У вас вопросы?
У нас ответы:) SamZan.net

МИКРОБИОЛОГИЯ для студентов заочников специальностей- 260204 Техноло

Работа добавлена на сайт samzan.net: 2016-06-09

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.2.2025

Федеральное  агенство  по образованию

ГОУ ВПО Кубанский государственный технологический университет

(Куб ГТУ)

Кафедра биохимии и технической микробиологии

КУРС ЛЕКЦИЙ  «МИКРОБИОЛОГИЯ»

                              для студентов- заочников специальностей:

260204- Технология бродильных производств и виноделия

260501- Технология продуктов общественного питания

                                          

Краснодар 2011

CОДЕРЖАНИЕ

1. Введение - место и роль микроорганизмов в природе и деятельности

   человека. История развития  микробиологии………………………………… 3

2. Морфология и систематика микроорганизмов. Прокариоты (бактерии

   и актиномицеты). Эукариоты (мицелиальные и дрожжевые грибы).

   Вирусы и фаги……………………………………………………………………6

3. Физиология микроорганизмов. Химический состав микроорганизмов.

   Питание микробной клетки. Гетеротрофный и автотрофный типы

   питания. Конструктивный и энергетический обмен. Рост и размножение

   микроорганизмов……………………………………………………………….27

4. Влияние факторов внешней  среды на микроорганизмы. Физические

   факторы, химические факторы, биологические факторы. Влияние факто-

    ров внешней  среды на микроорганизмы…………………………………….38

5. Экология микроорганизмов. Микрофлора  почвы, воды,  воздуха…………53

6. Важнейшие биохимические процессы превращений, вызываемые

  микроорганизмами: брожения - спиртовое, молочнокислое, масляно

  -кислое и их модификации; окислительные брожения - уксусно-кислое,

  лимонно-кислое; превращение белков- гниение………………………………61

7. Инфекции и иммунитет. Пищевые заболевания  (пищевые инфекции

  и пищевые отравления)…………………………………………………………..72    

8. Основы микробиологического и санитарно-гигиенического  контроля

  на предприятиях………………………………………………………………….90

    

Тема № 1. Введение - место и роль микроорганизмов в природе и

деятельности человека. История развития  микробиологии.

         Введение. Микробиология  (от греч. Микрос-малый, БИОС-жизнь, логос-учение)- это наука, изучающая строение, функции, химическую деятельность, распространение, условия развития, роль и значение в жизни человека очень мелких организмов, большинство которых невидимо невооруженным глазом. К ним относятся бактерии, актиномицеты, грибы, вирусы, фаги и т.д.

        Наша планета населена огромным числом живых существ. Одни из них составляют макромир-это многие животные. Растения и другие видимые невооруженным глазом живые организмы. Микромир образуют мельчайшие организмы. Которые мы можем рассмотреть только с помощью специальных оптических приборов (микроскопы). Микроорганизмы были первыми обитателями на нашей планете. Около трех миллиардов лет назад они сформировали микробиосферу - древнейшую оболочку биосферы Земли. Биомасса таких существ превышает суммарную биомассу растений и животных. Накопившееся органическое вещество обладает высоким энергетическим потенциалом, поскольку из него образуются залежи нефти, газа, угля и других полезных ископаемых.  И сегодня эти невидимые существа, благодаря своим невероятным способностям, освоили практически все, даже самые удивительные места обитания жизни на нашей  планете. Их обнаружили в полярных льдах и горячих источниках, они опускаются в океанские глубины и поднимаются высоко в атмосферу, совершая трансконтинентальные перелеты. Роль  микроорганизмов в важнейших природных процессах так велика и уникальна, что исчезновение из биосферы только грибов и бактерий  (этих вездесущих санитаров природы) означало бы прекращение жизни на земле.

       С появлением человека микробы стали его неразлучными спутниками: верными помошниками и коварными врагами. Причем врагами подчас столь грозными, что творимые ими беды по своим последствиям сопоставимы с разгулом стихии - ураганами, наводнениями или землетрясениями. Из древних рукописей мы узнаем о катастрофических эпидемиях оспы и чумы, унесших миллионы человеческих жизней.  Там же находим сведения о таинственных массовых падежах домашних животных, причины которых становятся понятными только сегодня. Потрясают наше сознание и опустошительные поражения хлебных полей головней и ржавчиной, обрекавших сотни тысяч людей на голодную смерть. Но уже с древних времен наши предки,  не подозревая о существовании микробов, научились приручать этих неутомимых помошников. Так у людей появились хлеб и сыр. Вино и кумыс, льняная пряжа и множество других незаменимых продуктов, которые и сегодня мы получаем с помощью микроорганизмов. Но иногда человек оказывается перед ними пока бессилен. Чумой ХХ века люди назвали вирусное заболевание СПИД (ВИЧ). Но в тоже время именно вирусы и бактерии помогли генетику П. Бергу и его коллегам (1972г.)создать первую в мире гибридную молекулу ДНК и с этого момента началась история генетической инженерии- одной из стремительно развивающихся областей науки. Так же опасно намеренное использование патогенных микроорганизмов как бактериологического оружия  и биологического террора ( сибирская язва – США,  2003г.).

С развитием торговых связей между странами и народами участились случай  непреднамеренных завозов в новые ареалы опасных микробов – возбудителей болезней человека, животных и растений. Поэтому охрану рубежей многих стран мира несут врачи- микробиологи, ветеринары и защитники растений.

         В настоящее время микробиология дифференцирована на ряд самостоятельных дисциплин: общую, медицинскую, санитарную, сельскохозяйственную, ветеринарную, техническую(промышленную), водную, космическую, биотехнологию (генную инженерию). Одним из разделов технической (промышленной) микробиологии является пищевая микробиология,  вопросы которой преимущественно и рассматриваются в настоящем курсе лекций.

         Без знания микрофлоры исходного сырья и  пищевых продуктов, специфических свойств и особенностей микроорганизмов, Их биохимической деятельности, зависимости развития от внешних факторов нельзя успешно выполнять задачи, поставленные перед инженером-технологом в области  контроля  микробиологической безопасности качества технологического процесса, хранения, реализации пищевых продуктов и максимального сокращения их потерь.

История развития  микробиологии. К использованию микробиологических процессов при изготовлении теста, вина, кисломолочных продуктов человечество прибегало с незапамятных времен.

Открытие микроорганизмов относится к концу XVII в. Открыл их голландец Антони ван Левенгук (1632—1723), который сконструировал простейший микроскоп, увеличивающий рассматриваемый объект в десятки и сотни раз.

Левенгук впервые описал в книге "Тайны природы" представителей основных групп микроорганизмов: протистов, водорослей, бактерий. Труды Антони ван Левенгука получили широкую известность при его жизни. В 1698 г. Петр I, находясь в Голландии, посетил Левенгука и привез микроскоп в Россию

Долгое время наука о микробах носила в основном описательный характер — шел так называемый морфологический период ее развития.

Начало нового направления в развитии микробиологии — физиологического периода связано с деятельностью французского ученого Луи Пастера (1822—1895). Пастер установил, что микроорганизмы различаются не только по внешнему виду, но и по характеру жизнедеятельности: они вызывают разнообразные химические превращения в субстратах. Он доказал, что происходящее в виноградном соке спиртовое брожение обусловлено жизнедеятельностью микроорганизмов — дрожжей. Это открытие опровергло господствующую в то время теорию Либиха о химической природе брожения. Большой цикл работ Пастера был посвящен изучению причин болезней вина и пива. Пастер показал, что возбудителями их являются микроорганизмы, и, чтобы предотвратить порчу, предложил прогревать напитки. Этот прием применяют и в настоящее время и называют пастеризацией. Пастер впервые обнаружил бактерии, не способные развиваться в присутствии воздуха, т. е. показал, что жизнь возможна и без кислорода.

Пастер открыл природу инфекционных болезней человека и животных, установил, что эти болезни возникают вследствие заражения особыми микробами и что каждое заболевание вызывает определенный микроорганизм. Он разработал и научно обосновал метод предупреждения заразных болезней (предохраняющие прививки), изготовил вакцины против бешенства и сибирской язвы.

Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843—1910). Им были введены в микробиологическую практику плотные питательные среды для выращивания микроорганизмов, что привело к разработке метода выделения микроорганизмов в так называемые чистые культуры, т. е. выращивания массы клеток каждого вида в отдельности. Этот метод открыл совершенно новые подходы для более углубленного изучения свойств микроорганизмов и вызвал бурное развитие микробиологии. Р. Кох открыл (1882) возбудителя туберкулеза, который в его честь назван "палочка Коха".

Развитие микробиологии неразрывно связано с работами русских ученых. Родоначальником русской микробиологии считается И. И. Мечников (1845—1916), классические работы которого положили начало новому этапу в развитии микробиологии. Центральной проблемой его исследований было изучение взаимоотношений паразита и хозяина — человека. Он создал фагоцитарную теорию иммунитета, в основе которой лежит способность макроорганизма противостоять инородным телам, в том числе и болезнетворным микробам. И. И. Мечников и Л. Пастер положили начало изучению антагонизма микробов, что явилось основой науки об антибиотиках. И. И. Мечниковым в Одессе была организована первая в России бактериологическая лаборатория.

Ближайшим сотрудником И. И. Мечникова был Н. Ф. Гамалея (1859—1949), изучавший многие вопросы медицинской микробиологии. Н. Ф. Гамалея организовал в 1886 г. в Одессе первую в России станцию по прививкам против бешенства (вторую в мире после Пастеровской станции в Париже). Вся его деятельность была направлена на решение важнейших вопросов здравоохранения в нашей стране.

Общая микробиология, изучающая микроорганизмы почвы, воды, и особенно сельскохозяйственная, получила развитие в трудах С. Н. Виноградского (1856—1953). С. Н. Виноградский открыл процесс хемосинтеза — установил существование особых бактерий, способных ассимилировать углекислый газ из воздуха, используя в процессе синтеза органических веществ химическую энергию, освобождающуюся в результате реакции окисления неорганических соединений. Он же открыл явление фиксации атмосферного азота анаэробными бактериями. С. Н. Виноградским разработан оригинальный метод выращивания микроорганизмов с применением элективных (избирательных) питательных сред и условий, приближенных к естественному обитанию микроорганизмов. Этот метод получил широкое применение во всех областях микробиологии.

Учеником и сотрудником С. Н. Виноградского был В. Л. Омелянский (1867—1928), создавший первый русский учебник по микробиологии "Основы микробиологии", изданный в 1909 г. Им же составлено первое "Практическое руководство по микробиологии".

Большой вклад в развитие микробиологии внесли А. А. Имшенецкий, Е. Н. Мишустин, С. И. Кузнецов, Н. Д. Иерусалимский, М. Н. Мейсель, Е. Н. Кондратьева и другие ученые.

В развитии технической микробиологии большую роль сыграли работы С. П. Костычева, С. Л. Иванова, А. И. Лебедева, изучавших процесс спиртового брожения. На основе исследований химизма образования органических кислот грибами, проведенных С. П. Костычевым и В. С. Буткевичем, в нашей стране в 1930 г. было организовано производство лимонной кислоты.

В. Н. Шапошников (1884—1968) и А. Я. Мантейфель изучили и внедрили в практику способ производства молочной кислоты с помощью бактерий. Исследования В. Н. Шапошникова и Ф. М. Чистякова дали возможность еще в начале 30-х годов организовать в промышленном масштабе производство ацетона и бутилового спирта с помощью бактерий. В. Н. Шапошников написал первый в СССР учебник "Техническая микробиология" (1947).

Становление пищевой микробиологии связано с трудами Я. Я. Никитинского-младшего (1878—1941). Он впервые создал курс пищевой микробиологии и много лет читал его в Институте народного хозяйства им. Г. В. Плеханова. Совместно с Б. С. Алеевым Я. Я. Никитинский написал специальный курс микробиологии скоропортящихся продуктов и руководство к практическим работам по микробиологии для студентов, изучающих товароведение продовольственных товаров. Труды Я. Я. Никитинского и его учеников положили начало широкому развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. В теорию и практику холодильного хранения продуктов питания большой вклад внес и Ф. М. Чистяков.

В микробиологию молока и молочных продуктов фундаментальный вклад внесли школы С. А. Королева (1876—1932) в Вологодском молочном институте и А. Ф. Войткевича (1875—1950) в Московской сельскохозяйственной академии им. К. А. Тимирязева.

В последующем это направление микробиологии развивалось в работах В. М. Богданова, Н. С. Королевой, А. М. Скородумовой, Л. А. Банниковой.

В настоящее время микробиология стала не только фундаментальной наукой — в стране плодотворно работают научно-исследовательские учреждения по многим разделам микробиологической науки. Заказы народного хозяйства выполняют многие промышленные производства, в технологии которых главенствуют микробиологические процессы.

Микробиологическая промышленность выпускает большое количество разнообразных, необходимых народному хозяйству страны препаратов: антибиотиков, ферментов, аминокислот, белков, органических кислот и др.

Широкое развитие получила и пищевая микробиология. Во всех крупных отраслях пищевой промышленности есть научно-исследовательские институты, в которых имеются микробиологические лаборатории. На многих предприятиях пищевой промышленности функционируют микробиологические лаборатории, контролирующие производство, качество сырья и готовой продукции.

 Тема № 2. Морфология и систематика микроорганизмов. Прокариоты (бактерии и актиномицеты). Эукариоты (мицелиальные и дрожжевые грибы). Вирусы и фаги.

         Морфология и систематика микроорганизмов. Морфология микроорганизмов изучает их внешний вид, форму и особенности строения, способность к движению, спорообразованию, способы размножения. Морфологические признаки играют большую роль в распознавании и классификации микроорганизмов. С древнейших времен живой мир делили на два царства: царство растений и царство животных. Когда был открыт мир микроорганизмов, то их выделили в отдельное царство. Таким образом, до Х1Х века весь мир живых организмов делил на три царства. В начале в основу классификации микроорганизмов были положены морфологические признаки, так как больше о них человек ничего не знал. К концу Х1Х века было описано много видов; разные ученые, в основном ботаники делили микроорганизмы на группы принятые для классификации растений. В 1897 году для систематики микробов стали использовать наряду с морфологическими и физиологические признаки. Как выяснилось впоследствии, для научно обоснованной классификации одних каких-либо признаков бывает недостаточно. Поэтому используют комплекс признаков:

        -морфологические(форма клеток, размеры, подвижность, размножение, спорообразование, окраска по Грамму);

        - культуральные ( характер роста на жидких и плотных питательных средах);

        -физиолого-биохимические (характер накапливаемых продуктов);

        -генотипические (физико-химические свойства ДНК).

         Геносистематика позволяет определить вид микроорганизмов не по сходству, а по родству. Установлено, что нуклеотидный состав суммарной ДНК в процессе развития микроорганизмов в разных условиях не изменяется. Идентичны по составу ДНК S-  и   R-формы. Обнаружены и такие микроорганизмы, которые имеют сходный нуклеотидный состав ДНК. Хотя и относятся к разным систематическим группам: кишечные палочки и некоторые коринебактерии. Это указывает на то, что при систематике (таксономии) микробов следует учитывать разные признаки.

         До недавнего времени все живые существа клеточного строения в зависимости от взаимоотношения ядра и органелл с цитоплазмой, состава клеточной стенки и других признаков делили на две группы (надцарства):

         1. Прокариоты-доядерные  (отнесены – организмы, не имеющие четко выраженного ядра, представленного молекулой ДНК в форме кольца; в состав клеточной стенки входит пептидогликан (муреин) и тейхоевые кислоты; рибосомы имеют константы седиментации 70; энергетические центры клетки находятся в мезосомах и отсутствуют органеллы).

         2. Эукариоты-ядерные (с четко выраженным ядром, отделенным от цитоплазмы оболочкой; в клеточной стенке отсутствует пептилдогликан и тейхоевые кислоты; рибосомы цитоплазмы крупнее; константа седиментации 80; энергетические процессы осуществляются в митохондриях; из органелл имеется комплекс Гольджи и др.).

         В дальнейшем оказалось, что среди микроорганизмов есть и неклеточные формы-вирусы и поэтому выделили третье группу (царство) - вира.

         Для обозначения микроорганизмов принята двойная (бинарная) номенклатура, которая включает в себя название рода и вида. Родовое название пишется с прописной буквы (заглавной), видовое (даже происходящее от фамилии)- со строчной (маленькой). Например, бациллу сибирской язвы называют Bacillus anthracis, кишечную палочку- Escherichia coli, аспергилл черный-Aspergillus niger.

         Основной(низшей) таксономической единицей является вид. Виды объединяются в роды, роды- в семейства, семейства -в порядки, порядки- в классы, классы - в отделы, отделы- в царства.

         Вид- это совокупность особей одного генотипа с явно выраженным фенотипическим сходством.  

         Культура - микроорганизмы, полученные от животного. Человека, растения или субстрата внешней среды и выращенные на питательной среде. Чистые культуру состоят из особей одного вида ( потомство полученное из одной клетки - клон).

        Штамм- культура одного и того же вида выделенная из различных сред обитания и отличающиеся незначительными изменениями свойств. Например, кишечная палочка, выделенная из организма человека, крупного рогатого скота, водоемов, почвы могут быть разными штаммами.    

        Прокариоты (бактерии и актиномицеты). Бактерии(прокариоты)-это большая группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные.   Форма и размеры бактерий. Основные формы бактерий:  шаровидная, палочковидная и извитая. Шаровидные бактерии - кокки имеют обычную форму шара, встречаются уплощенные, овальной или бобовидной формы. Кокки могут быть в виде клеток одиночных — монококки (микрококки) или соединенных в различных сочетаниях: попарно — диплококки, по четыре клетки — тетракокки, в виде более или менее длинных цепочек - - стрептококки, а также в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим, — сарцины. Встречаются скопления неправильной формы, напоминающие грозди винограда, - стафилококки. Палочковидные бактерии могут быть одиночными или соединенными попарно — диплобактерии, цепочками по три-четыре и более клеток — стрептобактерии. Соотношения между длиной и толщиной палочек бывают самыми различными.Извитые, или изогнутые, бактерии различаются длиной, толщиной и степенью изогнутости. Палочки, слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками — спирохетами. Благодаря использованию электронного микроскопа для изучения микроорганизмов в естественных природных субстратах были обнаружены бактерии, имеющие особую форму клеток замкнутого или разомкнутого кольца (тороиды); с выростами (простеками); червеобразной формы — длинные с загнутыми очень тонкими концами; а также в виде шестиугольной звезды.

         Размеры бактерий очень малы: от десятых долей микрометра (мкм) до нескольких микрометров. В среднем размер тела большинства бактерий 0,5—1 мкм, а средняя длина палочковидных бактерий - - 2—5 мкм. Встречаются бактерии, размеры которых значительно превышают среднюю величину, а некоторые находятся на грани видимости в обычных оптических микроскопах. Форма тела бактерий, как и их размеры, может изменяться в зависимости от возраста и условий роста. Однако при определенных, относительно стабильных условиях бактерии сохраняют присущие данному виду размеры и форму. Масса бактериальной клетки очень мала, приблизительно 4- 10-1:!г.

         Строение бактериальной клетки. Клетка прокариотных организмов, к которым относятся бактерии, обладает принципиальными особенностями ультраструктуры.  Клеточная стенка (оболочка)- важный структурный элемент большинства бактерий.  На долю клеточной стенки приходится от 5 до 20% сухих веществ клетки. Она обладает эластичностью, служит механическим барьером между протопластом и окружающей средой, придает клетке определенную форму. В состав клеточной стенки входит специфическое для прокариотных клеток гетерополимерное соединение - пептидогликан (муреин), отсутствующий в клеточных стенках эукариотных организмов. По методу окраски, предложенному датским физиком X. Грамом (1884 г.), бактерии делятся на две группы: грам положительные и грамотрицателъные. Грамположительные клетки удерживают краску, а грамотрицателъные не удерживают ее, что обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок. У грамположительных бактерий клеточные стенки более толстые, аморфные, в них содержится большое количество муреина (от 50 до 90% сухой массы клеточной стенки) и тейхоевые кислоты. Клеточные стенки грамотрицательных бактерий более тонкие, слоистые, в них содержится много липидов, мало муреина (5—10%) и отсутствуют тейхоевые кислоты.  Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, может образовывать капсулу. Нередко по размеру капсула намного превышает бактериальную клетку. Ослизнение клеточных стенок иногда бывает настолько сильным, что капсулы отдельных клеток сливаются в слизистые массы (зоогели), в которые вкраплены бактериальные клетки. Образуемые некоторыми бактериями слизистые вещества не удерживаются в виде компактной массы вокруг клеточной стенки, а диффундируют в окружающую среду. При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Такое явление наблюдается иногда в сахаристых экстрактах из свеклы при производстве сахара. За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина. Интенсивность слизеобразования и химический состав слизи зависят от вида бактерий и условий культивирования. Капсула обладает полезными свойствами, слизь предохраняет клетки от неблагоприятных условий — у многих бактерий в таких условиях усиливается слизеобразование. Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер, служит препятствием для проникновения фагов, антител, иногда она является источником запасных питательных веществ. Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки. При нарушении целостности цитоплазматической мембраны клетка теряет жизнеспособность. На долю цитоплазматической мембраны приходится 8—15% сухого вещества клетки. В мембране содержится до 70—90% липидов клетки, толщина ее 7—10 нм1. На срезах клеток в электронном микроскопе она видна в виде трехслойной структуры — одного липидного слоя и двух примыкающих к нему с обеих сторон белковых слоев. Цитоплазматическая мембрана местами впячивается внутрь клетки, образуя всевозможные мембранные структуры. В ней находятся различные ферменты; она полупроницаема, играет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Местами она пронизана мембранными структурами — мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь. Мезосомы выполняют различные функции; в них и в связанной с ними цитоплазматической мембране имеются ферменты, участвующие в энергетических процессах — в снабжении клетки энергией. Хорошо развитые мезосомы обнаружены только у грамположительных бактерий, у грамотрицательных они развиты слабо и имеют более простое строение. В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения. Рибосомы рассеяны в цитоплазме в виде гранул размером 20—30 нм; рибосомы состоят примерно на 60% из рибонуклеиновой кислоты (РНК) и на 40% из белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке в зависимости от ее возраста и условий жизни может быть 5—50 тыс. рибосом. Ядерный аппарат бактерий называют нуклеоидом или нуклеотидом. Электронная микроскопия ультратонких срезов клетки бактерий позволила установить, что носителем генетической информации клетки является молекула дезоксирибонуклеиновой кислоты (ДНК). ДНК имеет форму двойной спиральной нити, замкнутой в кольцо; ее еще называют "бактериальная хромосома". Она расположена в определенном участке цитоплазмы, но не отделена от нее собственной мембраной. 

