Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
10
ЛЕКЦИЯ № 3. МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ
Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предварительного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей.
Для улучшения качества воды применяются следующие методы: 1) очисткаудаление взвешенных частиц; 2) обеззараживаниеуничтожение микроорганизмов; 3) специальные методы улучшения органолептических свойств воды, умягчение, удаление некоторых химических веществ, фторирование и др.
Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.
Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специальных сооружениях отстойниках. Используются две конструкции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, то благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 28 ч. Однако мельчайшие частицы, в том числе значительная часть микроорганизмов, не успевает осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.
Фильтрация процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопроводных станциях фильтрация применяется после коагуляции.
В настоящее время начали применяться кварцево-антрацитовые фильтры, значительно увеличивающие скорость фильтрации.
Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона мельчайших водных животных и фитопланктонамельчайших водных растений. Эти фильтры устанавливают перед местом водозабора или перед очистными сооружениями.
Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического веществакоагулянта, способного реагировать с находящимися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжести, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшается показатель цветности.
В качестве коагулянта в настоящее время наиболее широко применяется сульфат алюминия, образующий с бикарбонатами воды крупные хлопья гидрата окиси алюминия. Для улучшения процесса коагуляции используются высокомолекулярные флокулянты: щелочной крахмал, флокулянты ионного типа, активизированная кремневая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид (ПАА).
Обеззараживание. Уничтожение микроорганизмов является последним завершающим этапом обработки воды, обеспечивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреагентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.
Химические (реагентные) методы обеззараживания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микроорганизмов. Эти методы достаточно эффективны. В качестве реагентов могут быть использованы различные сильные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, серебро.
В санитарной практике наиболее надежным и испытанным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.
Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорноватистой кислот:
С12+Н2О=НС1+НОС1.
Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОС1), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОС1 + ОС1) называется свободным активным хлором.
Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на SH-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В последние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов-катализаторов, окислительно-восстановительных процессов, обеспечивающих энергетический обмен бактериальной клетки.
Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биологические особенности микроорганизмов, активность действующих препаратов хлора, состояние водной среды и условия, в которых производится хлорирование.
Процесс хлорирования зависит от стойкости микроорганизмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.
Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее количество хлора уходит на их окисление, и при низкой температуре воды. Существенным условием хлорирования является правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.
Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водопроводной станции. Иногда для усиления обеззараживающего эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.
Различают обычное хлорирование, т. е. хлорирование нормальными дозами хлора, которые устанавливаются каждый раз опытным путем, суперхлорирование, т. е. хлорирование повышенными дозами.
Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степень хлорпоглощаемости воды в каждом конкретном случае.
Для достижения полного бактерицидного эффекта определяется оптимальная доза хлора, которая складывается из количества активного хлора, которое необходимо для: а) уничтожения микроорганизмов; б) окисления органических веществ, а также количества хлора, которое должно остаться в воде после ее хлорирования для того, чтобы служить показателем надежности хлорирования. Это количество называется активным остаточным хлором. Его норма 0,30,5 мг/л, при свободном хлоре 0,81,2 мг/л. Необходимость нормирования этих количеств связана с тем, что при наличии остаточного хлора менее 0,3 мг/л его может быть недостаточно для обеззараживания воды, а при дозах выше 0,5 мг/л вода приобретает неприятный специфический запах хлора.
Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обеззараживанием водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время.
На крупных водопроводных станциях для обеззараживания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках-хлораторах, с помощью которых обеспечиваются автоматическая подача и дозирование хлора. Наиболее часто хлорирование воды производится 1% раствором хлорной извести. Хлорная известь представляет собой продукт взаимодействия хлора и гидрата окиси кальция в результате реакции:
2Са(ОН)2 + 2С12 = Са(ОС1)2 + СаС12 + 2НА
Суперхлорирование (гиперхлорирование) воды проводится по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случаях и производится дозами, в 510 раз превышающими хлорпоглощаемость воды, т. е. 1020 мг/л активного хлора. Время контакта между водой и хлором при этом сокращается до 1510 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предварительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хлора, но его можно устранить добавлением к воде тиосульфата натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).
На водопроводных станциях иногда проводят хлорирование с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол или другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем через 12 мин хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.
К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и НО2, обладающие выраженными окислительными свойствами. Озон обладает высоким окислительно-восстановительным потенциалом, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.
Преимущество озонирования перед хлорированием заключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицательного влияния на минеральный состав и рН воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, рН воды и т.д. Для обеззараживания воды необходимая доза озона в среднем равна 0,56 мг/л при экспозиции 35 мин. Озонирование производится при помощи специальных аппаратов озонаторов.
При химических способах обеззарараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способность оказывать бактерицидный эффект в течение длительного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодействие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновыми кислотами), в результате чего микробная клетка погибает. Данный метод обычно применяется для обеззараживания небольших количеств воды.
Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кислорода при разложении. Метод применения перекиси водорода для обеззараживания воды в настоящее время еще полностью не разработан.
Химические, или реагентные, способы обеззараживания воды, основанные на добавлении к ней того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство этих веществ отрицательно влияет на состав и органолептичеекие свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распространяется на все формы микроорганизмов. Все это явилось причиной разработки физических методов обеззараживания воды, имеющих ряд преимуществ по сравнению с химическими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, вследствие чего обладают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.
Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицидными (ультрафиолетовыми) лампами. Наибольшим бактерицидным свойством обладают УФ лучи с длиной волны 200280 нм; максимум бактерицидного действия приходится на длину волны 254260 нм. Источником излучения служат аргонно-ртутные лампы низкого давления и ртутно-кварцевые лампы. Обеззараживание воды наступает быстро, в течение 12 мин. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздействию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.
Из всех имеющихся физических методов обеззараживания воды наиболее надежным является кипячение. В результате кипячения в течение 35 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.
К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультразвука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.
Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в некоторых случаях возникает необходимость производить специальную ее обработку. В основном эта обработка направлена на улучшение минерального состава воды и ее органолептических свойств.
Дезодорация удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обусловливается наличием в воде запахов, связанных с жизнедеятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, перекисью водорода, фторирование через сорбционные фильтры, аэрация.
Дегазация воды удаление из нее растворенных дурно пахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в результате чего происходит выделение газов.
Умягчение воды полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.
Опреснение (обессоливание) воды чаще производится при подготовке ее к промышленному использованию.
Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опреснение достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ионитовых установках, а также электрохимическим способом и методом вымораживания.
Обезжелезивание удаление из воды железа производится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песчаные фильтры. При этом закисное железо задерживается на поверхности зерен песка.
Обесфторивание освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия.
При недостатке в воде фтора ее фторируют. В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т. е. удалению радиоактивных веществ.