти производную

 БИЛЕТ № 14

 

  

1.

Первый  замечательный предел и следствия из него.

2.

Теорема Лагранжа.

3.

Вычислить предел функции, не используя правило Лопиталя

4.

Найти первую и вторую производную параметрически заданной функции

 БИЛЕТ № 15

 

  

1.

Второй замечательный предел.

2.

Теорема Коши для двух функций, непрерывных на отрезке и дифференцируемых в интервале

3.

Вычислить предел функции    

4.

Найти производную неявно заданной функции. (Относительно  не разрешать)

 БИЛЕТ №16

 

  

1.

Непрерывность функции в точке, геометрическая иллюстрация. Основные элементарные функции. Теорема о непрерывности элементарных функций.

2.

Правило Лопиталя и следствия из него.

3.

С помощью правила Лопиталя найти предел

4.

Найти производную сложной функции

 БИЛЕТ №17

 

  

1.

Точки разрыва функции и их классификация.

2.

Понятие точки экстремума и экстремума функции. Определение критической точки функции по первой производной. Необходимый признак существования экстремума функции в точке.

3.

Найти точки разрыва функции и определить их характер

4.

Найти дифференциал первого порядка сложной функции

 БИЛЕТ №18

 

  

1.

Понятие производной функции в точке. Геометрическая иллюстрация точек, в которых производная не существует. Понятие дифференцируемости функции в точке. Теорема о связи дифференцируемости и непрерывности функции.

2.

Формулы Тейлора и Маклорена для функции. Остаточный член в форме Лагранжа и Пеано.

3.

Найти производную

4.

Разложить по формуле Маклорена функцию

 БИЛЕТ №19

 

  

1.

Понятие дифференциала первого порядка, его геометрический смысл. Приложение дифференциала к приближенным вычислениям.  Теорема об инвариантности дифференциала  1-го порядка.

2.

Уравнение касательной и нормали к кривой.

3.

Найти дифференциал первого порядка

4.

Составить уравнение касательной и нормали к кривой

 БИЛЕТ №20

 

  

1.

Монотонные функции. Теорема о взаимосвязи характера монотонности дифференцируемой на интервале функции со знаком производной.

2.

Понятие асимптоты к графику функции. Виды асимптот, их отыскание.

3.

Найти производную  

4.

Найти все виды асимптот, которые существуют у функции

 БИЛЕТ №21

 

  

1.

Первый достаточный признак существования локального экстремума для непрерывной функции.

2.

Точки разрыва и их классификация.

3.

С помощью первого достаточного признака найти промежутки монотонности графика функции и точки экстремума, если они есть.

4.

Найти точки разрыва функции и определить их характер .

 БИЛЕТ №22

 

  

1.

Второй достаточный признак существования экстремума функции в терминах высших производных.

2.

Понятие предела функции в точке (по Коши, по Гейне), предела в бесконечности и бесконечного предела. Понятие левого и правого предела.

3.

Вычислить предел функции, не используя правило Лопиталя,

4.

С помощью второго достаточного признака найти промежутки монотонности графика функции и точки экстремума, если они есть .

 БИЛЕТ №23

 

  

1.

Выпуклые и вогнутые функции. Критерий строгой выпуклости (вогнутости) функции. Критерий строгой выпуклости (вогнутости) для дважды дифференцируемой в интервале функции.

2.

Определения непрерывности функции в точке. Непрерывность элементарных функций в своей области определения.

3.

Вычислить предел функции, не используя правило Лопиталя

4.

С помощью первого достаточного признака, найти у функции промежутки  выпуклости (вогнутости) и точки перегиба, если они есть

 БИЛЕТ №24

 

  

1.

Понятие точки перегиба графика функции. Первый и второй достаточные признаки существования у функции точек перегиба.

2.

Сравнение двух бесконечно малых функций в точке. Понятие эквивалентных функций. Метод замены эквивалентных. Основные эквивалентные функции в точке   .

3.

С помощью второго достаточного признака найти промежутки выпуклости (вогнутости) графика функции и точки перегиба, если они есть.

4.

С помощью замены эквивалентных вычислить предел  




1. психологической и сексуальноповеденческой адаптации супружеской пары В целях определения уровня психол
2. Разработка и применение пакетов прикладных программ
3. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕОРИЙ ИСТОРИЧЕСКОГО РАЗВИТИЯ К. МАРКСА И Э. ДЮРКГЕЙМА
4. тема координат городской семинар учителей математики
5. Правовий режим земель оздоровчого призначення
6. Копия записывается Копия отправленного письма
7. Гранитназва установи ЗАТВЕРДЖЕНОнаказом Державного казначейства Українивід 18 гр
8. положение санкций в правовом порядке является индикатором ясно характеризуюцгим степень развития этого по
9. Реферат- Леса города Томска
10. тема законодательства включающая ТК ТС международные соглашения решения Комиссии Таможенного союза Федер
11. Новейшее развитие событий в постсоциалистических странах и многих регионах третьего мира а также проблем
12. Он- Добрый вечер уважаемые дамы господа Она- Преподаватели сотрудники и наши дорогие студенты О
13. вариант государства
14. Основные функции финансов В функциях финансов проявляется сущность этой категории реализуются ее свойст
15. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата медичних наук Д
16. Iced Earth
17. лекция 2 О С Н О В Ы Ф И З И О Л О Г И И Т Р У Д А И К О М Ф О Р Т Н Ы Е У С Л О В И Я Ж И З Н Е Д Е
18. Терапия истинной кармы
19. Загрязнение окружающей среды твердыми промышленными и бытовыми отходами
20. а сопряженная с постоянными изменениями структуры двигательных действий и направления движений; Изменчив