        Цитоплазматические включения бактериальной клетки разнообразны, в основном это запасные питательные вещества, которые откладываются в клетках, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания. В клетках бактерий откладываются полисахариды: гликоген, крахмалоподобное вещество гранулеза, которые используются в качестве источника углерода и энергии. Липиды обнаруживаются в клетках в виде гранул и капелек. Жир служит хорошим источником углерода и энергии. У многих бактерий накапливаются полифосфаты; они содержатся в волютиновых гранулах и используются клетками как источник фосфора и энергии. В клетках серных бактерий откладывается молекулярная сера.

         Подвижность бактерий. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижные, так и неподвижные. Изогнутые и спиралевидные бактерии подвижны. Некоторые бактерии перемещаются путем скольжения. Движение большинства бактерий осуществляется с помощью жгутиков. Жгутики — это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10—20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие, число и расположение жгутиков - постоянные для вида признаки и имеют диагностическое значение. Бактерии с одним жгутиком на конце клетки получили название монотрихов; с пучком жгутиков - лофотрихов', с пучком жгутиков на обоих концах клетки  - амфитрихов; бактерии, у которых жгутики находятся на всей поверхности клетки, называются перитрихами. Скорость передвижения бактерий велика: за секунду клетка со жгутиками может пройти расстояние в 20—50 раз больше, чем длина ее тела. При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть утрачена. Кроме жгутиков, на поверхности некоторых бактерий имеются в большом количестве нитевидные образования, значительно тоньше и короче, чем жгутики - фимбрии (или пили).

          Размножение бактерий. Для прокариотных клеток характерно простое деление клетки надвое. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Палочковидные бактерии делятся поперек, шаровидные формы в разных плоскостях. В зависимости от ориентации плоскости деления и их числа возникают различные формы: одиночные кокки, парные, цепочки, в виде пакетов, гроздьев. Особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий, условий культивирования: некоторые виды делятся через каждые 15—20 мин, другие — через 5—10 ч. При таком делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока вследствие развития молочно-кислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т.д.

        Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают в основном палочковидные бактерии. В каждой клетке образуется только одна спора (эндоспора).

Спорообразование — сложный процесс, в нем различают несколько стадий: сначала наблюдается перестройка генетического аппарата клетки, изменяются морфология нук-леоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, которая затем разделяется; часть ее концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. В спорогенной зоне происходит уплотнение цитоплазмы, затем этот участок обособляется от остального клеточного содержимого перегородкой (септой). Отсеченный участок покрывается мембраной материнской клетки, образуется так называемая проспора. Проспора — это структура, располагающаяся внутри материнской клетки, от которой она отделена двумя мембранами: наружной и внутренней. Между мембранами формируется кортикальный слой (кортекс), сходный по химическому составу с клеточной стенкой вегетативной клетки. Помимо пептидогликана, в кортексе содержится дипиколиновая кислота (С7Н8О4Мg), которая отсутствует в вегетативных клетках. В дальнейшем поверх проспоры образуется оболочка споры, состоящая из нескольких слоев. Число, толщина и строение слоев различны у разных видов бактерий. Поверхность наружной оболочки может быть гладкой либо с выростами разной длины и формы. Поверх оболочки споры нередко образуется еще тонкий покров, окружающий спору в виде чехла, — экзоспориум.

Споры имеют обычно круглую или овальную форму. Диаметр спор некоторых бактерий превышает ширину клетки, вследствие чего форма спороносящих клеток, изменяется. Клетка приобретает форму веретена (клостридиум), если спора расположена в ее центре, или форму барабанной палочки (плектридиум), когда спора приближена к концу клетки.

После созревания споры материнская клетка отмирает, оболочка ее разрушается и спора освобождается. Процесс образования споры протекает в течение нескольких часов.

Наличие у бактериальных спор плотной, труднопроницаемой оболочки, малое содержание в ней воды, большое количество липидов, а также наличие кальция и дипиколиновой кислоты обусловливают высокую устойчивость спор к факторам внешней среды. Споры могут находиться в жизнеспособном состоянии сотни и даже тысячи лет. Например, жизнеспособные споры выделены из трупов мамонтов и египетских мумий, возраст которых исчисляется тысячелетиями. Споры устойчивы к высокой температуре: в сухом состоянии они погибают после прогревания при 165—170°С в течение 1,5—2 ч, а при перегретом паре (в автоклаве) -- при 121°С в течение 15—30 мин.

В благоприятных условиях спора прорастает в вегетативную клетку; этот процесс обычно длится несколько часов.

Прорастающая спора начинает активно поглощать воду, активизируются ее ферменты, усиливаются биохимические процессы, приводящие к росту. Кортекс при прорастании споры превращается в клеточную стенку молодой вегетативной клетки; освобождаются во внешнюю среду дипиколиновая кислота и кальций. Внешняя оболочка споры разрывается, через разрывы выходит наружу "росток" новой клетки, из которого затем формируется вегетативная бактериальная клетка.

Порчу пищевых продуктов вызывают лишь вегетативные клетки. Знание факторов, способствующих образованию спор у бактерий, и факторов, которые вызывают их прорастание в вегетативные клетки, имеет значение в выборе способа обработки продуктов с целью предотвращения их микробной порчи.

Изложенные выше сведения характеризуют в основном так называемые истинные бактерии. Существуют и другие, более или менее отличающиеся от них, к которым относятся следующие.

Нитчатые (нитевидные бактерии). Это многоклеточные организмы в виде нитей различной длины, диаметром от 1 до 7 мкм, подвижных или прикрепленных к субстрату. В основном нити со слизистым чехлом. Они могут содержать окись магния или окислы железа. Живут в водоемах, встречаются в почве.

Миксобактерии. Это палочковидные бактерии, передвигаются путем скольжения. Они образуют плодовые тела — скопления клеток, заключенных в слизь. Клетки в плодовых телах переходят в покоящееся состояние — миксоспоры. Эти бактерии живут в почве, на различных растительных остатках.

Почкующиеся и стебельковые бактерии размножаются почкованием, образуют стебельки или то и другое вместе. Есть виды с выростами - простеками. Живут в почве и водоемах.

Актиномицеты. Бактерии имеют ветвистую форму. Одни — палочки слегка разветвленные (см. рис. 2, д), другие — в виде тонких ветвящихся нитей, образующих одноклеточный мицелий. Мицелиальные актиномицеты, называемые "лучистые грибки", размножаются спорами, развивающимися на воздушных ветвях мицелия. Актиномицеты бывают окрашены; они широко распространены в природе. Встречаются и на пищевых продуктах и могут вызвать их порчу. Продукт приобретает характерный землистый запах. Многие актиномицеты продуцируют антибиотики. Есть виды, патогенные для человека и животных.

Риккетсии. Палочковидные и кокковидные микроорганизмы, неподвижны, спор не образуют. Внутриклеточные паразиты; некоторые вызывают заболевания животных, и человека. Переносчиками риккетсий в основном являются насекомые (вши, блохи, клещи).

Микоплазмы. Организмы без клеточной стенки, покрыты лишь трехслойной мембраной. Клетки очень мелкие, иногда ультрамикроскопических размеров (около 200 нм), плеоморфные (разнообразной формы) — от кокковидных до нитевидных. Некоторые вызывают заболевания человека, животных, растений.

Основы систематики бактерий Современные системы классификации бактерий по существу являются искусственными, объединяют бактерии в определенные группы на основе сходства их по комплексу морфологических, физиологических, биохимических т генотипических признаков. В этих целях используется руководство  Берги по определению бактерий (1974 год,   8-е издание и 1984г.-9-е издание). По 8-му изданию все прокариоты (Procaryotae) делят на два отдела - цианобактерии и бактерии. Первый отдел- цианобактерии (синезеленые водоросли)-это фототрофные микроорганизмы. Второй отдел - бактерии. Этот отдел разделен на 19 групп. К 17-ой группе относят актиномицеты. По 9-му изданию царство прокариот подразделено на четыре отдела в зависимости от наличия или отсутствия клеточной стенки и ее химического состава: в первый отдел- тонкокожие (грациликуты), включены группы бактерий, Грамотрицательные, фототрофные и цианобактерии; во 2-ой отдел- твердокожие (фермикуты) включены группы бактерий, относящиеся к окраске по Граму положительно; в третий отдел включены бактерии не имеющие клеточной стенки (тенерекуты) -микоплазмы; в четвертый отдел (мендозикуты) включены метанобразующие и архебактерии(особая группа бактерий, обитающая в экстремальных условиях внешней среды и являющиеся одной из древнейших форм жизни).

        Эукариоты (мицелиальные и дрожжевые грибы). Грибы Общая характеристика. Грибы (Мусоtа) — обширная и разнообразная группа растительных организмов. Они не содержат хлорофилла, не способны к синтезу органических веществ из углекислого газа; грибы — хемоорганотрофы. В природе грибы обитают на разнообразных субстратах, в почве, в воде и играют важную роль в круговороте веществ в природе.

Многие грибы употребляют в пищу, используют в промышленных условиях для получения органических кислот витаминов, ферментов, антибиотиков.

Многочисленные грибы, развивающиеся на пищевых продуктах, промышленных материалах и изделиях, вызывают их порчу и разрушение. Некоторые из них способны вырабатывать токсические для человека и животных вещества — микотоксины. Многие грибы поражают культурные растения в процессе их вегетации, нанося большой урон сельскому хозяйству. Есть грибы, вызывающие заболевания человека и животных.

Строение тела гриба. Вегетативное тело большинства грибов представляет собой грибницу, или мицелий, состоящий из ветвящихся нитей - гиф. Такие грибы называют мицелиальными (или плесенями).

С помощью сканирующего электронного микроскопа установлено (А. А. Кудряшова), что гифы грибов различаются внешним видом, строением стенки, длиной, толщиной и рельефом поверхности. Они могут быть прямыми, изогнутыми, спиралевидными, со вздутиями или утолщениями, с углублениями и короткими отростками "корешками", служащими для прикрепления к субстрату. Поверхность гиф бывает с шипами, гладкой, сетчатой, волокнистой, местами складчатой. Диаметр гиф колеблется от 2 до 25 мкм и более. Гифы растут вершиной или концами разветвлений, поэтому их клетки неоднородны по длине. Мицелий развивается частично в субстрате (субстратный мицелий), пронизывая его и высасывая из него воду и питательные вещества, а частично - на поверхности субстрата (воздушный мицелий) в виде пушистых, паутинообразных или тонких налетов, пленок. Гифы отдельных грибов могут плотно переплетаться и даже срастаться между собой. У некоторых грибов гифы соединяются параллельно в тяжи, достигающие иногда нескольких метров в длину, по ним притекают питательные вещества.

Немногие грибы не имеют мицелия. Это некоторые представители низших грибов, а также дрожжи, которые являют собой одиночные округлые или удлиненные клетки.

Мицелий одних грибов клеточный - гифы разделены перегородками (септами) на клетки, часто многоядерные; мицелии других — неклеточный, гифы не имеют перегородок, и весь мицелий представляет собой как бы одну гигантскую клетку с большим числом ядер. Из плотного сплетения гиф состоят так называемые плодовые тела грибов, в которых находятся органы размножения. Видоизмененным мицелием являются склероции — обычно темные, различной формы образования из плотно переплетенных гиф грибной клетки.

          Склероции устойчивы к неблагоприятным условиям внешней среды, богаты запасными питательными веществами.

 Строение клетки. Грибы имеют эукариотный тип клетки, строение которой сходно с клетками других растительных организмов, но у грибов отсутствуют пластиды.

Клетки большинства грибов имеют многослойную клеточную стенку, состоящую на 80—90% из полисахаридов; в небольшом количестве имеются белки, липиды, полифосфаты.

Основным полисахаридом клеточной стенки большинства
грибов является хитин, у некоторых — целлюлоза. Под кле
точной стенкой расположена трехслойная цитоплазматичес-
кая мембрана.

В цитоплазме находятся многочисленные органоиды - структуры различного строения и функций.

Митохондрии — образования из липопротеиновых мембран, в которых осуществляются энергетические процессы и синтезируется АТФ- вещество, богатое энергией.

Эндоплазматический ретикулум (эндоплазматическая сеть) — мембранная система из взаимосвязанных канальцев (местами суживающихся или расширяющихся), которая пронизывает цитоплазму и связана с цитоплазматической мембраной и мембраной ядра. В этом органоиде происходит синтез многих веществ (липидов, углеводов и др.).

         Аппарат Гольджи - мембранная система, связанная с ядерной мембраной и с эндоплазматической сетью. К его многообразным функциям относятся транспортирование веществ, синтезируемых в эндоплазматической сети, а также удаление из клетки продуктов обмена.

Рибосомы — очень мелкие, округлые, многочисленные образования. Часть их находится в свободном состоянии, часть прикреплена к мембранам. В рибосомах происходит синтез белка.

Лизосомы — мелкие округлые тельца, покрытые мембраной. В них содержатся ферменты, переваривающие (расщепляющие) поступающие извне белки, углеводы, липиды.

Ядро (или несколько ядер) окружено двойной мембраной. В нуклеоплазме имеются ядрышко и хромосомы, содержащие ДНК. В ядерной оболочке расположены поры, обеспечивающие транспорт веществ между ядром и цитоплазмой.

Вакуоли — полости, окруженные мембраной, заполненные клеточным соком и включениями запасных питательных веществ (волютина, гликогена, жира).

Размножение грибов. Особенностью грибов является большое разнообразие способов и органов размножения. Один и тот же гриб часто имеет несколько форм размножения. При этом внешний вид гриба может настолько изменяться, что каждом из них гриб рассматривают как самостоятельный вид.

Грибы размножаются вегетативным, бесполым и половым путями,

Вегетативное размножение происходит без образования каких-либо специализированных органов: частями мицелия или отдельными клетками оидиями (артроспорами), образующимися в результате расчленения гиф, которые на питательном субстрате разрастаются в грибницу. Размножение происходит и образующимися на гифах хламидоспорами— толстостенными клетками, устойчивыми к неблагоприятным условиям.

При бесполом и половом размножении образуются специализированные клетки — споры, с помощью которых и осуществляется размножение.

При бесполом способе размножения споры образуются на особых гифах воздушного мицелия, внешне отличающихся от других гиф. У одних грибов споры образуются экзогенно (открыто) - на вершине гиф снаружи их. Такие споры называются конидиями, а гифы, несущие их - конидиеносцами

Конидиеносцы развиваются на мицелии поодиночке или группами. При групповом развитии конидиеносцы одних грибов объединяются в пучки (коремии), у других они располагаются тесным слоем в особых кувшиновидных (пикниды) или блюдцеобразных (ложе) образованиях из плотного сплетения гиф. Конидии образуются непосредственно на конидиеносце или на специальных клетках, расположенных на его вершине. Эти клетки обычно имеют форму бутылочек и называются стеригмами или фиалидами. Конидии располагаются на конидиеносцах (или на стеригмах) поодиночке, группами, цепочками и т. д. У других грибов споры образуются эндогенно — внутри особых клеток, развивающихся на концах гиф. Эти клетки — вместилища спор - называются спорангиями, находящиеся в них споры — спорангиоспорами, а гифы, несущие спорангии со спорами, - спорангиеносцами. От несущей гифы спорангий отделен перегородкой (колонкой), врастающей внутрь спорангия. У некоторых грибов в спорангиях образуются подвижные споры, снабженные жгутиками - зооспоры. Спорангиоспоры и конидии бывают различной формы, размера и окраски, благодаря чему грибы в стадии спороношения имеют вид окрашенных налетов. Созревшие конидии осыпаются. При созревании спорангиоспор спорангии лопаются и из них высыпаются споры. Конидии и спорангиоспоры пассивно разносятся потоками воздуха на большие расстояния. Попав в благоприятные условия, споры прорастают в гифы. Спорангиеносцы, и особенно конидиеносцы грибов, имеют разнообразное строение и внешний вид, типичные для отдельных представителей.

При половом размножении грибов спорообразованию предшествует половой процесс - слияние половых клеток с последующим объединением их ядер. В результате образуются специализированные органы размножения. Развитие этих органов, формы полового процесса у грибов многообразны. У грибов с клеточным мицелием в качестве органа полового размножения образуются базидии со спорами или сумками со спорами. Базидия представляет собой мешковидно  вытянутую клетку, на которой имеются выросты- стеригмы (обычно четыре), на каждом из которых находится по одной споре. Эти споры называются базидиоспорами. Базидии бывают и многоклеточными. Сумка (аскус) имеет вид цилиндрической клетки, внутри которой находятся споры (чаще восемь), называемые аскоспорами. Аскоспоры бывают различной формы, бесцветными или окрашенными. Базидии и сумки иногда располагаются на мицелии поодиночке, но большей частью они развиваются группами или слоями в особых образованиях из плотно переплетенных гиф — плодовых тел. По форме, строению и окраске плодовые тела очень разнообразны. Такими плодовыми телами являются, например, шляпка с ножкой белого гриба, сыроежки, опенка и др.

У грибов с неклеточным мицелием в результате полового процесса образуется одна спора — зигоспора или ооспора. При развитии зигоспоры происходит слияние двух внешне неразличимых клеток мицелия, а при развитии ооспоры — слияние двух внешне различных половых клеток. Ооспоры и зигоспоры имеют толстую оболочку, содержат много запасных питательных веществ и способны долго сохраняться в неблагоприятных условиях.

Большинство грибов может размножаться бесполым и половым путем, такие грибы называют совершенными. Некоторые грибы не способны к половому размножению, их называют несовершенными. Особенности способов размножения и строения органов размножения используют при распознавании грибов. Эти особенности лежат в основе их классификации.

Основы систематики грибов. Все грибы объединены в царство Мусоtа, которое подразделено на два отдела: слизевые грибы- Миксомикота (Myxomycota) и собственно грибы, или истинные грибы Эумикота (Eumycota).

Слизевые грибы, или миксомицеты, — своеобразная группа грибов, не имеющих клеточного строения. Вегетативное тело их представляет собой слизистую массу — голую цитоплазму с большим числом ядер. В цикле развития наблюдается образование плодовых тел со спорами. Развиваются они на отмерших растениях, но имеются и паразитические формы.

Истинные грибы (эумицеты) распределены на шесть классов: 1-й - - хитридиомицеты; 2-й - - оомицеты; 3-й -зигомицеты; 4-й — аскомицеты; 5-й - - базидиомицеты и 6-й — дейтеромицеты (несовершенные грибы). Грибы трех первых классов рассматривают как низшие формы, а остальные — как высшие. В основу подразделения грибов на классы положен комплекс признаков, ведущими из которых являются строение мицелия, типы полового и бесполого размножения.

Ниже дается краткая характеристика основных классов грибов; для каждого из них приведены в качестве примеров грибы, являющиеся распространенными возбудителями порчи продуктов или используемые в промышленных производствах.

 Хитридиомицеты (Chytridiomycetes). Мицелий у них развит слабо или отсутствует, а тело представляет собой голый протопласт, клеточная оболочка отсутствует. Размножаются хитридиомицеты главным образом бесполым путем посредством подвижных спор с одним жгутиком — зооспор, развивающихся внутри зооспорангиев.

Половой процесс разнообразен; у одних в результате полового процесса образуется ооспора, у других — зигоспора.

Хитридиомицеты в большинстве своем водные грибы; многие — внутриклеточные паразиты низших и высших растений. В пораженных органах и клетках растений паразит превращается в покоящуюся клетку — цисту с толстой оболочкой. Одним из представителей этого класса является гриб синхитриум.

Синхитриум — возбудитель рака клубней картофеля На пораженных клубнях около глазков образуются различных размеров темные бугристые наросты (опухоли), напоминающие губку. В наростах содержится масса зооспор гриба, которые освобождаются из разрушающихся тканей клубня и заражают другие клубни. В течение лета это может повторяться много раз. Осенью в клубнях образуются покоящиеся цисты, которые могут сохраняться в почве много лет. Весной при благоприятных условиях они прорастают, образуя зооспоры, которые заражают молодые растения. Потери урожая могут быть до 40—60%. Основные меры борьбы - выведение устойчивых сортов и обеззараживание почвы.

Оомицеты (Ооmycetes). Мицелий у них хорошо развит, неклеточный, многоядерный. Бесполое размножение происходит с помощью развивающихся в зооспорангиях зооспор с двумя жгутиками. При половом процессе образуются ооспоры.

Многие оомицеты паразитируют на высших растениях. Такими вредоносными являются фитофтора и плазмопара.

Фитофтора , или картофельный гриб, поражает клубни и ботву картофеля. На коротких разветвленных спорангиеносцах развиваются яйцевидные или лимоновидные спорангии. Во влажной среде в них образуется несколько подвижных зооспор, которые затем прорастают в гифы. В сухой среде зооспоры не образуются, спорангий непосредственно прорастает в гифу. Фитофтора поражает также помидоры и баклажаны.

Плазмопара  — гриб, который вызывает болезнь винограда, называемую милъдъю или лож-номучнистой росой. Гриб поражает листья и ягоды. Пораженные ягоды буреют, покрываются паутинистым налетом, состоящим из спороносцев гриба, сморщиваются и опадают. Развитию болезни благоприятствует повышенная влажность воздуха. Ооспоры плазмопары перезимовывают в почве и могут сохраняться жизнеспособными в течение нескольких лет.

Зигомицеты (Zugomycetes ). Мицелий у них хорошо развит, неклеточный. Бесполое размножение происходит с помощью неподвижных спорангиоспор; половое — зигоспорами (зиготой). К этому классу относят мукоровые (Мисогасеае) грибы, широко распространенные в природе. Мукоровые грибы характеризуются разнообразным строением органов бесполого размножения. У некоторых, например, у тамнидиум, наряду с крупными многоспоровыми спорангиями имеются еще маленькие спорангии с небольшим числом спор — спорангиоли. Многие мукоровые грибы являются возбудителями порчи различных пищевых продуктов. Они развиваются на продуктах в виде пушистой белой или серой массы. Наибольшее значение из мукоровых грибов имеют мукор и ризопус. Грибы рода мукор (Мyсоr) имеют крупные спорангии, образующиеся на одиночных, простых или ветвящихся спо-рангиеносцах. Виды этого рода отличаются один от другого по форме и окраске спорангиоспор, по форме хламидоспор и т. д.

Грибы рода ризопус (Rhizopus) образуют неветвящиеся, окрашенные в темно-бурый цвет спорангиеносцы, растущие пучками (кустиками). У основания последних имеются корневидные образования - ризоиды, с помощью которых гриб прикрепляется к субстрату. Спорангии крупные, с темноокрашенными спорами имеют вид черных "головок" на спорангиеносцах, поэтому ризопус получил название "головчатая плесень". Споры имеют чехлики, которые спадают после созревания. Ризопус распространяется по субстрату очень быстро с помощью длинных стелющихся гиф (столонов), напоминающих усы земляники. Поражая плоды, ягоды, овощи, гриб вызывает "мягкую гниль" их — полное разрушение тканей.

Некоторые мукоровые грибы имеют и положительное значение благодаря способности продуцировать органические кислоты, ферменты, сбраживать сахар в этиловый спирт. В странах Востока их применяют наряду с дрожжами в производстве алкогольных напитков и при изготовлении специфических продуктов питания, сброженных из бобов сои.

Среди мукоровых грибов существуют возбудители заболеваний человека и животных. Некоторые — паразиты насекомых, их используют для уничтожения вредителей сельскохозяйственных культур.

Аскомицеты (Ascomycetes). Аскомицеты, или сумчатые грибы, различны по строению и свойствам.

Мицелий у большинства хорошо развит, клеточный, но к аскомицетам относятся и не имеющие мицелия организмы, представленные одиночными почкующимися клетками. Все они имеют, однако, общее происхождение и ряд общих черт в строении. Бесполое размножение мицелиальных аскомицетов происходит с помощью конидий. Конидиальное спороношение разнообразно. Конидиеносцы образуются на мицелии одиночно или группами, создавая коремии, пикниды, ложе. При половом процессе образуются аскоспоры в сумках (асках). Сумки развиваются у многих грибов в плодовых телах разнообразной формы и строения, характерных для отдельных представителей аскомицетов. Некоторые сумчатые грибы не имеют плодовых тел, и сумки у них развиваются непосредственно на мицелии. Грибы, образующие плодовые тела, называют плодосумчатыми, не образующие — голосумчатыми.

У некоторых сумчатых грибов конидиальное спороношение неизвестно, у других оно преобладает в цикле развития. В природе (на пищевых продуктах) эти сумчатые грибы встречаются обычно в конидиальной стадии; они имеют самостоятельное название и рассматриваются в классе несовершенных грибов.

Аскомицеты широко распространены в природе. Среди них много паразитов культурных растений, возбудителей порчи пищевых продуктов, имеются патогенные для животных и человека виды. Некоторые исп

Мицелий у большинства хорошо развит, клеточный, но к аскимицетам относятся и не имеющие мицелия организмы, представленные одиночными почкующимися клетками. Все они имеют, однако, общее происхождение и ряд общих черт в строении. Бесполое размножение мицелиальных аскомицетов происходит с помощью конидий. Конидиальное спороношение разнообразно. Конидиеносцы образуются на мицелии одиночно или группами, создавая коремии, пикниды, ложе. При половом процессе образуются аскоспоры в сумках (асках). Сумки развиваются у многих грибов в плодовых телах разнообразной формы и строения, характерных для отдельных представителей аскомицетов. Некоторые сумчатые грибы не имеют плодовых тел, и сумки у них развиваются непосредственно на мицелии. Грибы, образующие плодовые тела, называют плодосумчатыми, не образующие – голосумчатыми.

У некоторых сумчатых грибов конидиальное спороношение неизвестно, у других оно преобладает в цикле развития. В природе (на пищевых продуктах) эти сумчатые грибы встречаются обычно в конидиальной стадии; они имеют самостоятельное название и рассматриваются в классе несовершенных грибов.

Аскомицеты широко распространены в природе. Среди них много паразитов культурных растений, возбудителей порчи пищевых продуктов, имеются патогенные для животных и человека виды. Некоторые используются в промышленности как продуценты биологически активных веществ (ферментов, витаминов, антибиотиков, алкалоидов).

Многие голосумчатые грибы имеют настоящий мицелий, таковым является, например, эремотециум Эшби, используемый для промышленного получения витамина В2 (рибофлавина). У других голосумчатых грибов мицелий частично распадается на артроспоры. Существуют и такие грибы, которые представляют собой одиночные почкующиеся клетки. Важнейшими представителями немицелиальных голосумчатых грибов являются дрожжи.

В группу плодосумчатых грибов включены некоторые виды широко распространенных грибов родов аспергиллус и пенициллиум, способных к сумчатому спороношению. Плодовые тела у них имеют вид мелких шариков, образованных из плотно переплетенных гиф. Внутри этих шаровидных тел находятся сумки со спорами. Большинство видов аспергиллов и пенициллов встречается только в конидиальной стадии и относится к классу несовершенных грибов.

Грибы рода аспергиллус (Aspergillus) имеют одноклеточные, неразветвленные конидиеносцы. Верхушки конидиенос-цев в большей или меньшей степени вздуты и несут на своей поверхности располагающиеся в один или два яруса стеригмы с цепочкой конидий (рис. 16, а). Конидии различной окраски (зеленоватые, желтые, коричневые), чаще округлые. Конидиеносец по внешнему виду сходен с созревшим одуванчиком.

У грибов рода пенициллиум (Penicillium) конидиеносцы многоклеточные, ветвящиеся. На концах разветвлений конидиеносца располагаются стеригмы с цепочками конидий. Конидии бывают зеленой, голубой, серо-зеленой окраски или неокрашенными. Верхняя часть конидиеносца в виде кисточки разной степени сложности, отсюда и название гриба — пенициллиум (кистевик).

Аспергилловые и пеницилловые грибы — распространенные возбудители порчи (плесневения) пищевых продуктов, промышленных изделий и материалов. Некоторые представители их используются в промышленности для получения лимонной кислоты и ферментных препаратов.

Отдельные виды грибов рода пенициллиум применяют в производстве лечебного препарата пенициллина. Пенициллиум рокфори играет важную роль в созревании сыра Рокфор, пенициллиум камамбери— в производстве сыра Камамбер.

Некоторые аспергиллы вызывают заболевания — аспергиллезы (дыхательных путей, кожи, слизистой полости рта) человека и животных. Имеются виды, выделяющие ядовитые для животных и человека вещества, — афлатоксины (производные кумаринов), одним из биологических действий которых является опухолеобразование.

Склеротиния— распространенный и опасный возбудитель белой гнили плодов и овощей при хранении. Как показывает название, для этих грибов характерно в цикле развития образование склероциев на мицелии. Конидиальное спороношение отсутствует.

Спорынья— паразит хлебных и кормовых злаков. Твердые, похожие на рожок тела темнофиолетового цвета, образующиеся в соцветиях злаков на[ месте обыкновенных зерен, представляют собой склероции. Склероции содержат алкалоиды — вещества, токсичные для человека и животных.

К плодосумчатым грибам относятся также грибы трюфели и сморчки, плодовые тела которых употребляют в пищу, а также строчки, считающиеся условно съедобными, потому что некоторые виды их ядовиты. Трюфели образуют подземные, клубнеобразные плодовые тела мясистой или хрящевой консистенции, темного цвета, достигающие размера клубней картофеля. Плодовые тела сморчков крупные, мясистые, состоят из ножки и шляпки, со складчатой бурой поверхностью, где слоями располагаются сумки со спорами.

Базидиомицеты (Basidiomycetes). Это наиболее высокоразвитые грибы с клеточным мицелием; у некоторых грибов мицелий многолетний. Бесполое размножение (конидиями) наблюдается редко. Органами полового размножения служат базидии с базидиоспорами. У одних грибов базидии  одноклеточные, у других — многоклеточные. I Одноклеточные базидии цилиндрической или булавовидной |формы несут на четырех коротких выростах (стеригмах) по  одной базидиоспоре. Многоклеточные базидии состоят из  четырех клеток, на которых находится по одной базидиоспоре на стеригме. Базидии с базидиоспорами могут развиваться непосредственно на мицелии, но у многих базидиомицетов имеются плодовые тела.

Базидиальные грибы с одноклеточными базидиями живут в почве, на растительных остатках, некоторые — на деревьях. Базидии с базидиоспорами у большинства распoлагаются слоем (гимением) на плодовых телах или внутри  них. Строение, форма и консистенция плодовых тел разнообразны и характерны для разных видов грибов. В состав  этой группы базидиомицетов входят шляпочные и трутовые  грибы.

Шляпочные грибы имеют однолетнее мясистое плодовое тело, состоящее из шляпки и ножки. Нижняя поверхность шляпки состоит из радиально расходящихся пластинок (например, у сыроежки, опенка) или из многочисленных трубочек (у белого гриба, подберезовика и др.). На боковых поверхностях пластинок и на внутренних стенках трубочек находятся базидии со спорами. Многие шляпочные грибы съедобны. То, что обычно называют грибами и употребляют в пищу, и есть плодовые тела; грибница живет в почве. Некоторые шляпочные грибы ядовиты.

В нашей стране и в других занимаются промышленным культивированием съедобных грибов шампиньонов. В некоторых странах (Китай, Япония) выращивают и другие пластинчатые грибы. В настоящее время все большее распространение получает способ выращивания грибного мицелия в ферментах. Этот способ позволяет быстро накапливать значительное количество мицелия, который по химическому составу и вкусовым качествам мало отличается от плодовых тел соответствующего гриба.

Трутовые грибы — разрушители древесины. Мицелий живет в древесине живой (в стволах, корнях деревьев) или мертвой (заготовительной, обработанной в постройках), разрушая ее. Плодовые тела образуются на поверхности пораженной древесины. У большинства грибов они многолетние, разнообразны по форме, величине, консистенции и окраске. Плодовые тела бывают рыхлыми, плотными, деревянистыми, в виде корочек, копытообразные.

Многие трутовые грибы известны под названием "домовые". Они поражают деревянные части зданий, складских помещений, обнаруживаются в винных подвалах на деревянных полках, бочках и других предметах. Наиболее вредоносным из них является настоящий домовой гриб (8егри1а 1асгутапз), который в природе не обнаруживается и встречается только в постройках. На пораженных предметах образуется ватообразное скопление мицелия с желтоватыми (или розоватыми) пленками. Плодовое тело мясисто-пленчатое. Древесина размягчается — сгнивает. При повышенной влажности воздуха гриб распространяется очень быстро, чему способствует развитие тяжей из сросшихся гиф длиною до нескольких метров. Домовые грибы наносят большой экономический ущерб народному хозяйству.К базидиальным грибам с многоклеточными базидиями относят многие паразитические грибы, из которых некоторые поражают полевые, огородные и садовые растения. Большинство этих грибов не имеет плодовых тел. Важнейшими представителями их являются головневые и ржавчинные грибы.

Головневые грибы — паразиты цветковых растений. Наиболее вредоносны грибы, поражающие зерновые культуры, вызывающие болезнь, называемую головней. Мицелий разрастается в тканях цветочных органов (метелки, колос), при этом мицелий превращается в пылящую массу темных спор — хламидоспор, называемых телиоспорами. Пораженные грибом органы растений кажутся обуглившимися, обгорелыми, отсюда и название грибов и болезни растений. Хламидоспоры имеют плотную оболочку и устойчивы к неблагоприятным воздействиям. В почве они могут сохраняться жизнеспособными в течение нескольких лет и служить источником инфекции.

Ржавчинные грибы - широко распространенные паразиты многих высших растений, в том числе и злаков. Эти грибы отличаются сложным циклом развития - разнообразием форм спороношения, чередующихся в определенной последовательности. Некоторые грибы весь цикл развития проходят на одном растении (например, ржавчина подсолнечника), другие — на двух растениях (хлебная ржавчина). Свое название ржавчинные грибы получили в связи с появлением ржавых пятен или полос на пораженных ими частях растений. Цвет пятен обусловлен наличием в мицелии и спорах этих грибов капель масла оранжевой окраски. Поражение злаковых растений ржавчиной приводит к их недоразвитию, задержке образования колосьев и, таким образом, к гибели урожая.

Головневые и ржавчинные грибы наносят большой урон сельскому хозяйству.

Дeйтеромицеты, или несовершенные грибы (Deuteromycetes). Это грибы с клеточным мицелием, у которых полового спороношения нет или оно еще не обнаружено. Большинство их размножается конидиями. Конидиеносцы у разных видов имеют различный внешний вид, располагаются одиночно или группами. Некоторые грибы образуют оидии (артроспоры), имеются формы и без специальных органов размножения. Конидии разнообразны по форме, строению, окраске; они могут быть одноклеточными и многоклеточными.

Многие представители несовершенных грибов являются аскомицетами, а возможно, и базидиомицетами, утратившими способность к половому спороношению, например виды аспергиллов и пенициллов, не имеющие сумчатой стадии развития. Некоторые грибы, рассматриваемые в этом классе, являются конидиальными стадиями развития определенных известных аскомицетов. Так, описанные ниже виды грибов Ботритис и Монилия представляют собой конидиальные стадии сумчатых грибов семейства склеротиниевых.

Несовершенные грибы широко распространены в природе; многие являются активными возбудителями порчи различных пищевых продуктов. Некоторые паразитируют на культурных растениях, имеются виды, вызывающие кожные заболевания (дерматомикозы) у людей.

Наиболее распространенными и опасными возбудителями порчи продуктов являются следующие.

Фузариум (Fuzarium) имеет два типа конидий, макроконидии - - серповидно-изогнутые многоклеточные, которые развиваются на коротких разветвленных конидиеносцах, и микроконидии — более мелкие эллиптические или округлые одноклеточные (или с одной-двумя перегородками). Мицелий этих грибов белый, бело-розовый, желтоватый. Фузариумы вызывают заболевания различных овощей и плодов, известные под общим названием "фузариоз". Имеются виды, образующие ядовитые для человека вещества.

Ботритис имеет древовидно-разветвленные конидиеносцы, несущие на концах ветвей собранные в головки одноклеточные дымчатого цвета конидии. Этот гриб поражает яблоки, груши, многие овощи и особенно ягоды. При этом поверхность их покрывается пушистым серым налетом, ткани становятся водянистыми, буреют, размягчаются. Ботритис вместе с другими грибами вызывает так называемую кагатную гнилъ сахарной свеклы.

Альтернария  характеризуется наличием многоклеточных темноокрашенных конидий булавовидно-вытянутой формы, сидящих цепочками или одиночно на слаборазвитых конидиеносцах. Различные виды Альтернарии широко распространены в почве и на растительных остатках. Гриб вызывает заболевание многих сельскохозяйственных растений, называемое алътернариозом. Развиваясь на пищевых продуктах, альтенария образует на них черные вдавленные пятна.

Оидиум  образует разветвленный белый мицелий, гифы которого легко распадаются на оидии -  артро-споры. Один из видов этого рода – Оидиум лактис— молочная плесень, часто развивается в виде бархатистой пленки на поверхности квашеных овощей и кисло-молочных продуктов при их хранении. Гриб использует находящуюся в этих продуктах молочную кислоту, что приводит к их порче. В молочных продуктах оидиум разлагает белок, жиры. Эта плесень встречается также на прессованных дрожжах, сливочном масле, сыре и других продуктах.

.Монилия  - гриб, не имеющий настоящих конидиеносцев. Конидии, соединенные в простые или ветвящиеся цепочки, располагаются на коротких отростках мицелия. Эти грибы являются активными возбудителями порчи плодов.

Фома  имеет короткие конидиеносцы в пикнидах с бесцветными одноклеточными конидиями разнообразной формы. Среди грибов много паразитов растений, а также возбудителей порчи — фомоза овощей при хранении.

Кладоспориум имеет слабоветвящиеся конидиеносцы, несущие на концах цепочки конидий. Конидии бывают разнообразной формы (округлой, овальной, цилиндрической и др.) и размеров, нередко двуклеточные. Мицелий, конидиеносцы и конидии окрашены в оливково-зеленый цвет. Эти грибы характерны тем, что выделяют в среду темный пигмент. Кладоспориум нередко обнаруживается при холодильном хранении на различных пищевых продуктах в виде бархатистых темно-оливковых (до черного цвета) пятен.

          Дрожжи Общая характеристика. Дрожжи являются одноклеточными неподвижными микроорганизмами, широко распространенными в природе; они встречаются в почве, на листьях, стеблях и плодах растений, в разнообразных пищевых субстратах растительного и животного происхождения.

Широкое использование дрожжей в промышленности основано на их способности вызывать спиртовое брожение.

Форма и строение дрожжевой клетки. Форма клеток дрожжей чаще округлая, овально-яйцевидная или эллиптическая, реже цилиндрическая и лимоновидная. Встречаются дрожжи особой формы - серповидные, игловидные, стреловидные, треугольные. Размеры дрожжевых клеток обычно не превышают 10—15 мкм.

Форма и размеры дрожжей могут заметно изменяться в зависимости от условий развития, а также возраста клеток.

Строение клетки дрожжей сходно со строением клетки грибов. Дрожжи обладают всеми основными структурами, характерными для эукариотного типа клетки (ядро, отграниченное от цитоплазмы, эндоплазматическая сеть, аппарат Гольджи, лизосомы, митохондрии, рибосомы, вакуоли). В качестве запасных питательных веществ в клетках обнаруживаются капельки жира, гранулы гликогена, волютина.

Клеточная стенка (оболочка) дрожжей слоиста, в состав  ее у большинства дрожжей входят в основном (до 60—70% сухой массы) гемицеллюлозы; в небольших количествах — белки, липиды, хитин. У некоторых дрожжей оболочка может в  той или иной степени ослизняться, вследствие чего клетки склеиваются друг с другом и при развитии в жидких средах образуют оседающие на дно сосуда хлопья. Такие дрожжи называют хлопьевидными, в отличие от пылевидных, клеточные стенки которых не ослизняются; пылевидные дрожжи в жидкости находятся во взвешенном состоянии.

Размножение дрожжей. Наиболее характерным и широко распространенным у дрожжей вегетативным способом размножения является почкование, лишь немногие дрожжи размножаются делением.

У дрожжей известны следующие типы почкования: мультилатеральное, биополярное, униполярное и равномерное.

Процесс почкования заключается в том, что на клетке появляется бугорок (иногда их несколько), который постепенно увеличивается. Этот бугорок называют почкой. Почкованию предшествует разделение ядра на две части, и одно вместе с частью цитоплазмы и другими клеточными элементами переходит в формирующуюся молодую клетку. По мере роста почки в месте соединения ее с материнской клеткой образуется перетяжка, отграничивающая молодую дочернюю клетку, которая затем либо отшнуровывается (отделяется) от материнской клетки, либо остается при ней. В месте отделения дочерней клетки остается рубец. При благоприятных условиях этот процесс длится около 2 ч.

Почкующиеся клетки обычно образуют не одну, а несколько почек. Вместе с этим может начаться почкование и молодых клеток. Так постепенно образуются скопления из многих объединенных между собой клеток, называемые сростками почкования.

В некоторых случаях, особенно на поверхности жидких сред, такие сростки почкования образуют тонкую пленку, легко разрушающуюся при взбалтывании жидкости. Существуют дрожжи, которые образуют более или менее толстые морщинистые пленки, прочно удерживающиеся при взбалтывании. Такие пленчатые дрожжи нередко вызывают порчу соленых и квашеных овощей, вина, пива.

Помимо почкования, многие дрожжи размножаются с помощью спор. Споры у дрожжей могут образовываться бесполым и половым путями. В первом случае ядро клетки делится на столько частей, сколько образуется спор у данного вида дрожжей, после чего постепенно в клетке (как в сумке) образуются аскоспоры. Образованию спор половым путем предшествует слияние (копуляция) клеток. У некоторых дрожжей копулируют прорастающие споры. Число спор в клетке разных видов дрожжей различно. Их может быть две, четыре, а иногда восемь и даже двенадцать.

Споры большинства дрожжей округлые или овальные, но у некоторых игловидные, шляповидные. На поверхности многих спор имеются различные образования типа выростов, бородавок, ободков. Споры дрожжей более устойчивы к неблагоприятным воздействиям, чем вегетативные клетки, но менее стойки, чем бактериальные споры. В благоприятных условиях споры прорастают в клетки.

У многих так называемых культурных дрожжей, т. е. культивируемых человеком для производственно-хозяйственных целей, способность к спорообразованию в значительной степени ослаблена, а иногда полностью утрачена.

Основы систематики дрожжей. Дрожжи, как указывалось выше, относятся к классу сумчатых грибов (Ascomycеtes), к подклассу голосумчатых, не образующих мицелия. Разделение голосумчатых грибов на порядки, семейства, роды основано на особенностях их размножения, морфологических, физиологических и биохимических признаках.

Наибольший интерес представляет род сахаромицес (Saccharomyces), который объединяет как природные виды, так и культурные, применяемые в промышленности. Отдельные их виды различаются способностью сбраживать те или иные сахара, интенсивностью брожения, количеством образуемого спирта, оптимальными температурами почкования и образования спор и т. д.

В промышленности наиболее широко используют дрожжи сахаромицес церевизия. В настоящее время в различных странах мира их вырабатывают более 2 блн т. Коммерческими продуктами являются прессованные и высушенные различными способами дрожжи, а также пищевые дрожжи, характеризующиеся полностью инактивированными ферментными системами. Пищевые дрожжи используют как добавки к продуктам питания, а не как биологические катализаторы.

Сахаромицес церевизия (Sacch. cerevisiae) — дрожжи округлой или овальной формы. Применяют их в производстве этилового спирта, пивоварении, квасоварении и хлебопечении. Каждое производство применяет свои специфические расы (разновидности) данного вида дрожжей.

Сахаромицес вини (Sacch. vini) — дрожжи эллиптической формы. Их используют преимущественно в виноделии. Этот вид дрожжей также представлен многими расами.

Эти и некоторые другие виды рода Saccharomyces при спонтанном (самопроизвольном) развитии в содержащих сахар пищевых продуктах вызывают их порчу — забражива-ние, прокисание.

Помимо спорообразующих, существуют дрожжи, не образующие спор, — аспорогенные. Нередко их называют дрожжеподобными или несовершенными дрожжевыми организмами и относят к несовершенным грибам.

Из аспорогенных дрожжей наибольшее значение имеют роды кандида (Candida) и торулопсис (Torulopsis). Многочисленные представители их широко распространены в природе, большинство не способно к спиртовому брожению, многие вызывают порчу пищевых продуктов.

Торулопсис имеют клетки округлой или овальной формы. Многие из них способны вызывать лишь слабое спиртовое брожение. Отдельные виды используют в производстве кумыса и кефира.

Кандида — дрожжи, клетки которых имеют вытянутую форму, способны к образованию примитивного мицелия (псевдомицелий). Многие из них не способны к спиртовому брожению. Некоторые виды (например, Кандида утилис), окисляющие сахар и этиловый спирт в органические кислоты или в углекислый газ и воду, являются вредителями в производствах вин, пива, пекарских дрожжей. Эти дрожжи вызывают порчу квашеных овощей, безалкогольных напитков и многих других продуктов.

Имеются виды, вызывающие заболевания — кандидозы у людей, при которых поражаются слизистые оболочки рта и других органов.

Среди аспорогенных дрожжей имеются окрашенные в желтый, розовый, красный цвета, что обусловлено наличием в клетках пигментов — каротиноидов. В настоящее время некоторые из этих дрожжей (виды рода родоторула —Rhodotorula) используют для получения кормовых белково-каротиноидных препаратов, которые являются источником витамина А для животных.

В последнее время дрожжи Кандида утилис широко применяют для получения белка, аминокислот, витаминов и ферментов. Например, синтезирует белок при выращивании ее на отходах бумажной промышленности, а Сахаромицес липолитика— на алканах нефти;  Сахаромицес церевизия используют для получения фермента инвертазы.

В МИНХе им. Г. В. Плеханова А. А. Кудряшовой с труп пой сотрудников получен препарат из дрожжей "Александрина", предназначенный для использования в лечебно-про филактических целях. Он представляет собой полностью растворяющуюся в воде смесь аминокислот, витаминов и минеральных элементов. В пищевой промышленности он может применяться в качестве высокоэффективной и полифункциональной натуральной пищевой добавки, не оказывающей негативного влияния на органолептические свой ства продуктов питания. Добавление этого препарата к пищевым продуктам способствует повышению их физиологической ценности, появлению новых положительных признаков и свойств или усилению им присущих (повышение качества, усиление пеностойкости напитков и желеобразующей способности кондитерских изделий, замедление черствения хлебобулочных изделий, сохранение формы мучных изделий при варке, снижение калорийности сахаристых изделий и др.). Отходы, образующиеся при производстве этого препарата, могут использоваться как в пищевой промышленности, так и в области животноводства, растениеводства, при выращивании лабораторных и промышленных микроорганизмов, пушных зверей, рыбы, шляпочных грибов, цветов и др.

Новая натуральная биопродукция позволяет получать экологические безопасные продукты питания, эффективные корма для животных и питательные среды для микроорганизмов, новые медицинские препараты и парфюмерно-косметические изделия высокой биологической активности. Разрешение на ее промышленное производство и реализацию для населения получены в Минздраве РФ и в Госстандарте.

          Вирусы и фаги. Вирусы (от лат. Virus - яд) - это особая группа микроорганизмов меньших размеров и более простой организации, чем бактерии. Вирусы не имеют клеточной структуры, величина их измеряется нанометрами. Вирусы открыты русским ботаником Д. И. Ивановским в 1892 г. при изучении мозаичной болезни листьев табака, которая причиняла большой ущерб табачным плантациям Крыма. Открытие Д. И. Ивановского заложило основу новой науки - вирусологии.

Вирусы — внутриклеточные паразиты, вызывающие многие болезни человека (оспу, грипп, бешенство, корь, полиомиелит и др.), животных (ящур, чуму крупного рогатого скота) и растений ("мозаики" и другого вида заболевания полевых и огородных культур).

Вирусы разнообразны по форме, размерам и химическому составу. Большинство из них имеет палочковидную или сферическую форму. Некоторые вирусы состоят только из белка и одной нуклеиновой кислоты - ДНК или РНК, другие содержат еще и липиды, полисахариды. Вирусная частица называется вирионом. Нуклеиновая кислота (в виде спирали) находится внутри вириона, снаружи он покрыт белковой оболочкой (капсидом), состоящей из отдельных морфологических субъединиц (капсомеров). Вирусы выращивают на живых клетках или культуре тканей, так как на искусственных питательных средах они, как правило, не развиваются.

Вирусы обладают разной устойчивостью к внешним воздействиям. Многие инактивируются при 60"С до 10 мин, другие выдерживают температуру 90°С до 10 мин. Вирусы довольно легко переносят высушивание и низкие темпера туры, но мало устойчивы ко многим антисептикам, ультрафиолетовым лучам, радиоактивным излучениям.

Фаги -  это вирусы микроорганизмов, вызывающие гибель — распад (лизис) их клеток. Вирусы бактерий называются бактериофагами или просто фагами, актиномицетов — актинофагами, вирусы грибов — микофагами, сине-зеленых водорослей (цианобактерий)  - цианофагами.

Впервые лизис сибиреязвенных бактерий наблюдал Н. Ф. Гамалея в 1898 г. Д'Эррель в 1917 г. установил явление лизиса у бактерий дизентерии, им впервые был выделен и описан бактериофаг ("пожиратель") бактерий.

Морфология фага  изучена с применением электронного микроскопа. Большинство фагов состоит из головки и отростка. Головка фага может иметь разную форму, чаще всего это многогранник, покрытый белковой оболочкой (капсидом). Внутри капсида расположена нуклеиновая кислота, чаще всего одна — ДНК или РНК. Отросток фага имеет внутренний полый стержень, по каналу которого ДНК фага переходит в клетку хозяина. Стержень снаружи покрыт чехлом, способным к сокращению. Стержень и чехол отростка состоят из белковых субъединиц. У некоторых фагов отросток заканчивается базальной пластинкой, которая имеет выступы (зубцы) и нити.

Фаги могут быть и нитевидной формы, могут состоять из одной головки, а могут быть с аналогами отростка (очень коротким отростком). Некоторые фаги имеют длинные отростки с несокращающимся или сокращающимся чехлом.

Фаги широко распространены в природе. Многие из них обладают специфичностью — могут воздействовать на определенный вид или группу родственных видов микроорганизмов.

Взаимодействие фага с микробной клеткой происходит в несколько фаз. Сначала фаг адсорбируется восприимчивой клеткой, затем под действием фермента фага (сходного с лизоцимом) в стенке микробной клетки образуется отверстие, через которое в клетку проникает только нуклеиновая кислота; пустая белковая оболочка головки и отростка остается снаружи клетки, а затем разрушается.

Под влиянием попавшей в клетку нуклеиновой кислоты фага перестраиваются все обменные процессы микробной клетки на синтез фаговых частиц: синтезируются фаговая нуклеиновая кислота и белковые субъединицы оболочек. Вначале формируются раздельно головки и отростки, которые затем объединяются в зрелые фаговые частицы. Через определенное время клетка хозяина погибает, разрушается и фаги выходят наружу.

Явление фаголизиса (растворение культур микроорганизмов) наблюдается на производствах, связанных с использованием микроорганизмов. Развитие фагов в культурах промышленных микроорганизмов приводит к тому, что клетки культуры лизируются, не успев синтезировать необходимые вещества. Это наносит предприятиям большой экономический ущерб. Так нередко лизируются молочно-кислые бактерии, входящие в состав заквасок для кисломолочных продуктов. Такие закваски не пригодны для употребления.

Бактериофаги, лизирующие зараженные ими бактерии, называют вирулентными. Некоторые фаги, однако, инфицируют бактерии, но не вызывают их лизиса; такие фаги называются умеренными. В клетке-бактерии хозяина они не размножаются, но при делении бактерии передаются дочерним клеткам.

Фаги применяются в медицине для лечения и профилактики некоторых заболеваний, например дизентерии, холеры. Фаги исключительно удобны как модели для решение вопросов общебиологических, молекулярной биологии, генетики, медицины.

  

 Тема № 3. Физиология микроорганизмов. Химический состав микроорганизмов. Питание микробной клетки. Гетеротрофный и автотрофный типы питания. Конструктивный и энергетический обмен. Рост и размножение микроорганизмов.

          Физиология микроорганизмов. Изучает процессы их роста, развития, питания, способы получения энергии для осуществления этих процессов, их взаимодействия с окружающей средой. Знание физиологических процессов микроорганизмов создает научную основу для проведения культивирования (выращивания) и идентификации (распознавания) видов микробов, а также  получения биологических и лечебных препаратов (заквасок, витаминов, ферментов, аминокислот, антибиотиков, вакцин и др.).

  Понятие об обмене веществ. Основу жизнедеятельности микроорганизмов, как и всех живых существ, составляет обмен веществ (метаболизм) с окружающей средой. Термин метаболизм объединяет два взаимосвязанных, но противоположных процесса- анаболизм и катаболизм.

 Анаболизм (питание; ассимиляция; конструктивный или строительный обмен; обмен веществ) сводится к усвоению, т.е. использованию микробами питательных веществ, поступивших из внешней среды,  для биосинтеза компонентов собственного тела. Это достигается чаще восстановительными эндотермическими реакциями, для течения которых требуется энергия.

          Катаболизм (дыхание, диссимиляция, биологическое окисление) характеризуется расщеплением (окислением) сложных органических веществ до более простых продуктов с освобождением заключенных в них энергии. Эта энергия используется микроорганизмами для синтеза веществ данной клетки.

         Метаболизм у микроорганизмов характеризуется интенсивным потреблением питательных веществ. Например, при благоприятных условиях в течение суток одна клетки бактерий усваивает веществ в 30-40 раз больше величины своей массы, соответственно высока и скорость прироста биомассы микроорганизмов. Основная часть пищи расходуется микроорганизмами в энергетическом обмене, при котором в среду выделяется большое количество продуктов обмена: кислот, спиртов, диоксид углерода, водород и др. Эта особенность микроорганизмов широко используется в практике переработки растительного, животного пищевого и непищевого сырья и обуславливает порчу пищевого сырья.

         Химический состав микроорганизмов. Состав веществ тела микроорганизмов мало отличается от состава тела растений и животных.

         Для определения потребностей микроорганизмов в питательных веществах необходимо знать их химический состав. Элементарный состав клеток микроорганизмов довольно разнообразен и представлен в  процентах от сухого вещества клетки: углерод-50, кислород-20, азот-14, водород-8, фосфор-3, сера, калий , натрий- по 1, кальций, магний, хлор- по 0,5, железо-0,2, все остальные по 0,3. Эти элементы играют различную физиологическую роль. Так углерод, кислород, азот и водород входят в состав всех без искючения живых организмов, их называют органогенами. Эти элементы составляют основу органических веществ; водород и кислород входят в состав воды; кислород необходим для дыхания аэробным микроорганизмам. Важную физиологическую функцию выполняют также фосфор и сера. Фосфор входит в состав важных органических соединений клетки фосфолипидов, АТФ и др. Сера необходима для серосодержащих аминокислот (цистина, цистеина, гомоцистеина, метионина), без которых невозможен синтез белков.  

           Микробная клетка состоит из воды и сухих веществ. Количество воды для большинства микробов колеблется от 75 до 85% и находится в клетке в свободном и связанном состояниях, что   имеет важное значение в жизни микроорганизмов. Так как все вещества поступают в клетку только с водой и с ней же удаляются продукты обмена из клетки. Свободная вода служит дисперсной средой для коллоидов и растворителем различных органических и минеральных соединений. Связанная вода является структурным элементом цитоплазмы и не может быть растворителем. Содержание воды в клетке изменяется в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста и т.п. В спорах бактерий и грибов значительно меньше воды, чем в вегетативных клетках, за счет низкого содержания в них свободной воды. Потеря свободной воды влечет за собой высыхание клетки и изменения в обмене веществ. С потерей связанной воды нарушаются клеточные структуры и наступает гибель клетки.

        Сухое вещество клеток микроорганизмов не превышает 15-25% и состоит преимущественно (до85-95%) из органических соединений- белков, углеводов, нуклеиновых кислот, липидов и других соединений.

          Белковые вещества являются основными компонентами клетки. Содержание их зависит от вида микроорганизмов, условий выращивания и возраста и составляет  в среднем от 40 до 60%. По аминокислотному составу белки микроорганизмов сходны с белками других организмов. Некоторые белки (ферменты) выполняют каталитические функции: осуществляют различные биохимические реакции, постоянно протекающие в микробной клетке).

        Многие микроорганизмы могут накапливать большое количество белков в составе своих клеток и их можно рассматривать в качестве продуцентов пищевого и кормового белка. Рентабельность промышленного производства таких «белковых продуктов» определяется быстротой накопления биомассы микроорганизмов и использованием для их выращивания дешевого недефицитного сырья (отходов различных производств).

        Углеводы составляют 15-20% сухого вещества и содержатся в микробных клетках в основном в виде полисахаридов. Углеводы входят в состав капсул. Клеточных мембран и цитоплазмы, а также являются запасными веществами в виде включений гранулезы и гликогена.

Нуклеиновые кислоты содержатся в клетках в виде рибонуклеиновой (РНК) и дезоксирибонуклеиновой  (ДНК) кислот. ДНК сосредоточена главным образом в ядре  эукариотных клеток и в нуклеодах прокариотных (бактериальных клеток). В молекуле ДНК закодирована вся наследственная информация клетки, «записаны» все особенности будущего организма, выработанные в процессе длительной эволюции и свойственные данному виду. РНК преимущественно сосредоточена в цитоплазме и рибосомах.

        Липиды составляют 3-10% сухого вещества, входят в состав клеточных оболочек и надежно защищают клетку от воздействий окружающей среды, а также откладываются в виде запасных гранул. Часть липидов связаны с другими веществами клетки, образуя сложные комплексы  (эфиры сложных кислот и углеводов, воска и фосфолипиды). Пигменты и красящие вещества, обуславливают окраску микроорганизмов. Фотосинтезирующие бактерии содержат особые пигменты типа хлорофилла растений- бактериохлорофилл. Фототрофные бактерии и некоторые дрожжи образуют пигменты- каротиноиды, которые участвуют как и бактериохлорофилл в ассимиляции углекислого газа. У некоторых грибов(мицеллиальных и дрожжевых)в значительных количествах образуется желто-розовые и оранжевые каротиноиды, которые являются провитаминами витамина А .

      Минеральные вещества составляют 5-15% сухого вещества клетки и представлены сульфатами, фосфатами, карбонатами, хлоридами. Фосфаты могут быть в свободном виде и входить в состав различных соединений (нуклеиновых кислот, АДФ, АТФ). Минеральные соединения играют важную роль в регулировании внутриклеточного давления и коллоидного состояния цитоплазмы. Они влияют на скорость и направление биохимических реакций, являются стимуляторами роста, активаторами ферментов.

         Питание микробной клетки. Анаболизм микроорганизмов. Питание-это процесс усвоения микробной клеткой    питательных веществ, поступающих из окружающей среды, в результате которго они превращаются в составные части биологических структур клетки или откладываются в ней в виде запасов.

        Большинство микроорганизмов, также как и растения, обладают голофитным способом питания, или внеклеточным (внешним) пищеварением, которое происходит в окружающей среде( субстрате) под действием экзоферментов микроорганизмов.

         Существует также голозойный способ питания (внутриклеточное пищеварения), которое происходит под действием эндоферментов. Оно присуще простейшим  и некоторым низкоорганизованным организмам и характеризуется заглатыванием(обволакиванием) плотных частиц пищи, перевариванием и превращением их в растворимые соединения(эндоцитоз).

         Возможность проникновения веществ извне в клетку обусловлено многими факторами: величиной и структурой их молекул; способностью растворяться в компонентах цитоплазматической мембраны; концентрацией веществ в клетке и в среде. Имеют значение также и  свойства клеточной стенки и цитоплазматической мембраны, являющихся барьерами, через которые должны проникнуть в клетку питательные вещества; имеет значение электрический заряд поверхности клетки и др.

          Вещества питательной среды могут поступать в клетку в растворенном состоянии. Нерастворимые сложные органические соединения должны подвергнуться расщеплению на более простые вне клетки, что происходит с помощью экзоферментов микроорганизмов.

          Клеточная стенка проницаема и задерживает лишь макромолекулы. Цитоплазматическая мембрана обладает полупроницаемостью и служит осмотическим барьером. Так как проницаемость ее для различных веществ неодинакова. Известно несколько путей проникновения питательных веществ  в клетку.

          Пассивная диффузия  подчиняется законам осмоса. При осмотическом проникновении веществ через полупроницаемую мембрану движущей силой является разность осмотических давлений (концентраций веществ) в растворах по обе стороны мембраны, т.е. между средой и клеткой. При этом концентрация растворенных солей внутри клетки несколько выше (по сравнению с субстратом), а так как вода по закону осмоса стремится в сторону противоположной концентрации, то она поступает в клетку увлекая с собой питательные вещества. Такой пассивный перенос веществ (по градиенту концентрации) протекает до выравнивания концентраций и не требует затраты энергии. При этом внутреннее напряжение клетки (так называемый тургор) является одним из основных условий обеспечивающих нормальное поступления в нее питательных веществ. Для большинства микроорганизмов тургор наиболее выражен при 0,85%-ной концентрации солей в окружающей среде. Эта концентрация называется изотонической.

            При гипертонической концентрации, т.е. при повышении ее до 2-3% наступает плазмолиз (обезвоживание)- сжатие, сморщивание цитоплазмы и отслаивание ее от клеточной стенки. При помещении микроорганизмов в гипотонический раствор (например, дистиллированная вода) – вода прямым потоком поступает внутрь клетки. Объем клетки при этом увеличивается, происходит набухание и разрушение  оболочки клеток. Это явление получило название плазмоптиза.

          Облегченная диффузия. Скорость транспорта веществ в клетку в условиях повышения концентрации субстрата возрастает до определенного предела. При облегченной диффузии кроме градиента концентрации функционируют электрические переносчики, находящиеся в мембране: субстрат соединяется с протоном и белком переносчиком и по электрическому градиенту диффундирует в клетку. Переносчики являются специфичными по отношению к субстрату. Так дрожжевые клетки поглощают сахара путем облегченной диффузии, а у анаэробов этим способом происходит поглощение некоторых соединений и выделение продуктов обмена.

       Активный транспорт. Поступление питательных веществ осуществляется против градиента концентраций с затратами энергии со стороны клетки и при участии специфических белков-переносчиков (пермеаз), локализованных в цитоплазматической мембране. Пермеазы сходны с ферментами и обладают субстратной специфичностью- каждая транспортирует определенное вещество. На внешней стороне цитоплазматической мембране пермеаза адсорбирует вещество, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее в цитоплазму. Выход растворенных веществ осуществляется как при участии пермеаз- путем облегченной диффузии, так видимо и путем пассивной диффузии.

         Конструктивный обмен. Пища должна содержать такие   вещества, которые удовлетворяли бы потребность микроорганизмов в химических элементах и энергии, необходимых для синтеза веществ и структур клетки. В зависимости от того, какие химические элементы поступают из веществ питательной среды их называют источниками углерода, азота, фосфора и др.   

Кислород и водород микроорганизмы получают из воды, содержатся они также во многих используемых  органических соединениях.

Потребности микроорганизмов в  отношении источников углерода и азота весьма разнообразны.

Источники углерода. В зависимости от используемого в конструктивном обмене источника углерода микроорганизмы делят на две группы: автотрофы (питающийся самостоятельно) и гетеротрофы (питающийся другими).

         Автотрофы усваивают углерод из диоксида углерода воздуха и в зависимости от вида используемой энергии для фиксации СО2 их соответственно называют фото- и хемосинтезирующими.

Фотосинтезирующие используют энергию солнечных лучей. Они напоминают зеленые растения, образующие в процессе фотосинтеза углеводы из СО2 и Н2О. К этой группе относят цветные бактерии, имеющие в цитоплазме своих клеток пигменты типа хлорофилла. Как, например, пурпурные серные бактерии, сине-зеленые водоросли и др.

         Хемоситезирующие используют энергию химических реакций окисления минеральных (неорганических) веществ. К ним  относят нитрифицирующие бактерии, бесцветные серобактерии, железобактерии, нитчатые, тионовые, водородные бактерии и др.

         Гетеротрофы наиболее многочисленная группа микроорганизмов, которые могут использовать углерод только из готовых органических субстратов животного и растительного происхождения.  Микроорганизмы называют сапрофитами (метатрофами), если они используют мертвый органический субстрат. Они разлагают различные органические вещества в природе, вызывают порчу пищевых продуктов или используются в процессах переработки растительного и животного сырья. Многие сапрофиты всеядны, т.е. способны использовать разнообразные органические соединения. Существуют и такие, которые нуждаются в определенных соединениях (например- микробы использующие метан, парафины и др.) Сапрофиты наряду с органическими соединениями используют в небольших количествах и СО2 , который служит дополнительным источником углерода для биосинтеза веществ клетки.  Вторая подгруппа гетеротрофов - паразиты (паротрофы)  питаются живыми органическими субстратами. Сюда относятся преимущественно болезнетворные микроорганизмы, т.е. паразитирующие в живых организмах. Абсолютными (внутриклеточными) паразитами являются вирусы и риккетсии, которые развиваются в живых клетках человека, животных, растений и микроорганизмов.

         В отличие от вирусов и риккетсий многие патогенные микроорганизмы- паразиты могут размножатся на искусственных питательных средах, т.е. по типу питания занимают промежуточное положение между паразитами и сапрофитами (патогенные стафилококки, стрептококки, возбудители бруцеллеза, туберкулеза, сибирской язвы и др. инфекционных болезней).  

       Источники азота. В зависимости от источника азота все микроорганизмы можно разделить также на две группы: аминоавтотрофы и аминогетеротрофы.

       Аминоавтотрофы усваивают азот из неорганических источников. Они представлены двумя подгруппами: азотфиксирующие и нитритно-нитратные микроорганизмы. Азотфиксирующая подгруппа способна усваивать молекулярный азот воздуха (актиномицеты, азотфиксирующие- свободноживущие и симбиотические). Нитритно - нитратные микроорганизмы окисляют аммиак до солей азотистой и азотной кислот и усваивают эти окисленные формы азота.

Аминогетеротрофы используют органические источники азота. К ним относятся дезаминирующие, пептонные, протеолитические и паротрофные микроорганизмы. Дезаминирующие микроорганизмы могут усваивать только  аминокислоты (некоторые патогенные бактерии). Пептонные бактерии потребляют только органические соединения типа пептонов, так как не способны расщеплять цельную белковую молекулу (молочнокислые, пропионовокислые бактерии, энтерококки, микрококки и кишечные палочки). Протеолитические микроорганизмы  или гнилостные в качестве источника азота используют натуральные белки, которые предварительно разлагаются их экзоферментами (гнилостные бактерии, актиномицеты, плесени). Паротрофные микроорганизмы в качестве источника азота используют белковые вещества живого организма (патогенные).

Установить резкую грань между автотрофами и гетеротрофами не всегда удается. Некоторые патогенные микроорганизмы во внешней среде ведут сапрофитный образ жизни, и наоборот, некоторые сапрофиты в зависимости от состояния микроорганизма могут вызвать заболевания.

Минеральные элементы. Микробная клетка нуждается в минеральных веществах. Потребность в них невелика, но без некоторых элементов невозможны рост и развитие микрооргнизмов. Калий активизирует ферментативные процессы, ускоряет течение физиологических процессов. Магний входит в состав хлорофилла у зеленых и пурпурных серобактерий, активизирует карбоксилазу. Пептидазу и другие ферменты. Фосфор входит в состав нуклеиновых кислот, принимает активное участие в процессах дыхания (окисления). Сера –один из компонентов белков , входит в состав некоторых аминокислот. Железо необходимо в малых количествах входит в состав дыхательных ферментов, ускоряет процессы окисления. Микроэлементы нужны микробной клетке еще в меньших количествах. Но их недостаток ведет к нарушению нормального роста и развития. Молибден. бор, марганец, кобальт, медь и др. микроэлементы являются компонентами многих ферментов и  витаминов. Для получения этих химических элементов в питательные среды для  микроорганизмов вводят  минеральные соединения.

Факторы роста. Активаторы биологических процессов, по своему действию являются витаминами и витаминоподобными соединениями. Одни микроорганизмы должны получать витамины в готовом виде, а другие синтезируют витамины в количествах значительно превышающих собственные потребности. На этом основан микробиологический путь получения рибофлавина (витамин В2), каротиноидов (провитамин А), эргостерина (провитамин Д).

Культивирование микробов в условиях лабораторий осуществляется на искусственных питательных средах. Для гетеротрофов среды должны содержать экстракты из продуктов животного и растительного происхождения  с добавлением пептона. Пептон универсальный источник азота, являющийся продуктом неполного расщепления белков посредством фермента пепсина в кислой среде. В отличие от животных многие микробы могут использовать самые различные субстраты в качестве продуктов питания. Они растут на бумаге, дереве, коже, резине и т.д. Одни из них для своей жизнедеятельности используют парафиновые углеводороды, нефть, керосин; а другие- элективные (избирательные, селективные) среды,  имеющие  определенный состав.

Энергетический обмен. Описанные выше процессы конструктивного процесса – синтез веществ клетки из поступивших в нее извне питательных веществ, активный перенос этих веществ через цитоплазматическую мембрану и многие другие процессы жизнедеятельности - протекают с затратой энергии. Источники энергии у микроорганизмов разнообразны.

           У фотоавтотрофов источником энергии служит видимый свет. Световая энергия улавливается фотоактивными пигментами клетки в процессе фотосинтеза, трансформируется в химическую энергию и обеспечивает энергетические потребности клетки.

         Источником энергии у хемоавтотрофов служит химическая энергия, получаемая при окислении неорганических соединений (аммиак, сероводород и др.).

         Хемогетеротрофы   получают энергию в процессе окисления органических соединений. Любое природное органическое вещество и многие синтетические могут быть использованы хемогетеротрофами. Но одни способны окислять многие органические вещества, а другие - лишь небольшой набор их. Некоторые микроорганизмы могут проявлять большую специфичность к энергетическому материалу.

       Поскольку все микроорганизмы: возбудители порчи пищевых продуктов и используемые при переработке  пищевого сырья относятся к хемогетеротрофам ниже рассматриваются именно их энергодающие процессы. К ним относят дыхание (1) и брожение(2). Суммарные уравнения выглядят следующим образом:

           1.С6Н12О6 +6 О2=6СО2+6Н2О+674 ккал,

           2.С6Н12О6  →    2СН3СН2ОН+2СО2+27 ккал.

        Дыхание (биологическое окисление)- сложный процесс окисления различных органических соединений и некоторых минеральных соединений (нитратов и сульфатов). Нитратное дыхание - восстановление нитратов до молекулярного азота происходят по схеме (3). Сульфатное дыхание-восстановление сульфатов до сероводорода, сопровождающееся выделением такого же количества энергии–по схеме (4):

            3.5С6Н12О6+24КNО3→24КНСО3+18Н2О+12N2+6СО2+270 ккал.

            4. С6Н12O6+3К2S О4 →3К2СО3+3СО2+3Н2О+3Н2S+270 ккал.

В итоге окислительно-восстановительных процессов и брожения образуется тепловая энергия, часть которой используется микробной клеткой, а остальное количество выделяется в окружающую среду. В настоящее время окисление определяют как процесс отнятия водорода (дегидрирование), а восстановление его присоединение. Эти термины применяют к реакциям связанным с переносом протонов и электронов, или только электронов. При окислении вещества происходит потеря электронов, а при  восстановлении –их присоединение.

Различают два типа биологического окисления: прямое и непрямое. При прямом окислении органические вещества, такие как молекулярный водород, оксид углерода, метан, сера, аммиак, соли азотистой кислоты, железо и др. окисляются атмосферным кислородом с помощью ферментов оксидаз. При прямом окислении неорганических веществ получают энергию автотрофные почвенные бактерии.

При непрямом окислении происходит отщепление водорода от донора и его присоединение к акцептору. Поэтому непрямое окисление называют дегидрированием. Непрямому окислению путем дегидрирования подвергаются органические вещества при помощи дегидрогеназ. Различают аэробное и анаэробное дегидрирование. При аэробном дегидрировании микроорганизмы используют в качестве конечного акцептора водорода атмосферный кислород. Водород отщепляется от донора с помощью фермента дегидрогеназы и передается акцептору не сразу, а проходит ряд промежуточных этапов.

При аэробном дегидрировании происходит полное и неполное окисление. В случае полного окисления конечными продуктами являются вода и диоксид углерода, происходит высвобождение всей энергии. При неполном окислении освобождается лишь часть энергии. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная. Щавелевая, янтарная и др., которые образуются плесневыми грибами. Также осуществляется аэробное дыхание уксуснокислыми бактериями (5):

             5. СН3СН2ОН+О2→СН3СООН+Н2О+80 ккал

При анаэробном дегидрировании микробы используют в качестве акцептора водорода не кислород, а азот, серу, углерод и другие соединения, которые образуются при распаде субстрата (пировиноградной кислоты). При этом водород довольно легко соединяется с азотом, серой, углеродом, которые восстанавливаются до аммиака, сероводорода и метана.

Дегидрирование углеводов называют брожением, оно чаще проходит в анаэробных условиях. Конечными продуктами брожения являются органические кислоты, этиловый и бутиловый спирты, ацетон и другие продукты. Таким образом, прямое окисление и дегидрирование приводят к одному результату- окислению субстрата, т.е. отщеплению от субстрата водорода и присоединение его к акцептору (восстановление). Перенос электрона всегда сопровождается освобождением энергии, которая немедленно утилизируется клеткой с помощью особых соединений АТФ и АДФ (аденозинтрифосфата и аденозиндифосфата). В них она накапливается в органических фосфатных (макроэргических) связях и расходуется клеткой по мере необходимости.

По типу дыхания микроорганизмы разделяют на четыре основные  группы: облигатные аэробы, облигатные и факультативные- анаэробы и микроаэрофиллы. 

Облигатные (строгие) аэробы растут при свободном доступе кислорода воздуха, имеют ферменты, обеспечивающие передачу водорода от донора ( электронов субстрата) конечному акцептору кислороду воздуха. Размножаются при наличии в атмосфере до21% кислорода, на питательных средах растут на верхних слоях (уксуснокислые бактерии, возбудитель туберкулеза, пигментные гнилостные бактерии, многие плесени и др. микроорганизмы.

Облигатные анаэробы способны к размножению только в атмосфере, свободной от  кислорода, или при его содержании не более 5%. У этих микроорганизмов конечным акцептором водорода является субстрат  (азотсодержащие вещества, углеводы и др.). Эти микробы растут на дне пробирке под значительным слоем питательной среды. В эту группу входят маслянокислые и прпионовокислые бактерии, гнилостные клостридии, возбудитель ботулизма бифидобактерии и др. Для некоторых строгих анаэробов кислород является ядом.

Факультативные анаэробы развиваются как при доступе кислорода, так и в его отсутствтвии. Они имеют набор ферментов, обеспечивающих аэробный и анаэробный тип биологического окисления(дыхания). Развиваются по всей толщине питательной среды. Эта многочиленная группа микроорганизмов. К которым относятся молочнокислые бактерии, стафилококки, бактерии группы кишечной палочки, гнилостные бактерии рода Протеус.

Микроаэрофиллы нуждаются в значительно аэробы. Они развиваются при концентрации кислорода в окружающей среде не более 10%, т.е. у них преобладает  аэробный тип дыхания (актиномицеты, лептоспиры, возбудители бруцеллеза, некоторые плесневые грибы.

         Классификация по типам питания.  При классификации по типам питания на первое место ставится вид используемой энергии в соответствии с этим микроорганизмы делят на  фототрофы и хемотрофы. Каждую из этих групп в зависимости от  окисляемого вещества в свою очередь делят на литотрофы( лито-минерал, камень) и органотротрофы:

         1.Фототрофы                                                           2. Хемотрофы

      

         1.1. Фотолитотрофы                                               2.1. Хемолитотрофы

         1.2. Фотоорганотрофы                                           2.2. Хеморганотрофы.

         Рост и размножение микроорганизмов. Сложные процессы метаболизма, происходящие в клетке, отражаются такими явлениями как рост и размножение микроорганизмов. «Рост» означает увеличение массы клеток в результате си6нтеза клеточного материала. Интенсивность роста микроорганизмов можно определить делением их массы на численность особей в единице объема в отдельные промежутки времени. Рост индивидуальной клетки заканчивается размножением.

         Под размножением микробов подразумевают способность их к самовоспроизведению, т.е. увеличению количества особей микробной популяции на единицу объема. Микроорганизмы характеризуются высокими темпами размножения: у бактерий -20 мин.; у дрожжей-30 -90 мин.; у мицеллиальных грибов- 5-6 часов.   Однако в действительности такого быстрого размножения микробов не происходит, т. к.   продолжительность периода размножения зависит от вида микроорганизма, возраста, характера среды, условий культивирования (температура, рН, накопившиеся метаболиты и др.) и т.п.

              Размножение микроорганизмов в ограниченном объеме жидкой питательной среды (в пробирке, колбе) происходит в определенной закономерности и представлено на рис. …..

            Эта кривая косвенно характеризует также  и отмирание клеток параллельно идущее с размножением клеток. На кривой размножения различают четыре основные последовательные фазы роста культуры:

           -начальная фаза-лаг-фаза (фаза задержки роста);

           -логарифмическая фаза- лог-фаза;

           -стационарная фаза;

           - фаза отмирания.

         Лаг-фаза- период задержки роста микроорганизмов, в течение которого внесенные в питательную среду микробы адаптируются к питательной  среде  и начинают размножаться с нарастающей скоростью. Продолжительность лаг-фазы  составляет 1-4 часа и зависит от видовых особенностей микроорганизмов, количества засеваемого материала, питательных веществ и др. В этой фазе размеры клеток в три-пять раз больше обычных , имеют большую биохимическую и энергетическую активность и отличаются повышенной чувствительностью к различным бактерицидным факторам.

        Логарифмическая фаза характеризуется быстрым и постоянным размножением микробов. Количество клеток увеличивается в геометрической прогрессии. В этот период морфологические свойства типичны для данного вида, вся популяция однородна, устойчивость клеток к неблагоприятным факторам возрастает. Продолжительность этой фазы 5-8 часов. Для длительного нахождения микроорганизмов в этой фазе (в так называемой непрерывной культуре) в сосуд непрерывно вводят новые порции питательной среды и одновременно удаляют из него соответствующее количество микробной суспензии вместе с продуктами метаболизма.

           Стационарная фаза завершает период роста культуры и продолжается 4-5 часов. Она характеризуется сбалансированным размножением и отмиранием микроорганизмов. Отмирание микроорганизмов происходит в результате истощения питательной среды и накоплением продуктов обмена. В этой стадии наряду с типичными клетками встречаются дегенеративные и инволюционные формы.

             Фаза отмирания (старение культуры) характеризуется массовой гибелью клеток, т.е. гибелью с постоянной скоростью через равные промежутки времени. Причиной отмирания клеток является изменение физико-химических свойств среды и лизис клеток под действием собственных ферментов. Микробы могут утрачивать подвижность, способность воспринимать окраску, у споровых видов наряду с отмиранием вегетативных клеток происходит образование спор, меняется биохимическая активность и т.д. Продолжительность фазы может составлять от 7-10 суток до 30.

            Описанные закономерности развития популяции будут правильными при выращивании в оптимальных условиях (состав среды, рН, температура).

Рост микроорганизмов в жидкой питательной среде может проявляться помутнением и изменением цвета среды, наличием или отсутствием пристеночного кольца и поверхностной пленки различного характера, наличием или отсутствием осадка.

             При размножении на плотных питательных средах микроорганизмов образуют колонии, которые представляют собой видимые скопления особей одного вида  и формирующиеся в результате размножения, как правило, одной клетки. Они бывают круглой, розеткообразной, звездчатой, древовидной формы. Могут иметь поверхность гладкую, пушистую, выпуклую, плоскую, куполообразную, вдавленную. Строение края колонии могут быть ровным ( С-форма) и шероховатым (Р-форма). Различают колонии по  размеру диаметра: мелкие-1-2мм, средние 2-4мм, крупные свыше 4 мм. Колонии отличаются также по консистенции, плотности, прозрачности и цвету.

Различные виды микроорганизмов образуют специфические колонии на плотных питательных средах и дают характерный рост на жидких средах. Особенности роста микробов на питательных средах называют  культуральными свойствами.

         Тема № 4. Влияние факторов внешней  среды на микроорганизмы. Физические факторы, химические факторы, биологические факторы.

Влияние факторов внешней  среды на микроорганизмы. Микроорганизмы находятся в непрерывном взаимодействии с внешней средой и подвергаются разнообразным ее влияниям. В одних случаях они могут способствовать лучшему развитию микробов, в других- подавлять их жизнедеятельность. Следует помнить, что изменчивость и быстрая смена поколений микробов позволяет им приспособляться к самым разнообразным условиям жизни, быстро закреплять приобретенные признаки и передавать их  по наследству.  Но микробы не только сами могут изменяться под воздействием внешней среды, но могут изменять и среду в соответствии со своими особенностями. Поглощая в процессе питания и дыхания различные вещества. Микроорганизмы выделяют в окружающую среду продукты обмена, которые изменяют ее химический состав, ее реакцию и соотношение в ней различных веществ.

Поэтому, изучая микробиологические процессы. Мы должны учитывать два момента: во- первых,- какие изменения вызывают микроорганизмы в окружающей среде; во- вторых  какое влияние оказывает внешняя среда на развитие микроорганизмов.

         Зная факторы, способствующие развитию микробов и подавляющие их, мы можем регулировать деятельность микробов по нашему усмотрению (стимулировать развитие полезных и вести борьбу с вредными).

Все факторы внешней среды, оказывающие влияние на микроорганизмы, делят на три группы:

- физические (температура, влажность, осмотическое давление, различные формы лучистой энергии,  ультразвук, механическое  воздействие, токи высокой частоты);

-химические (реакция питательной среды, окислительно- восстановитель-ный потенциал, влияние антисептических веществ);

-биологические факторы (взаимоотношения микроорганизмов с другими организмами).

Физические факторы. Температура. Температура внешней среды является мощным фактором воздействия на организмы, который определяет не только интенсивность их развития, но и вообще возможность развития. Принято различать три основные температурные точки, имеющие значение для развития микробов: температурный оптимум, минимум и максимум.

Температурный оптимум- температура, при которой данный вид микробов наиболее хорошо развивается, т.е. температура соответствующая физиологическим требованиям  соответствующего микроорганизма. При температурном минимуме или максимуме развитие микробов еще возможно, но уже ограничено. При температуре выше максимума микробы обычно погибают. При температуре ниже минимума они переходят в состояние анабиоза, а при повышении температуры могут возвращаться к активной жизни.

По отношению к температурному фактору микроорганизмы делят на три группы –психрофилы (холодолюбивые), мезофилы ( развивающиеся при средних температурах) и термофилы (теплолюбивые) Такое деление производят на основе оптимальной температуры развития. Примерные границы температур для различных групп представлены в таблице 1.

  Таблица 1  Температуры для различных рупп микроорганизмов,  С

Микроорганизмы

Минимальная

Оптимальная

Максимальная

Психрофилы

-8-10

10-15

15-20

Мезофиллы

5-10

30-37

40-45

Термофилы

15-20

40-55

60-70

 

Вышеуказанные температурные границы приведены для размножения микроорганизмов. Для других процессов жизнедеятельности (спорообразование, образование токсинов, пигментов и др.) значение температур для тех же групп микроорганизмов могут быть иными.

Психрофилами - называют микроорганизмы, область температур роста которых лежит в пределах от 0 (или ниже) до 20 С, хотя оптимум составляет 15С. Психрофильные микроогранизмы являются обитателями холодных источников. Глубоких озер и океанов, хорошо развиваются на продуктах при холодильном хранении. Наиболее сильной устойчивостью к низким температурам обладают плесневые грибы и гнилостные бактерии (-3-9С).

 Мезофилы живут при средних температурах. Самая распространенная группа микроорганизмов (бактерии, плесневые грибы, дрожжи). Мезофиллами являются все патогенные и условно-патогенные микроорганизмы и большинство сапрофитных.

Термофилы развиваются при высоких температурах. Они в большом количестве встречаются в почве, сточных водах  и в навозе, в гейзерах, песках пустынь. Они участвуют в ряде биологических процессов: при самосогревании влажного сена и хлопка, силосовании кормов, вызывают порчу пастеризованных и стерилизованных продуктов.  Знание отношения разных видов микробов к воздействию температур позволяет культивировать их  в лабораториях на искусственных питательных средах. При этом учитывают  значения оптимальных для каждого вида микробных клеток  температурных режимов (в термостатах).    

Отношение микроорганизмов к различным температурам стали использовать для сохранения различных пищевых продуктов. При этом используют как низкие, так и повышенные температуры. На основе этого применяют несколько технологических приемов обработки и хранения продуктов. Низкие температуры- хранение в охлажденном состоянии и замороженном. При хранении в охлажденном состоянии используют температуру 0 -+4С, что позволяет продлить срок хранения, но если субстрат (продукт) достать   из холодильника и оставить при комнатной температуре – он быстро испортится за счет развития  тех микроорганизмов, что находились в нем до охлаждения. При хранении продуктов в замороженном состоянии используют температуру -12 - 30С. Несмотря на то, что при таких температурах микроорганизмы не размножаются и активная деятельность их приостанавливается, многие из них неопределенно долгое время остаются жизнеспособными, переходя в анабиотическое состояние. При хранении продуктов в охлажденном и замороженном состоянии большое значение имеет относительная влажность воздуха, скорость охлаждения и замораживания, исходная степень обсеменения психрофильными микроорганизмами. Замораживание не оказывает стерилизующего действия и могут выжить многие виды сапрофитов и болезнетворные формы микроорганизмов. Поэтому размороженные продукты могут быстро подвергаться порче. Размораживать замороженные продукты следует непосредственно перед употреблением.

В пищевой промышленности применяют два способа воздействия высоких температур: пастеризация и стерилизация.

Пастеризация – это нагревание продукта чаще при температуре 63-80С в течение 20-40 мин. Иногда пастеризацию проводят кратковременно в течение нескольких секунд при температуре 90-100 С. При стерилизации погибают не все микроорганизмы. Некоторые термоустойчивые бактерии и споры грибов остаются жизнеспособными. Поэтому пастеризованные продукты следует немедленно охлаждать до не выше 10С и хранить на холоде ( на льду и  в холодильнике), чтобы задержать прорастание спор и  развитие сохранившихся клеток. Пастеризуют молоко и молочные продукты, пиво, соки, рыбную икру, пресервы и некоторые другие продукты.

Стерилизация-это температура 112-120С в течение 20-60 мин. в специальных приборах- автоклавах (перегретым паром под давлением) или при 160-180С в течение 1-2 часа в сушильных шкафах (сухим жаром).

Влажность. Микроорганизмы могут развиваться только в субстратах, имеющих свободную воду  в количестве не менее определенного уровня. С понижением влажности субстрата интенсивность размножения микробов замедляется, а при удалении из субстратов ниже необходимого уровня вообще прекращается. Потребность во влаге у различных микроорганизмов колеблется в широких пределах. По величине минимальной потребности во влаге для роста различают следующие группы: гидрофиты (влаголюбивые), мезофиты (средневлаголюбивые), ксерофиты (сухолюбивые). Гидрофитами являются большинство бактерий, а мицелиальные грибы и дрожжи мезофиты, но имеются среди них и гидрофиты.

 Для развития микроорганизмов имеет значение не абсолютная величина, а доступность содержащейся в субстрате воды, которую в настоящее время принято обозначать термином водная активность или  а w. Водная активность показывает отношение давления водяных паров раствора (субстрата ) Р и чистого растворителя (воды) Ро при одной и той же температуре:  а w  = Р/Ро.

Водная активность выражается величинами от 0 до 1 и характеризует относительную влажность субстрата. Рост микроорганизмов наблюдается при значениях   а w  от 0,99 до 0,65-0,61. Оптимальное значение для многих от 0,99-0,98 примерно в этих пределах находится водная активность скоропортящихся пищевых продуктов (мяса, рыба, плоды, овощи).

      Бактерии развиваются при водной активности субстрата 0,94-0,90. Дрожжи-0,88-0,85, мицелиальные грибы-0,8. Но некоторые виды бактерий, дрожжей, мицелиальных грибов могут расти при водной активности -0, 75-0,62 (хотя и медленно).

       Таким образом, продукты, у которых водная активность менее 0,7  могут длительно сохраняться без микробной порчи. С точки зрения увеличения срока хранения скоропортящихся продуктов перспективно искусственное снижение в них водной активности. Возможно снижение а w   при добавлении специфических веществ, способных связывать воду.  

Давно применяется хранение различных пищевых продуктов в сухом виде. В высушенном состоянии многие микробы сохраняют жизнеспособность в течение длительного времени. Устойчивы к высушиванию многие дрожжи и особенно споры бактерий и мицеллиальных грибов (сохраняют способность к прорастанию десятки лет). Патогенные микробы (стафилококки, микрококки, брюшно-тифозные бактерии) могут сохраняться в сухом субстрате неделями и месяцами.

Для сохранения сухих продуктов без порчи большое значение имеют относительная влажность и температура в складских помещениях. Продукты обладают гигроскопичностью (могут отдавать влагу или поглощать ее).  Между влажностью воздуха и влажностью продукта устанавливается определенное подвижное равновесие. При одной и той же относительной влажности воздуха различные продукты могут иметь разную равновесную влажность. Большинство бактерий способно развиваться в субстратах при равновесной относительной влажности воздуха в пределах не ниже 95-90%. Для дрожжей минимум в субстрате соответствует 90-85% относительной влажности воздуха, для большинства мицеллиальных грибов-80%, а для некоторых ксерофитных видов пределом является относительная влажность воздуха- 75-65%

      Таким образом, возможность развития микроорганизмов в продуктах в связи с их влажностью можно учитывать как по величине водной активности продукта, так и по относительной влажности воздуха. Значение аw  умноженное на 100, соответствует относительной влажности воздуха выраженной в процентах, когда система продукт- воздух находится в равновесии.

      Относительная влажность воздуха изменяется от температуры: с понижением температуры воздуха уменьшается его влагоудерживающая способность и наоборот. Поэтому при снижении температуры в процессе хранения это приводит к увлажнению поверхности продукта, что способствует развитию находящихся на нем микробов. При хранении и перевозке высушенных продуктов необходимо принимать меры для предупреждения изменения их влажности.

          При сублимационной сушке (высушивание под высоким вакуумом в замороженном состоянии) качество и пищевая ценность продуктов сохраняются значительно лучше, но микроорганизмы хорошо переносят такое высушивание и сохраняются жизнеспособными. Поэтому к таким продуктам следует строгие санитарно-гигиенические требования.

Концентрация растворенных веществ и осмотическое давление. Внутриклеточное осмотическое давление обусловлено концентрацией растворенных веществ в цитоплазме клетки. У разных микроорганизмов оно колеблется в широких пределах и этим объясняется тот факт, что различные микроорганизмы могут обитать в пресной воде и соленых водах морей. Высокие концентрации осмотически активных веществ способствуют плазмолизу микробных клеток. В качестве осмотически деятельных веществ, применяемых для консервирования пищевых продуктов, используют поваренную соль и сахар.

       Большинство бактерий мало чувствительны к концентрации     NаСL  в пределах 0,5-2%, но 3%-ное ее содержание в среде неблагоприятно для многих микроорганизмов. Размножение многих гнилостных бактерий подавляется при концентрации поваренной соли 3-4%, а при 7-10% оно прекращается. Палочковидные  гнилостные бактерии менее стойки чем кокки. Развитие некоторых возбудителей пищевых отравлений (ботулинуса, сальмонелл) приостанавливается при 6-10% соли, но некоторые из них могут долго сохранять жизнеспособность даже при 20%. Микроорганизмы, нормально развивающиеся при высоких концентрациях поваренной соли (20% и выше) называют галлофилами (солелюбивыми).

      Концентрация соли, влияющая на развитие микроорганизмов, зависит от других условий среды (рН, температура). Развитие дрожжей в соленых продуктах подавляется в кислой среде при содержании соли 14%, а в нейтральной только при 20%. При понижении температуры подавляющее действие соли усиливается. При температуре 0С и 8% соли угнетается рост мицеллиальных грибов, а при 20С необходимо 12% соли для такого же эффекта. Имеются сведения об усилении действия поваренной соли в присутствии нитратов и нитритов.

        Подавляющее воздействие соли на рост микроорганизмов объясняется не только повышением осмотического давления. Поваренная соль оказывает токсическое действие на микроорганизмы: подавляются процессы дыхания, нарушаются функции клеточных мембран и др.

       Поскольку многие микроорганизмы в плазмолизированном состоянии длительное время не погибают, а лишь приостанавливается их активная деятельность, к перерабатываемому сырью необходимо предъявлять строгие санитарно-гигиенические требования. Порча соленых товаров (мясо, рыба и др.) часто возможна под влиянием галофильных и солеустойчивых  микроорганизмов. Например, покраснение крепко соленой рыбы - «фуксин», вызываемой галофильной бактерией обладающей красным пигментом. Для задержки развития микроорганизмов соленые товары необходимо хранить при низких температурах.

        Возможны различные виды порчи (плесневение, забраживание меда, джема, варенья, фруктовых сиропов и других сахаросодержащих продуктов под воздействием осмофильных плесеней и дрожжей. Порчу продуктов, прошедших тепловую обработку, вызывают осмофильные температуровыносливые дрожжи, но порча может явиться и результатом вторичного инфицирования продуктов  микробами извне. Поэтому для предотвращения такого вида порчи необходимо разливать продукт в горячем виде в стерильную тару, герметично укупоривать ее и хранить при пониженной температуре.

    Лучистая энергия. Различные формы лучистой энергии оказывают на микроорганизмы разнообразное физическое, химическое и биологическое действие. Биологическое действие излучения зависит от длины волны, чем оно короче , тем в нем больше заключено энергии, тем сильнее воздействие на организм. В основе действия лежат физические и химические изменения, происходящие в клетках микроорганизмов и в окружающей среде. Изменение могут быть вызваны только поглощенными лучами. Следовательно, для эффективности  действия излучения большое значение имеет проникающая способность лучей.

         Солнечный свет  обладает наибольшим потенциалом вредного воздействия на микроорганизмы. Способность использовать энергию солнечного света лишь пигментобразующие формы бактерий. Микроорганизмы, не имеющие пигмента, погибают под действием прямых солнечных лучей. Рассеянный солнечный свет подавляет их развитие постепенно. Однако, развитие многих мицеллиальных грибов при постоянном отсутствии света протекает ненормально, хорошо развивается только мицелий , а спорообразование только тормозится. Под влиянием солнечных лучей происходит внутриклеточные химические реакции с образованием гидроксильных радикалов и других высокореактивных веществ. Действующих губительно на микробную клетку.

Наиболее выраженное летальное действие оказывают световые волны, лежащие в ультрафиолетовой области спектра (длина волны менее 400нм).

Ультрафиолетовые лучи (УФ - лучи) обладают или бактерицидным или мутагенным действием. Это вызывается изменениями в структуре ДНК. Из всех микроорганизмов наиболее чувствительны к УФ - лучам вегетативные формы бактерий, а споры бацилл в 4-5 раз более устойчивы. Очень чувствительны к УФ- лучам патогенные микроорганизмы .

Эффективность воздействия УФ - лучей зависит от дозы облучения, длительности и свойств облучаемого субстрата (рН, степень обсеменения микробами и температура). Очень малые дозы облучения действуют даже  стимулирующее на отдельные функции микроорганизмов. Более высокие могут вызвать изменение наследственных свойств. Это используется на практике для получения различных штаммов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и др. БАВ. Дальнейшее увеличение дозы приводит к гибели.

          В настоящее время УФ-лучи довольно широко применяют для дезинфекции воздуха микробиологических боксов, холодильных камер и производственных помещений. Искусственным источником ультрафиолетового излучения служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУФ-15, 30, 60). При обработке УФ-лучами  в течение 6 часов уничтожается до 80% бактерий и мицелиальных грибов находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне, при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары упаковочных материалов, оборудования, посуды (на предприятиях общественного питания).

          Стерилизация пищевых продуктов с помощью УФ-лучей затруднена вследствие их невысокой проникающей способности. Действие их проявляется только на поверхности или в очень тонком слое. Предлагается УФ-лучи для стерилизации плодовых соков и вин (в тонком слое). При таком «холодном» способе стерилизации вино поучается лучшего качества и сохранятся без порчи дольше чем пастеризованное.

            Для некоторых продуктов, таких как сливочное масло, молоко, стерилизация УФ-лучами неприемлема. В результате такой обработки ухудшаются вкусовые и пищевые свойства таких продуктов. В последнее время УФ-лучи используют для дезинфекции питьевой воды.

        Космические и рентгеновские лучи  представлены ионизирующими излучениями с длиной волны от 0,006 до10 нм. Они оказывают мутагенное  или летальное  действие. К действию таких лучей наиболее чувствительны ядерные структуры, хотя повреждаются цитоплазматические структуры клеток.

Искусственное ионизирующее излучение (α- и -частицы, -лучи) возникает в результате работы атомных электростанций, испытаний ядерного оружия.  применения радиоактивных изотопов в научных целях.

         Эффект бактерицидного действия радиоактивных излучений обуславливается ионизацией внутриклеточных веществ. При прохождении ионизирующих излучений через клетку, некоторые атомы в результате поглощения энергии испускают электроны и превращаются в положительно  заряженные ионы. Свободный электрон присоединяется к нейтральному атому, который превращается в отрицательно заряженный ион. Такое изменение электронной структуры атомов приводит к изменению химических связей и разрушению структур молекул.

        Микроорганизмы более устойчивы к излучениям, чем высшие животные и растительные организмы.  Дрожжи и плесени более устойчивы, чем бактерии. Споры бацилл и клостридий выносливее их вегетативных форм. Чувствительны к облучению Кишечная палочка, Протей, многие бактерии рода Псевдомонас (распространенные возбудители порчи сырья и мясных и рыбных  продуктов). Микрококки отличаются повышенной устойчивостью. Высока радиоустойчивость вирусов, у некоторых она превосходит устойчивость бактериальных спор. При одной и той же  поглощенной дозе радиопоражаемость микроорганизмов одного и того же вида изменяется в зависимости  от возраста клеток, состава среды, температуры, дозы и длительности облучения.  Установлено, что микроорганизмы способны восстанавливать лучевые повреждения, что определяется видовыми особенностями микроорганизмов и их физиологическим состоянием. Искусственные ионизирующие излучения используют для стерилизации лечебных препаратов и некоторых пищевых продуктов (но при этом могут ухудшаться вкус и пищевые качества). Их используют для задержки прорастания картофеля и овощей, зерна и зернопродуктов, сухофруктов. А также для ускорения или замедления созревания плодов и в других целях. Наиболее приемлемы для этих целей гамма лучи. Обладающие наиболее высокой проникающей способностью и не вызывающие при облучении появления в продукте «наведенной» радиации.

       Радиоволны. Короткие электромагнитные волны длиной  от 10 до 50 м, ультракороткие длиной от10м до мм обладают стерилизующим эффектом. При прохождении коротких  ультракоротких радиоволн через среду возникают переменные токи высокой частоты (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.  

       Характер нагревания в СВЧ поле отличается от характера нагрева от обычных нагреваний и обладает рядом преимуществ. Объект нагревается быстро и равномерно по всей массе. Например, воду в стакане можно довести до кипения в течение двух –трех секунд. Рыба (1кг) варится до готовности в течение двух мин., мясо (1кг)-2,5 мин., курица 6-8 мин.. Нагрев может происходить избирательно, отдельные части облучаемого объекта нагреваются в разной степени и зависят от их электрофизических свойств.

        Благодаря специфическим особенностям перспективно применение этого способа нагревания для пастеризации и стерилизации пищевых продуктов  (например, в плодово-ягодных консервах).  По сравнению с обычной паровой стерилизацией в автоклавах время нагревания СВЧ- энергией до одной   и той же температуры сокращается во много раз. Поэтому полнее сохраняются  вкусовые и питательные свойства. Эффект воздействия на его микрофлору практически одинаков.        

         Сверхвысокочастотную электромагнитную обработку пищевых продуктов все шире применяют в общественном питании (для варки, сушки, выпечки, при  разогревании др.).

           Давление и механическое сотрясение.  Микроорганизмы не испытывают значительных изменений под влиянием даже очень больших давлений, но есть группы микроорганизмов, которые развиваются только при избыточных давлениях.  Их называют барофильными (в глубинах морей и океанов). К механическим сотрясениям они чувствительны, если они сильные и длительные. Так самоочищение бурных рек происходит в результате гибели микроорганизмов под воздействием сильных толчков воды.

         Ультразвук.  Ультразвуком называют механические колебания с частотами более 20000 колебаний в секунду (20 кГЦ). Колебания такой частоты находятся за пределами слышимости человека. Ультра звуковые волны могут распространяться в твердых, жидких и газовых средах. Обладают большой механичесокй энергией и вызывают ряд физических, химических и биологических явлений. Механизм бактерицидного действия ультразвука объясняется двумя теориями: кавитацонно-механической и кавитационной электрохимической. По первой теории считают, что ультразвуковые волны, распространяясь в упругой среде, вызывают в ней попеременные сжатия и разряжения. В  клетке  создаются огромные давления, достигающие десятков и сотней мПа, что вызывает механическое разрушение цитоплазматических структур  и гибель клетки (кавитация).

         Кавитационная электрохимическая теория объясняет ионизацию паров жидкостей и присутствующих в ней газов при образовании кавитационного пузырька.   При разрыве пузырька  происходит электрический разряд сопровождающийся резким повышением температуры и образованием в кавитационной полости электрического поля высокого напряжения. При этом пары жидкости и высокомолекулярные соединения в кавитационной полости расщепляются на водород и гидроксильную группу с образованием активного кислорода. перекиси водорода, азотистой и азотной кислот, в результате чего происходят инактивации ферментов и коагуляция белков. Все это обуславливает гибель  микробной клетки.

            Эффективность действия УЗ при одной и той же интенсивности и частоте колебаний зависит от продолжительности воздействия. Химичесокого состава облучаемой среды. Ее вязкости , температуры, рН и исходной степени обсемененности микроорганизмами.  Чем больше микроорганизмов, тем продолжительнее должно быть воздействие для получения стерилизующего эффекта.

            Устойчивость микроорганизмов к действию ультразвука зависит от их биологических  свойств. Вегетативные клетки более чувствительны чем споры, кокковые формы погибают медленнее чем палочковидные. Более крупные клетки микроорганизмы отмирают быстрее, чем мелкие. Ультразвук применяют для стерилизации пищевых продуктов (молоко, фруктовые соки, вина). Изготовления вакцин, мойки и стерилизации стеклянной тары, а также при извлечении внутриклеточных ферментов. Токсинов. Витаминов, нуклеиновых кислот и других компонентов клетки. Ведутся исследования по применению УЗ энергии для стерилизации питьевой воды.

Химические факторы. К химическим факторам, влияющим на жизнедеятельность микробов,  относят: химический состав питательной среды, реакцию среды, окислительно-восстановительный потенциал среды и действие ядовитых (антисептических) веществ.

Состав питательной среды является основным показателем микроорганизмов. Он определяет ее питательную ценность, реакцию (рН) и окислительно-восстановительный потенциал (Еh).

               Реакция питательной среды (концентрация водородных ионов рН) играет роль фактора, определяющего границы существования живой материи. Кислотность среды воздействует на ионное состояние, а поэтому на доступность для организма многих химических веществ.

          Ионы водорода влияют на электрический заряд коллоидов клеточной стенки. При сдвиге рН в кислую или щелочную сторону изменяется знак заряда поверхности клетки, что приводит к изменению ее проницаемости для различных молекул и ионов питательного субстрата и нарушению нормального процесса обмена веществ. Изменение рН также влияет на степень дисперсности коллоидов цитоплазмы, активность ферментов, интенсивность и направление биохимических реакций. Так, например, дрожжи в кислой среде (рН 4,5-5,0)образуют в основном этиловый спирт (спиртовое брожение), а в щелочной среде (рН8,2) –глицерин (глицериновое брожение).

    В зависимости от отношения микрооргаизмов к кислотности среды их подразделяют на ацидофиллы (кислотолюбивые), нейтрофилы (нейтральная зона)  и алкалофилы (щелочелюбивые). Микроорганизмы обладающие способностью выживать при значениях рН за пределами 4-9 рассматриваются как кислото-  и щелочетолерантные.

Кислотолюбивые микроорганизмы, растущие при очень низком значении рН встречаются редко. К ацидофильным относятся уксуснокислые, молочнокислые, некоторые дрожжи и плесени. Уксуснокислые бактерии растут в пределах рН от 3 до 5, молочнокислые развиваются при рН от 3 до 8. Оптимум рН роста дрожжей находится в области 4,5- 6. Однако, некоторые из них способны развиваться в более кислой среде рН2. другие - в щелочной  8,5.

       К самым устойчивым к кислой среде относятся плесневые грибы, многие из них характеризуются ацидотолерантностью и способностью роста в широких пределах рН (от 2 до11).

       Оптимальна рН для нейтральнофильных микроорганизмов находится в пределах 7,0. Типичными представителями нейтрофилов являются бактерии группы кишечных палочек (БГКП), стрептококки, бациллы, сальмонеллы и большинство других  патогенных микроорганизмов.

           К алкалофилам относят некоторые виды бактерий и мицеллиальных грибов. Клубеньковые бактерии рода   Ризобиум (Rhizobium)  активено развиваются при рН 10-12. Бациллюс цереус (Bacillus cereus) и Бациллус циркулянс (Bacillus circulans) способны развиваться при рН 10-11. Энтерококки также толерантны к щелочной среде.

           Многие микроорганизмы, развиваясь в питательной среде выделяют продукты обмена изменяющие реакцию субстрата, это является одним из факторов, обусловливающих антогонизм между различными группами микробов. Так, молочнокислые бактерии  в процессе жизнедеятельности образуют молочную кислоту, которая подавляет развитие большинства гнилостных бактерий. Это используется при хранении кисломолочных продуктов, сыров, при консервировании силоса, квашении капусты и других продуктов. Зная отношение различных микроорганизмов к реакции среды и регулируя ее рН, можно подавлять или стимулировать их развитие.

          Окислительно-восстановительный потенциал служит количественной мерой способности некоторых соединений или элементов отдавать электроны. Окислительно-восстановительные условия питательной среды выражаются величиной окислительно-восстановительного потенциала,  который принято обозначать Еh (rH2). Окислительно-восстановительный (ОВ) потенциал среды представляет собой отрицательный логарифм числа, выражающего давление ( в МПа) молекулярного водорода. При давлении  Н2  0,1 МПа  ОВ потенциал среды равен 0. Величина Еh минимальна при насыщении среды водородом и максимальна при насыщении ее кислородом. Она измеряется от 0 до 41 единиц. При равновесии окислительно-восстановительных процессов в среде  rH2 равен 28. Присутствие в среде окисляющих веществ (метиленового синего, резазурина, кислот, перманганата калия и др.) повышает значение потенциала. Значение же соединений, обладающих восстановительными свойствами (цистеин, тимоловая кислота), снижает потенциал. ОВ потенциал также резко уменьшается при отмирании микроорганизмов, лизисе их фагом и действии на культуры лизоцимом. Изменяя  ОВ потенциал среды,  можно повлиять на интенсивность размножения различных групп микроорганизмов и направленность вызываемых ими биохимических процессов.

          По  отношению к окислительно-восстановительным условиям среды микроорганизмы разделяют на четыре основные  группы: облигатные аэробы, облигатные и факультативные - анаэробы и микроаэрофилы. Облигатные анаэробы развиваются при низком значении Еh (0-14), факультативные анаэробы при Еh (0-30), аэробные микроорганизмы Еh (11-35), микроаэрофилы- Еh (10-20).

       Действие ядовитых химических веществ. Влияние антисептических веществ на микробную клетку может проявляться различным действием. Одни подавляют жизнедеятельность или задерживают развитие чувствительных к ним микробов. Такое действие называют бактериостатическим (в отношении бактерий) ил фунгистатическим (в отношении мицеллиальных грибов).  Другие вещества вызывают гибель микроорганизмов, оказывая на них соответственно бактерицидное или фунгицидное действие. В очень малых дозах многие химические яды оказывают даже благоприятное действие, стимулируя размножение или биохимическую деятельность микробов. В каждом конкретном случае доминирующий эффект зависит от химической природы этого антимикробного агента.

          Эффективность действия химических веществ на микроорганизмы зависят от природы вещества, концентрации, биологических особенностей микроорганизмов, продолжительности воздействия, температуры, состава и рН среды. Чувствительность микроорганизмов к одному и тому же антисептику неодинакова.

       Из неорганических соединений сильными ядами для микробов являются соли тяжелых металлов (свинца, меди, цинка, серебра, золота. Ртути). Различные окислители (хлор, хлорная известь, хлорамин, йод, бром, перманганат калия, пероксид водорода, азон, диоксид углерода, аммиак и др.), минеральные кислоты (борная, серная, хлористоводородная, азотная и др.), щелочи (гидроксид натрия, гидроксид калия и др.).

             Среди органических соединений губительное воздействие оказывают органические кислоты (молочная, салициловая, масляная, уксусная, бензойная и др.), используемы в качестве консервантов в пищевой  и парфюмерно-косметической промышленностях. Консервант должен обладать определенными липофильными свойствами для того, чтобы проникать через гидрофобную клеточную оболочку или разрушать ее. В то же время, для антимикробного действия консерванту требуется хорошая растворимость в воде, так как развитие микроорганизмов происходит исключительно в водной фазе и поэтому консервант должен находиться именно в ней.

           Эффективность конкретного консерванта неодинакова в отношении плесневых грибов, дрожжей и бактерий, то есть он не может быть эффективен против всего спектра возможных микроорганизмов вызывающих порчу пищевых продуктов. Некоторые консерванты (бензойная, сорбиновая кислота и их соли) малоэффективны против многих бактерий, так как в области оптимальных для антибактериального действия значений рН (часто рН 6,5-7,5). В свою очередь в средах с низким значением рН благоприятных для применения данных консервантов такие виды бактерий не развиваются.  Кроме того, к  дезинфицирующим веществам этой группы относятся также диэтиловый эфир, спирты жирного и ароматического ряда (этиловый, бутиловый, амиловый, пропиловый и др.), эфирные масла, смолы, дубильные вещества, органические красители, формалин, фенол, крезол и их производные..

           Ионы серебра и золота обладают олигодинамическим действием. В очень малых количествах, не поддающихся химическому обнаружения, они губительно действуют на микробные клетки. На этом основан метод дезинфекции воды с помощью серебряных фильтров. Посуда из серебра при контакте с водой сообщает ей бактерицидные свойства, этим объясняется длительное хранение «святой воды».

           Химические вещества бактерицидно действующие на микроорганизмы в небольших концентрациях, называют антисептическими или дезинфицирующими.  Механизм бактерицидного действия антисептических веществ заключается в том, что в результате взаимодействия химического яда с веществами цитоплазмы в ней происходят необратимые изменения, вызывающие нарушения процессов жизнедеятельности и приводящие к гибели клетки.

        Соли тяжелых металлов вызывают коагуляцию белков клетки. Олигодинамическое действие серебра и др. тяжелых металлов заключается в том, что положительно заряженные ионы металлов адсорбируются на отрицательно заряженной поверхности микробов, изменяет проницаемость их цитоплазматической мембраны и при этом нарушаются процессы питания и размножения микроорганизмов.

         Окислители действуют на сульфгидрильные группы активных белков и влияют на другие группы (феноловые, тиоловые, индольные и аминные).

            Неорганические кислоты и щелочи гидролизуют белки клетки. Диоксид углерода, сероводород, цианистые соединения инактивируют ферменты клетки.

            Органические спирты, диэтиловый эфир, ацетон разрушают полипептидную оболочку клетки. Формалин (40%-й раствор формальдегида) присоединяется к аминогруппам белков и вызывает их денатурацию.

             Многие антисептические вещества используются в медицине, сельском хозяйстве, в промышленности и в быту,  как  дезинфицирующие средства для борьбы с болезнетворными микробами. Широко применяют хлор и его соединения для дезинфекции питьевой воды, тары, оборудования, инвентаря.

         Антисептические вещества используют для защиты от микробных поражений текстильных материалов, древесины, бумаги и изделий из нее, других материалов и объектов.

         Применение антисептиков для консервирования продуктов ограничено и строго нормируется санитарным законодательством.

          В нашей стране разрешено использовать немногие химические консерванты в малых дозах (от сотых до одной двух десятых процента) и только для некоторых пищевых продуктов.

         Для консервирования полуфабрикатов из плодово-ягодного сырья, рыбных консервов. Кетовой икры используют бензойную кислоту и ее натриевую соль. В качестве консерванта для многих пищевых продуктов все чаще применяют сорбиновую кислоту и ее соли. Эта кислота менее токсична чем бензойная и сернистая и более активно воздействует на микроорганизмы. При концентрации 0,03-0,1% эта кислота на длительное время задерживает рост грибов, дрожжей и некоторых бактерий и при этом безвредна для людей, не придает продукту посторонних вкуса и запаха. Особенно действие сорбиновой кислоты в кислой среде рН 3-4,5. Этот консервант вводят непосредственно в продукт или обрабатывают им поверхность продукта, оберточные материалы.

          Для борьбы с картофельной болезнью хлеба, для предотвращения его плесневения рекомендуется введение в тесто солей пропионовой кислоты. Этот консервант можно применять и для некоторых рыбных продуктов.      

Биологические факторы. Под биологическими факторами понимают влияние на жизнедеятельность микроорганизмов других видов и групп микробов, а также животных и растений, составляющих в природных условиях специфический биоценоз. В процессе эволюции возникли и сформировались различные типы взаимоотношений между микроорганизмами. В связи с этим различают несколько типов взаимоотношений ( симбиоза) между организмами: мутуализм, синергизм, комменсализм, паразитизм, метабиоз и антагонизм          (антибиоз).

Мутуализм (взаимовыгодный симбиоз) представляет собой сожительство благоприятное для обоих симбионтов, совместно они развиваются даже лучше, чем каждый в отдельности. Примером может служить совместное развитие молочнокислых бактерий и дрожжей (в кефирных грибках).Молочнокислые бактерии в кефирных грибках продуцируют молочную кислоту и создают среду, благоприятную для роста дрожжей, а дрожжи, выделяя витамины группы В стимулируют развитие молочнокислых бактерий. Симбиотические взаимоотношения этих микроорганизмов используют в процессе изготовления некоторых молочнокислых продуктов (кефира, кумыса).

Синергизм- содружественное действие двух или нескольких видов, когда при совместном развитии усиливаются отдельные физиологические функции. Например, повышается синтез определенных веществ (образование ароматических веществ  лактококками при  совместном выращивании с молочнокислыми стрептококками.

         Комменсализм –  тип взаимоотношений между двумя организмами, при котором один живет за счет другого, не принося заметной пользы и не причиняя вреда. Такие взаимоотношения наблюдаются между молочнокислыми бактериями, а  также кишечными палочками и организмом человека или животного. При развитии в толстом отделе кишечника бактерии получают от макроорганизма необходимые питательные вещества не причиняя ему вреда и даже принося известную пользу тем, что подавляют развитие гнилостных  и некоторых патогенных микроорганизмов.

Паразитизм –вид взаимоотношений. Когда один из них (паразит) живет за счет другого (хозяина), причиняя ему вред. Паразитами являются все патогенные микроорганизмы по отношению к человеку, животному и растениям. Абсолютными паразитами являются риккетсии и вирусы, развивающиеся внутри клеток  макро- микроорганизмов.

Метабиоз - такой вид взаимоотношений, когда продукты жизнедеятельности одного микроорганизма являются продуктами питания других. Так, дрожжи. сбраживая сахар в этиловый спирт, создают условия для развития уксуснокислых бактерий, а образуемая последними уксусная кислота используется плесенями, которые ее окисляют до С2О и Н2О.

Антогонизм (антбиоз) – тип взаимоотношений между микроорганизмами при котором одни микроорганизмы  подавляют развитие других. Причин антогонизма может быть несколько: истощение питательного субстрата вследствие более быстрого развития одного из  микроорганизмов; изменение рН среды (при развитии ацидофилов, алкалофилов); выделение в среду микробами антагонистами антибиотиков.  Антибиотики вещества биологического (микробного, растительного и животного) происхождения, подавляющие развитие и биохимическую активность чувствительных к ним микробов. По происхождению антибиотики подразделяют на группы: антибиотические вещества, продуцируемые актиномицетами, плесневыми грибами, бактериями, организмом животного или человека; антиботики растительного, синтетического и полусинтетического происхождения Известно более 5000 антибиотиков, обладающие различным спектром действия.

         Антибиотики актиномицетного происхождения- стрептомицин, тетрациклины, неомицин, нистатин обладают широким антибактериальным спектром действия. Они активны в отношении грамположительных бактерий, возбудителей туберкулеза, брюшного тифа, туляремии, бруцеллеза, сальмонеллезов и др.

Наиболее активными продуцентами антибиотков являются мицелильные грибы. Плесень рода Penicillium продуцирует широко используемый пенициллин. Он обладает бактерицидным действием главным образом на грамположительные стафилококки  и стрептококки. Плесни рода Aspergillus выделяют антибиотики- фумингацин и аспергиллин. Mucor продуцирует клавицин.

К антибиотикам, продуцируемым бактериями, относят грамицидин –С (Вac. Brevis), пиоцианин    (Ps.aeruginoza), субтилин (Bac. subtilis), полимиксин  (Bac/ polymixa). Молочнокислые бактерии  Lbm. Plantarum выделяют антибиотик лактолин,  Lac. Lactis –низин,  Lac. Cremoris- диплококцин и др. Эффективность бактериальных антибиотиков ниже, чем антибиотиков грибного и актиномицетного происхождения, однако они способны подавлять развитие возбудителя туберкулеза, маслянокислых бактерий, кишечных палочек, стафилококков и других видов молочнокислых бактерий.

К антибиотическим веществам животного происхождения относят лизоцим, эритрин и экмолин. Лизоцим содержится в яичном белке, слезах, слюне, молозиве, молоке. Он убивает и растворяет (лизирует) многие виды бактерий. Эритрин получен из красных кровяных шариков (эритроцитов) крови животных, проявляет бактериостатическую активность. Экмолин   получают из тканей рыб. Он активен в отношении стафилококков и стрептококков.

Антимикробные вещества высших растений называют фитонцидами. Наиболее сильной бактерицидностью обладают фитонциды лука, чеснока, хрена, горчицы, алое, крапивы, можжевельника, почек березы. Листья черемухи и др. Антимикробное действие фитонцидов обусловлено продуктами жизнедеятельности  растительных организмов: эфирных масел, глюкозидов, органических кислот, дубильных веществ, смол и др.

Полусинтетические антибиотики получают химическим путем. Они имеют широкий спектр действия, активны в отношении не только грамположительных, но и грамотрицательных микроорганизмов (исключение составляет синегнойная палочка). Синтезированы полусинтетические пенициллины (оксациллин, ампициллин, карбенициллин), цефалоспорины (цефалоредин), тетрациклины (метацилиногидрохлорид) и др.

Химическая природа антибиотиков различна. Они отличаются химической структурой и биологическими свойствами. Антибиотические вещества из бактерий являются полипептидами, а выделенные из актиномицетов и грибов относятся к сложным циклическим соединениям.  

Тема № 5. Экология микроорганизмов. Микрофлора  почвы, воды,  воздуха.

Источников возможного инфицирования пищевых продуктов микроорганизмами немало. Основной из них — внешняя среда: почва, воздух, вода. Опасность представляют все объекты, контактирующие с продуктами: оборудование, тара, упаковочные материалы, руки и спецодежда рабочих и др.

Микрофлора окружающей среды в большой мере зависит от антропогенных факторов.

Антропогенные факторы и природная окружающая среда. Антропогенные факторы  - это изменения, происходящие в природе, т. е. окружающей среде в результате хозяйственной деятельности человека.

Под загрязнением окружающей среды понимается поступление в нее любых твердых, газообразных или жидких веществ, микроорганизмов или тепловой, электромагнитной, радиационной, звуковой энергий. Виды загрязнений многообразны. Основные из них: выбросы загрязняющих веществ в атмосферу; попадание в водную среду всевозможных производственных и коммунально-бытовых отходов; нефтепродуктов, минеральных солей; засорение ландшафтов мусором и твердыми отходами; широкое применение пестицидов; повышение уровня ионизирующих излучений; накопление тепла в атмосфере и гидросфере.

Интенсификация промышленного и сельскохозяйственного производства шла до недавнего времени по экстенсивному пути без учета экологических последствий.

Химическое загрязнение — основной фактор неблагоприятного антропогенного воздействия на окружающую среду и ее обитателей, в том числе на микроорганизмы. В окружающую среду выбрасывается большое количество различных химических веществ, в том числе и неприродных соединений.

Ежегодно производятся десятки миллионов тонн неизвестных синтетических материалов, в почвы сельскохозяйственных угодий вносится огромное количество минеральных удобрений и пестицидов (химические вещества для защиты растений от вредителей, болезней и сорняков).

Одни из этих соединений не разлагаются естественным путем или же разлагаются частично, другие очень медленно (радиоактивный изотоп стронция имеет период распада около 200 лет). Неразложившиеся остатки радиоактивных и органических соединений накапливаются в различных объектах внешней среды. Возникает опасность их попадания в пищевые продукты, а с ними в организм человека (Ю. И. Скур-латов и др.).

Сейчас в атмосферу ежегодно выбрасываются сотни миллионов тонн оксидов азота и серы, углекислоты, твердых и жидких взвешенных частиц (аэрозолей), миллионы тонн газообразных органических веществ. Загрязнение атмосферы приобретает глобальный характер, что приведет к возможному изменению климата, увеличению потока жесткой УФ-радиации на поверхности земли, увеличению числа заболеваний среди людей.

Антропогенное загрязнение почв связано с твердыми и жидкими отходами промышленности, строительства, городского хозяйства и сельскохозяйственного производства.

Человечество активно использует около 55% суши и 50% ежегодного прироста леса. В результате строительства и горных разработок ежегодно перемещается более 4 тыс. км3 породы, сжигается 7 млрд. т топлива.

Из всех сред обитания (атмосфера, почва, вода) наибольшим воздействиям со стороны человека подвержена вода. Загрязнения, выбрасываемые в атмосферу или вносимые в почву в трансформированном или неизменном виде, поступают в водоемы.

За счет выпадения осадков и в период весеннего половодья вместе с поверхностным стоком в воду попадают загрязняющие вещества. Загрязнение природных вод связано также с использованием водных ресурсов в промышленности и сельском хозяйстве, в энергетике, на хозяйственно-бытовые нужды, в связи с развитием водного транспорта, мелиоративных преобразований и т. д. После использования вода возвращается в природные водные объекты, неся в себе следы воздействия в виде изменения химического состава, температуры, биологического загрязнения (множество микроорганизмов, в том числе и патогенных).

Для ирригации, промышленного производства, бытового снабжения отбирается более 13% речного стока и сбрасывается в водоемы ежегодно сотни миллиардов кубических метров промышленных и коммунальных стоков. Их нейтрализация требует 5—10-кратного, а в отдельных случаях и более разбавления природной чистой водой.

Способы и пути борьбы с антропогенным загрязнением окружающей среды разнообразны. Среди них строительство очистных сооружений, установка пылегазоулавливающих фильтров, создание безотходных и малоотходных технологий, утилизация отходов, использование их в качестве вторичного сырья для получения полезной продукции, применение замкнутых циклов водоиспользования, применение биологических методов борьбы с вредителями и болезнями сельскохозяйственных и лесных растений, оптимизация режима использования техники, улучшение конструкций двигателей внутреннего сгорания, поиски новых видов топлива и источников энергии.

         Роль микроорганизмов в охране окружающей среды от загрязнения. Микроорганизмы могут осуществлять разрушение и обезвреживание целого ряда загрязнений воды и почвы.

Примером значимости микроорганизмов могут служить биологические методы очистки сточных вод. Перед спуском в открытые водоемы сточные воды должны подвергаться очистке. Степень очистки зависит от количества и химического состава вод, а также характера водоема, в который они могут быть спущены.

Биологические методы очистки делятся на аэробные и анаэробные. Эти методы очистки основаны на использовании биохимической деятельности аэробных и анаэробных микроорганизмов — их способности перерабатывать органические и минеральные вещества в процессах конструктивного и энергетического объемов клетки.

Аэробная биологическая очистка проводится в естественных и искусственных условиях.

В естественных условиях очистка сточных вод осуществляется путем их фильтрации через слои почвы на специальных земельных участках, называемых полями фильтрации и полями орошения, а также в биологических (очистных) прудах.

Почвенные микроорганизмы окисляют органические вещества просачивающейся воды, превращая их в неорганические соединения, т. е. минерализуя их, очищают воду. Помимо органических соединений в почве задерживается до 99% находившихся в сточной воде бактерий. Прошедшая через почву очищенная сточная вода поступает в сборные дренажные трубы, по которым отводится в открытый водоем.

Поля орошения отличаются от полей фильтрации тем, что одни и те же земельные участки используются одновременно для очистки сточных вод и для выращивания сельскохозяйственных культур (трав, овощей, плодовых деревьев и др.). На полях орошения очищается значительно меньше сточной воды, чем на полях фильтрации, но зато используются растениями ценные вещества, получающиеся при минерализации органических веществ сточной жидкости.

Биологические пруды — это искусственные последовательно соединенные водоемы, в которые отводится сточная разбавленная вода. Очистка воды в них сходна с процессами естественного самоочищения водоемов.

В месте спуска сточных вод, которые содержат загрязнения, развивается множество сапрофитных микроорганизмов (до нескольких миллионов в 1 см3 воды) и в воде активно протекают вызываемые ими процессы гниения и брожения. По мере минерализации органических веществ уменьшается и количество сапрофитных бактерий, число их составляет 105—104 в 1 см3 воды. В загрязненной зоне водоема начинают развиваться и другие водные организмы (простейшие, коловратки, водоросли и др.).

Сапрофитные бактерии отмирают в результате недостатка пищи, под воздействием выделяемых некоторыми водорослями антибиотических веществ. Коловратки и простейшие поедают бактерии, лизируются они и бактериофагом. Число сапрофитных бактерий снижается до 102—101 клеток в 1 см3 воды.

Кроме естественной используется очистка сточных вод в искусственных условиях на специальных очистных сооружениях -- биологических фильтрах и в аэротенках. Биологической очистке предшествует механическая.

Биологические фильтры (биофильтры) представляют собой резервуары, заполненные крупнозернистым материалом (шлаком, щебнем или пластмассовыми пористыми блоками). Через толщу этого загрузочного материала фильтруют сточную воду. Подача воздуха (аэрация) в биофильтры может быть естественной и искусственной (принудительной), когда воздух продувается через толщу загрузки вентиляторами. Такие биофильтры называют аэрофильтрами. На поверхности загрузочного материала обильно развиваются разнообразные организмы (микроорганизмы, простейшие и др.), образуя более или менее мощную пленку, называемую биологической.

Процесс очистки сточной воды под влиянием микроорганизмов биологической пленки состоит из двух фаз. Сначала окисляются углеродсодержащие органические вещества и идет аммонификация азотсодержащих органических веществ. После окисления главной массы органических веществ окислению подвергают образовавшиеся аммиачные соли, которые переходят в соли азотистой и азотной кислот (процесс нитрификации). Первая фаза протекает главным образом в самых поверхностных слоях загрузочного материала, вторая — в более глубоких его слоях.

Аэротенки представляют собой бассейны, в которые вместе с отстоенной сточной водой вводят определенное количество так называемого активного ила (в виде хлопьев), основная масса которого состоит из различных микроорганизмов. Смесь сточной воды с илом, протекая через аэро-тенк, подвергается активной аэрации. Поступающий в аэро-тенк воздух -- источник кислорода — поддерживает ил во взвешенном состоянии и осуществляет энергичное перемешивание жидкости, что способствует постоянному и быстрому контакту организмов активного ила с питательными веществами сточной воды и кислородом.

В аэротенках происходит такой же процесс, как и в биофильтрах, — последовательное биохимическое окисление органических веществ сточной жидкости. Однако в аэротенках процесс протекает значительно интенсивнее, чем в биофильтрах, из-за лучшей аэрации сточной жидкости. Качественный состав микронаселения биопленки и активного ила может служить индикатором работы очистного сооружения.

После прохождения через биофильтр и аэротенк вода поступает в отстойники для освобождения от биопленки и активного ила, а затем сбрасывается в водоем. Иногда вода перед выпуском дезинфицируется хлором или хлорной известью.

Анаэробная биологическая очистка. В процессе очистки сточных вод накапливается большое количество осадков, содержащих много органических веществ, микроорганизмов, в том числе и патогенных. Обработка и обезвреживание осадков проводится в метантенках, септиктенках и двухъярусных отстойниках.

Независимо от типа очистного сооружения в них происходят разнообразные микробиологические процессы. Сложные органические соединения осадка (белки, жиры, клетчатка и др.) в результате брожения и гниения превращаются в жирные кислоты, спирты и газообразные продукты (углекислый газ, аммиак, метан, водород). Среди газообразных продуктов 60—65% составляет метан, который может быть использован как горючий газ. Сброженный осадок обезвоживают, сушат и вывозят на сельскохозяйственные поля в качестве удобрения, а в брикетированном виде он может быть использован и как топливо.

Аналогичные процессы, осуществляемые микроорганизмами, протекают и при естественном самоочищении от загрязнений природных водоемов и почвы.

Одним из путей предотвращения загрязнения окружающей среды является утилизация отходов промышленности на основе биотехнологии, с помощью штаммов промышленных микроорганизмов. Например, в настоящее время известны способы получения с использованием микроорганизмов различных продуктов из молочной сыворотки (отхода пищевой промышленности), превосходящих по своей пищевой и биологической ценности затраченное сырье. Получены заменители растительных масел из плодово-ягодных выжимок с помощью дрожжей - липидообразователей.

С появлением в нашей стране гидролизного производства отходы после брожения и отделения спирта стали использовать для выращивания кормовых дрожжей.

Разработаны и внедряются процессы культивирования дрожжей и бактерий, потребляющих в качестве субстрата метанол, этанол, метан, отходы органического синтеза или селективно извлекающих н- алканы непосредственно из дизельной фракции прямой перегонки нефти. Исследования в этой области продолжаются.

Микрофлора почвы. Почва является естественной средой обитания микроорганизмов. Они находят в почве все условия, необходимые для развития: пищу, влагу и защиту от губительного влияния солнечных лучей и высушивания.

Микрофлора почвы по количественному и видовому составу значительно колеблется в зависимости от региональных и климатических условий, химического состава и физических свойств почвы, реакции (рН), температуры, влажности, степени аэрации. Существенно влияют также время года, агротехнические мероприятия, характер растительного покрова и многие другие факторы.

Микроорганизмы распространены по горизонтам почвы неодинаково. Меньше всего микроорганизмов содержится обычно в самом поверхностном слое почвы толщиной несколько миллиметров, где они подвергаются неблагоприятному воздействию солнечного света и высушиванию. Особенно обильно населен следующий слой почвы толщиной до 5—10 см. По мере углубления число микроорганизмов уменьшается. На глубине 25—30 см количество их в 10—20 раз меньше, чем в поверхностном слое толщиной 1—2 см (А. С. Разумов). Изменяется с глубиной и видовой состав микрофлоры. В верхних слоях почвы, содержащих много органических веществ и подвергающихся хорошей аэрации, преобладают аэробные сапрофитные организмы, способные разлагать сложные органические соединения. Чем глубже почвенные горизонты, тем беднее они органическими веществами, доступ воздуха в них затруднен, поэтому здесь численность анаэробных бактерий увеличивается.

Микрофлора почвы представлена разнообразными видами бактерий, актиномицетов, грибов, водорослей и простейших животных.

К постоянным обитателям почвы относятся различные гнилостные, преимущественно спорообразующие, аэробные и анаэробные бактерии; бактерии, разлагающие клетчатку; нитрифицирующие, денитрифицирующие, азотфикси-рующие, серо- и железобактерии.

Деятельность почвенных микроорганизмов играет большую роль в формировании плодородия почвы. Последовательно сменяя друг друга, микроорганизмы осуществляют процессы, определяющие круговорот веществ в природе. Органические вещества, попадающие в почву в виде остатков растений, трупов животных и с другими загрязнениями, постепенно минерализуются, и происходит самоочищение почвы. Соединения углерода, азота, фосфора и других элементов из недоступных для растений форм преобразуются микробами в усваиваемые ими вещества.

Наряду с обычными обитателями в почве встречаются и болезнетворные микроорганизмы, преимущественно споро-образующие бактерии: например, возбудители столбняка, газовой гангрены, пищевого отравления (ботулизма) и др, Поэтому загрязнение пищевых продуктов почвой представляет опасность для здоровья человека.

Патогенные бесспоровые бактерии (например, брюш-но-тифозные, дизентерийные), попадая в почву, сохраняются в ней неделями и месяцами, споры бактерий и некоторые аспорогенные виды — годами.

Санитарно-микробиологические исследования почвы проводят с целью выявления бактерий группы кишечных палочек, общего числа сапрофитных бактерий, бактерий рода Рго^еиз, анаэробов (С1.рег1гт§епз) и термофильных микроорганизмов, определяющих характер загрязнения ее.

Микрофлора  воды. Природные воды являются, как и почва, естественной средой обитания многих микроорганизмов, где они способны жить, размножаться, участвовать в процессах круговорота углерода, азота, серы, железа и других элементов. Численный и видовой состав микрофлоры природных вод разнообразен.

Состав микрофлоры подземных вод (артезианской, ключевой, грунтовой) зависит главным образом от глубины залегания водоносного слоя, его защищенности от попадания загрязнений извне. Артезианские воды, находящиеся на больших глубинах, содержат очень мало микроорганизмов. Подземные воды, добываемые через обычные колодцы из некоторых водоносных слоев, куда могут просачиваться поверхностные загрязнения, содержат обычно значительные количества бактерий, среди которых могут быть и болезнетворные. Чем ближе к поверхности расположены грунтовые воды, тем обильнее их микрофлора.

Поверхностные воды — воды открытых водоемов (рек, озер, водохранилищ и др.) — характеризуются большим разнообразием видов микрофлоры в зависимости от химического состава воды, характера использования водоема, заселенности прибрежных районов, времени года, метеорологических и других условий. Помимо постоянных обителей, в открытые водоемы попадает много микроорганизмов извне. Например, в реке, протекающей в районе крупных населенных пунктов или промышленных предприятий, вода может содержать сотни тысяч и миллионы бактерий в 1 см3, а выше этих пунктов — всего лишь сотни или тысячи бактерий в таком же объеме.

В воде прибрежной зоны водоемов, особенно стоячих, микроорганизмов больше, чем вдали от берега. Больше микроорганизмов содержится также в поверхностных слоях воды, но особенно много их в иле, главным образом в его верхнем слое, где образуется как бы пленка из бактерий, играющая большую роль в процессах превращения веществ в водоеме. Значительно возрастает число бактерий в открытых водоемах во время весеннего половодья или после обильных дождей, а также при сбрасывании хозяйственно-бытовых и промышленных сточных вод. С различными органическими и минеральными загрязнениями сточных вод в водоемы попадают как сапрофитные, так и патогенные микроорганизмы.

Хотя вода и не является благоприятной средой для размножения болезнетворных микроорганизмов, многие из них в ней длительно сохраняют жизнеспособность и вирулентность. Например, бруцелла — 72 дня, туберкулезная палочка— 5 мес., некоторые патогенные вирусы — более 100 дней.

Для хозяйственно-питьевых целей в качестве источников водоснабжения используют, кроме открытых водоемов, и подземные (артезианские, родниковые) воды.

Питьевая вода по составу и свойствам должна быть безопасной в эпидемиологическом отношении, безвредной по химическому составу и иметь хорошие органолептические показатели.

Наиболее удовлетворяют этим требованиям артезианские воды, многие из них не нуждаются в очистке. Воду из открытых водоемов подвергают на водопроводных станциях обработке с целью улучшения ее физических и химических свойств и обеззараживания — освобождения от микроорганизмов, главным образом болезнетворных.

Обеззараживают (дезинфицируют) воду обычно методом хлорирования. В практику водоснабжения внедряются новые методы дезинфекции воды — озонирование и облучение бактерицидными ультрафиолетовыми лучами и др. Ультрафиолетовое облучение может быть применено только для обработки воды с незначительной цветностью и мутностью. Озонирование, кроме бактерицидного действия, улучшает органолептические свойства воды.

Санитарно-микробиологическое исследование воды, поступающей в систему централизованного водоснабжения, осуществляется в районных и городских центрах санитарно-эпидемиологического надзора. В воде определяют содержание мезофильных аэробов и факультативных анаэробов (МА-ФАМ), бактерий группы кишечных палочек, фекальных кишечных палочек, энтерококков, сальмонелл, бактерий рода Ргчйеиз С1оз1псИит рег^пп§епз, энтеровирусов.

Оценку качества питьевой воды проводят по комплексу химических, органолептических и бактериологических показателей. В соответствии с ГОСТ 2874-82 общее число бактерий (МАФАМ) не должно превышать 100 клеток в 1 см], количество кишечных палочек должно быть не более 3 в 1 л, а коли-титр — не менее 300 см3.

Вода колодцев и открытых водоемов признается доброкачественной при коли-титре не менее 100 см3, общее число бактерий должно быть не выше 1000 в 1 см3.

В отдельных случаях при санитарной оценке воды в качестве санитарно-показательного микроорганизма наряду с бактериями группы кишечных палочек используют энтерококк.

 В Международном Европейском стандарте на питьевую воду энтерококк введен как дополнительный показатель фекального загрязнения воды.

Санитарно-гигиенические нормы для воды, используемой в торговле, в пищевой промышленности и на предприятиях общественного питания, такие же, как и нормы для питьевой воды централизованного водоснабжения.

Микрофлора воздуха.В атмосферный воздух микроорганизмы попадают из почвы, с растений, тела человека и животных. Попадают они и с пылью, поднимающейся с различных объектов.

Воздух не является благоприятной средой для развития многих видов микроорганизмов из-за отсутствия в нем ка-пельно-жидкой влаги. В воздухе микроорганизмы сохраняют жизнеспособность лишь определенное время, а некоторые из них довольно быстро погибают под влиянием солнечной радиации и частично обезвоживания клетки.

Численный и видовой состав микрофлоры воздуха существенно изменяется в зависимости от географических и климатических особенностей региона, времени года, метеорологических условий, санитарного состояния местности и ряда других факторов.

Единичные клетки микроорганизмов в 1 м;! обнаружены над морями, океанами, льдами Арктики, высоко в горах, в тайге. В воздухе населенных пунктов (особенно крупных промышленных городов) содержится значительно больше микроорганизмов. Особенно много их в местах скопления отходов, свалок. По мере удаления от населенных мест количество микроорганизмов в воздухе снижается.

Большую роль в снижении численности микробов в воздухе играют зеленые насаждения. Листья деревьев и кустарников обладают значительной пылезадерживающей способностью. Кроме того, фитонциды растений оказывают на микроорганизмы губительное воздействие.

В воздухе находятся обычно микрококки, сарцины, различные спороносные и бесспоровые бактерии, дрожжи, споры грибов. Встречаются патогенные микроорганизмы: вирусы, туберкулезная палочка, пневмококки, возбудители стрептококковых и стафилококковых инфекций.

Основными источниками инфицирования воздуха патогенными микроорганизмами являются больные люди и животные, различные отходы и отбросы.

Численный и видовой состав микрофлоры воздуха жилых и производственных помещений изменяется в широких пределах в зависимости от скопления людей, санитарно-гигиенического состояния помещений, периодичности их уборки и вентилирования, а также вида перерабатываемой продукции и характера технологических операций. Так, в 1 м3 воздуха холодильных камер (при 1—0"С), где хранились корнеплоды, число спор мицелиальных грибов достигало нескольких десятков тысяч, дрожжей и бактерий — несколько тысяч, а в 1 м3 воздуха холодильной камеры с яблоками были обнаружены лишь единичные споры мицелиальных грибов, несколько десятков дрожжей и сотен бактерий (А. А. Кудряшова). При сортировке и расфасовке овощей число микробов в воздухе помещения увеличивается в сотни тысяч раз, а в местах складирования отходов их еще больше.

Существенное влияние на численный и видовой состав микрофлоры воздуха камер хранения оказывает их санитарное состояние (степень обсеменения микробами стен, потолка, пола). При наличии на стенах и потолке визуально обнаруженного роста микроорганизмов количество их в 1 м3 воздуха помещения составляет сотни тысяч и даже миллионы клеток. Воздух таких помещений является источником инфицирования микроорганизмами хранящихся в них пищевых продуктов.

Развиваются на стенах и потолке чаще грибы родов РегасШшт, СЛасЬзрогшт, Азрег§Шиз. Встречаются и представители родов Мисог, Во1гу1;13) КЫгориз.

Микрофлора воздуха, стен, потолка камер хранения изменяется в зависимости от температуры, вида продукции и длительности ее хранения. Чем ниже температура, тем меньше микроорганизмов; с увеличением срока хранения число их возрастает, при этом изменяется и видовой состав микрофлоры — он становится менее разнообразным.

Для предотвращения развития микробов в камерах хранения необходимо регулярно проводить побелку и окраску стен и потолков, а также систематически мыть и дезинфицировать пол. В побелку целесообразно добавлять дезинфицирующие средства. Обрабатывать производственные помещения следует до закладки продукции на хранение, а также непосредственно после освобождения складов от длительно хранившейся продукции.

При санитарно-гигиенической оценке помещений определяют в воздухе общую бактериальную обсемененность (в 1 м:!), содержание санитарно-показательных микроорганизмов, наличие патогенных форм, дрожжей и мицелиальных грибов. Санитарно-показательными микроорганизмами служат гемолитические (растворяющие эритроциты крови) стрептококки.

Воздух закрытых помещений считается чистым, если количество микроорганизмов в 1 м:! его не превышает 2000 клеток, содержание гемолитических стрептококков не более десяти (Е. И. Гончурк).

На предприятиях пищевой промышленности основное внимание должно быть уделено выявлению санитарно-показательных микроорганизмов, возбудителей пищевых заболеваний, а также микроорганизмов, вызывающих порчу пищевых продуктов. Считается, что в воздухе пищевых производственных цехов должно содержаться не более 100— 500 бактерий в 1 м:! в зависимости от характера производства.

Воздух помещений цехов, например, на предприятиях молочной промышленности оценивается на "хорошо", если в посевах (5 мин оседания микрофлоры воздуха) на поверхности питательной среды в чашке Петри вырастает: колоний бактерий - - 20—50, дрожжей и мицелиальных грибов — до 5; "удовлетворительно" — соответственно 50—70 идо 5 (Н. С. Королева, В. Ф. Семенихина).

Воздух холодильных камер исследуют на загрязненность спорами мицелиальных грибов. Для обеззараживания воздух пищевых производственных помещений, холодильных камер, технологических цехов пропускают через специальные фильтры, задерживающие микроорганизмы. Применяют также дезинфицирование воздуха химическими веществами, безвредными для человека, продукции и оборудования. Используют озонирование воздуха, ультрафиолетовое облучение и др.

Первая попытка применения озона для дезинфицирования воздуха холодильных камер была сделана еще в 1909 г, (в г. Кельне) с целью увеличения сроков хранения пищевых продуктов. В СССР в 1938 г. в Ленинграде М. В. Тухнайдом проводилось озонирование холодильных камер с плодами, яйцом, мясом при концентрациях озона 3—6 мг/м3.

Эффективность озонирования существенно зависит от концентрации озона, продолжительности обработки, численности и видового состава микрофлоры объекта.

В результате озонирования камеры хранения в течение 3,5— 4 ч при концентрации озона 10 мг/м3 количество микроорганизмов резко снижается не только в воздухе, но и

на полу и стенах. Количество мицелиальных грибов на поверхности стен уменьшается на 97—98%, бактерий — на 87— 88%, а дрожжи почти все погибают; в воздухе гибнет до 99% всех видов микроорганизмов (А. А. Кудряшова).

Высокий бактерицидный и фунгицидный эффект дает даже непродолжительная (в течение 10 мин) обработка воздуха производственных помещений двуокисью азота, которая, как и озон, обладает сильными окислительными свойствами, что и обусловливает широкий антимикробный спектр действия и высокий эффект.

Обработку двуокисью азота и озоном осуществляют в соответствии с санитарными правилами только в камерах, имеющих хорошую герметизацию

Молочная кислота в виде аэрозоля также дает положительные результаты при дезинфицировании воздуха производственных помещений.

  

          Тема №6 Важнейшие биохимические процессы превращений, вызываемые микроорганизмами: брожения - спиртовое, молочнокислое, масляно-кислое и их модификации; окислительные брожения - уксусно-кислое, лимонно-кислое; превращение белков- гниение.          

Луи Пастером установлено, что изменения происходящие при брожении являются результатом жизнедеятельности микроорганизмов. В зависимости от преобладающих конечных продуктов различают типы брожений: спиртовое, молочно-кислое, масляно-кислое, их модификации и др. виды брожения. 

Спиртовое брожение. Спиртовым брожением называют процесс превращения сахаров под действием ферментативной активности некоторых видов бактерий, мицеллиальных и дрожжевых грибов с накоплением в качестве основного продукта этилового спирта и углекислого газа:

С6Н12О62Н5ОН + 2СО2+ Q.

Но основными возбудителями этого вида брожения являются дрожжи (сахаромицеты). В анаэробных условиях превращение сахара в спирт происходит не сразу, процесс идет через ряд промежуточных реакций и протекает как бы в две стадии: первая (окислительная) включает превращение глюкозы до пировиноградной кислоты с образованием двух молекул восстановленного НАДН2 (первичный акцептор водорода):

С6Н12О62СН3СОСООН+2 НАДН2.

Под действием фермента пируватдекарбоксилазы дрожжи катализируют реакцию декарбоксилирования пировиноградной кислоты с отщеплением СО2 и образованием уксусного альдегида :

         2СН3СОСООН2СН3СНО+ 2СО2,

а вторая стадии (восстановительная) НАДН2 передает Н конечному акцептору (уксусный альдегид), который превращается в этиловый спирт:

        2СН3СНО+ 2НАДН2 2Н5ОН+ НАД

С энергетической  точки зрения брожение процесс мало экономичный, так как при сбраживании грамм-молекулы глюкозы синтезируется всего два моля АТФ.

Наряду с главными продуктами брожения в небольшом количестве образуются побочные продукты: глицерин, уксусный альдегид, уксусная и янтарная кислоты, сивушные масла (смесь высших спиртов) и некоторые другие вещества.

Общие условия спиртового брожения. Наиболее благоприятная концентрация сахара в среде для большинства дрожжей от 10 до 15%. При повышении концентрации сахара энергия брожения снижается, а при 30-35% брожение обычно прекращается, хотя в природе встречаются дрожжи, способные вызывать медленное брожение сахара даже при концентрации 60% и выше. Этиловый спирт, накапливающися в процессе брожения, неблагоприятно влияет на дрожжи. Его угнетающее действие проявляется уже при концентрации 2-5% в зависимости от вида и расы дрожжей. В большинстве случаев брожение прекращается при 12-14% (объемных) спирта. Получены расы, индуцирующие до 20% спирта.

Нормальное брожение протекает в кислой среде при рН 4-5. В щелочной среде при подщелачивании среды до рН 8 или при введении в среду бисульфита натрия направление брожения изменяется в сторону увеличения выхода глицерина (глицериновое брожение):

6Н12О62СН2ОНСНОНСН2ОН +С2Н5ОН +СН3СООН + 2СО2+ Q

По характеру брожения дрожжи подразделяют на верховые и низовые .

Брожение, вызываемое верховыми дрожжами, протекает бурно и быстро при температуре 20-28˚С. На поверхности бродящей жидкости образуется много пены, и под действием выделяющегося углекислого газа дрожжи выносятся в верхние слои субстрата. По окончании брожения дрожжи оседают на дно рыхлым слоем.

Брожение, вызываемое низовыми дрожжами, протекает спокойнее и медленнее, особенно при сравнительно низких температурах (4-10˚С). Газ выделяется постепенно, пены образуется меньше, дрожжи не выносятся на поверхность среды и быстро оседают на дно бродильной емкости.

При интенсивной аэрации среды дрожжевые грибы меняют тип энергетического обмена и переходят с процесса брожения на процесс дыхания, что  называют  эффектом Пастера: С6Н12О6 + 6О2 6СО2 +6Н2О + Q

Дыхание является более выгодным энергетическим процессом так как так как при сбраживании грамм-молекулы глюкозы синтезируется  36 молекул  АТФ. Эффект Пастера используют при получении биомассы дрожжевых клеток  для виноделия (ЧКД),  хлебопечения (пекарские), в качестве кормового белка.

Процесс спиртового брожения лежит в основе хлебопечения, бродильных производств (виноделие, пивоварение, производство этилового спирта), глицерина. Совместно с молочно-кислым брожением используется при получении  некоторых молочно-кислых продуктов (кефира, кумыса), при квашении овощей.

Молочно-кислое брожение. Это процесс превращения сахара в молочную кислоту по характеру брожения различают две группы молочно-кислых бактерий: гомоферментативные (типичные) и гетероферментативные (нетипичные).

Гомоферментативные бактерии образуют в основном (не менее 85-90%) молочную кислоту и очень мало побочных продуктов:

6Н12О62СН3СНОНСООН + Q

Гетероферментативные бактерии наряду с молочной кислотой образуют значительное количество других веществ:

6Н12О62СН3СНОНСООН +СООН (СН2)2 СООН+ С2Н5ОН + СН3СООН+СО2+ Q

Есть такие гетероферментативные молочно-кислые бактерии, которые кроме того продуцируют четырехуглеродные соединения ацетоин (СН3СНОНСОСН3) и диацетил (СН3СОСОСН3), обладающие своебразным приятным ароматом (специфическим для кисломолочных продуктов).

В зависимости от условий развития (рН, температуры, степени аэробности и др.) характер конечных продуктов брожения может меняться у одного и того же вида молочно-кислых бактерий. Процесс превращения глюкозы до пировиноградной кислоты у гомоферментативных молочно-кислых бактерий протекает по гликолитическому пути. Затем,  в виду отсутствия фермента пируватдекарбоксилазы у этих бактерий, пировиноградная кислота не подвергается расщеплению и является конечным акцептором водорода под действием фермента лактатдегидрогеназы (лактикодегидрогеназы):

СН3СОСООН+ НАДН2. 2СН3СНОНСООН + НАД

Превращение глюкозы гетероферментативными молочно-кислыми бактериями происходит по-иному, так как они отличаются набором ферментов. Из-за отсутствия у них фермента альдолазы изменяется начальный путь превращения глюкозы и процесс протекает  не по гликолитическому пути, а по пентозофосфатному. После фосфорилирования глюкоза (глюкоза-6-фосфат) окисляется (отщепляется водород) и декарбоксилируется (отщепляется СО2). Образуется пентозофосфат, который фосфокетолазой расщепляется на фосфоглицериновый альдегид и ацетилфосфат.  Фосфоглицериновый альдегид, как и у гомоферментативных молочнокислых бактерий, превращается в пировиноградную кислоту (ПВК), которая затем восстанавливается в молочную. Ацетилфосфат, в свою очередь, дефосфорилируется и через уксусный альдегид может превращаться: (алкогольдегидрогеназой ) в этиловый спирт; (присоединяя О2) уксусную кислоту; ароматические соединения-(присоединяя СО2 и СН3СООН) ацетоин (СН3СНОНСОСН3) и из него (отщепляя 2Н2) в диацетил (СН3СОСОСН3)

 Молочно-кислые бактерии имеют форму кокков (молочнокислые стрептококки) и палочек (лактобактерии), неподвижны, не образуют спор, грамположительны, являются факультативными анаэробами, некоторые микроаэрофилами. Различные молочнокислые бактерии образуют неодинаковое количество молочной кислоты. Преобладающее большинство гомоферментативных палочек продуцирует кислоты больше (до2-3.5%), чем стрептококки (ок. 1%). Поэтому палочковидные формы могут развиваться при рН 4,0 -3,8; кокковые формы при такой кислотности не развиваются. Наилучшая активность палочковидных бактерий проявляется при рН 5,5-6,0. Молочнокислые бактерии легко переносят высушивание, устойчивы к СО2 и этиловому спирту; многие виды существуют при содержании в среде до 10-15% этилового спирта.

По отношению к температуре молочнокислые бактерии делят на мезофилы (25-35˚С) и термофилы  (40-45˚С), есть формы сохраняющиеся при нагревании до 85˚С в течение нескольких минут.

Наиболее важными в технологическом отношении являются:

- гомоферментативные мезофильные: Молочнокислый стрептококк (Lactococcus lactis)- образует антибиотик низин; сливочный стрептококк (Lactococcus cremoris)- образует антибиотик диплококцин;

- гомоферментативные термофильные: термофильный стрептококк (Streptococcus thermophilus); болгарская палочка (Lactobacterium bulgaricum);

-гетероферментативные: ароматобразующий стрептококк (Leuconostoc cremoris); кортокая палочка(Lactobacterium brevis); бифидобактерия  (Bifidobacterium bifidum.  

Молочно-кислые бактерии широко применятся в различных отраслях пищевой промышленности (особенно молочно-кислой). Большое значение эти бактерии имеют при квашении овощей, силосовании кормов, в хлебопечении при приготовлении ржаного хлеба, при производстве некоторых колбас и солено-вареных мясных изделий, при созревании слабо соленой рыбы, при получении молочной кислоты.

Спонтанно (самопроизвольно) возникающее молочно-кислое брожение в пищевых продуктах приводит к их порче: прокисание, помутнение, ослизнение.

Пропионово-кислое брожение. Это превращение сахара или молочной кислоты и ее солей под действием ферментативной активности пропионово-кислых бактерий в пропионовую и уксусную кислоты с выделением углекислого газа и воды:

6Н12О6. 4СН3СН2СООН+ 2СН3СООН+ 2СО2 + 2Н2О+Q;

3 СН3СНОНСООН2СН3СН2СООН+ СН3СООН+ СО2 + Н2О+Q

Некоторые пропионово-кислые бактерии могут  образовывать,  кроме того, муравьиную, янтарную и изовалериановую кислоты. При пропионово-кислом брожении превращение глюкозы до пировиноградной кислоты протекает также по гликолитическому пути. В дальнейшем пировиноградная кислот, претерпевая ряд превращений, восстанавливается в пропионовую. Пропионово-кислые бактерии относятся к актиномицетам. Это неподвижные, бесспоровые, грамположительные палочки слегка изогнутые, факультативные анаэробы.

Пропионово-кислое брожение является одним из важных процессов при созревании сычужных сыров.

Пропионовая кислота и ее соли служат ингибиторами мицеллиальных грибов и могут быть использованы для предотвращения плесневения пищевых продуктов. Некоторые виды пропионово-кислых бактерий  применяют для получения витамина В12 (Propionibacterium freudenreichii subsp. shermanii).

Слизевое (декстрановое) брожение. Вызывают слизеобразующие бактерии, которые по своим свойствам близки к молочнокислым и способны образовывать вокруг клеточной стенки капсулу, состоящую из  слизистых веществ (полисахариды, полипептиды). Процесс идет в несколько этапов:

  1.  ГИДРОЛИЗ САХАРОЗЫ:

С12Н22О11+ Н2О + С6Н12О6. +С6Н12О6.

  сахароза                    глюкоза   фруктоза

  1.  ПРЕВРАЩЕНИЕ ГЛЮКОЗЫ:

С6Н12О6. 6Н10 О5)n2О

    глюкоза     декстран

  1.  ПРЕВРАЩЕНИЕ ФРУКТОЗЫ

        С6Н12О62СН3СНОНСООН +СООН 2(СН2)2 СООН+ С2Н5ОН +

   фруктоза

   +СН3СООН+ Q

  Сбраживание глюкозы протекает по гетероферментативному молочно-кислому брожению.

Слизеобразующие бактерии вызывают ослизнение овощей, фруктов, хлебобулочных изделий (картофельная болезнь), сахарных сиропов, различных слабоалкогольных напитков и вина. Промышленного значения не имеет.

Маслянокислое брожение. Этот процесс представляет собой превращение сахара маслянокислыми бактериями в анаэробных условиях с образованием масляной кислоты, газа и водорода:

С6Н12О6. СН3СН2СН2СООН + 2 СО2 +2Н2 + Q

В качестве побочных продуктов может накапливаться бутиловый спирт, ацетон, этиловый спирт, уксусная кислота.

При масляно-кислом брожении сахар претерпевает те же превращения, что и при  спиртовом и  гомоферментативном молочнокислом брожениях,   вплоть до образования пировиноградной кислоты. Пировиноградная кислота подвергается декарбоксилированию и при участии кофермента –А (КоА) расщепляется до ацетил-КоА, СО2, Н2. Две молекулы образовавщегося двууглеродного соединения конденсируются при участии фермента карболигазы. Из синтезированного четырехуглеродного соединения в сложном цикле последоваельных превращений образуется масляная кислота:

СН3СОСООНСН3СНО + СО2; СН3СНО+ СН3СНО СН3СН2СН2СООН

Маслянокислые бактерии представляют собой подвижные,  крупные спорообразующие грамположительные палочки, строгие анаэробы.

В природе это брожение имеет положительное значение как звено в цепи многообразных превращений органических веществ. В пищевом производстве часто приносит значительный ущерб, так как может вызвать порчу картофеля и овощей, вспучивание сыров, порчу консервов (бомбаж), прогоркание молока, масла, увлажненной муки  и т.д. Могут вызывать порчу квашеных овощей при замедленном молочнокислом брожении, образующаяся при этом  масляная кислота придает продуктам острый прогорклый вкус и резкий неприятный запах.

Маслянокислое брожение применяют для производства масляной кислоты, которая представляет собой бесцветную маслянистую жидкость с неприятным  резким запахом, а эфиры масляной кислоты отличаются прияным ароматом, как например: метиловый эфир имеет яблочный запах, этиловый- грушевый, амиловый – ананасовый. Их используют как ароматические вещества кондитерской, парфюмерной промышленности и при изготовлении фруктовых напитков.

Брожение пектиновых веществ.  В тканях растений, овощей и фруктов пектины входят в состав клеточных стенок и срединных пластинок между отдельными клетками в виде труднорастворимого протопектина. Под действием пектолитических ферментов микроорганизмов, развивающихся в растительном пищевом сырье протопектин превращатся в растворимый пектин. Пектин разлагается с образованием галактуроновых кислот, углеводов (ксилозы, галактозы, арабинозы), метилового спирта и других веществ. Сахара сбраживаются бактериями по типу масляно-кислого брожения с образованием уксусной и масляной кислот, СО2 и Н2 . Все эти процессы приводят к мацерации (распаду) пораженных объектов и другим видам повреждений. Разложение пектиновых веществ может быть выражено следующей схемой:

  1.  С46Н68О40 + nН2О СНО (СНОН)4СООН + С6Н12О6 + С5Н10О5

       Пектин                             галактуроновая к-та         галактоза      ксилоза

+ С5Н10О5 + СН3ОН +СН3СООН

   арабиноза

2. С6Н12О6 СН3СН2СН2СООН + СН3СООН +СО22+ Q

3. С5Н10О5 СН3СН2СН2СООН + СН3СООН +СО22О+ Q

Продукты распада пектиновой кислоты (галактоза, арабиноза и др.) подвергаются сбраживанию или окислению разнообразными микроорганизмами. При анаэробных условиях они сбраживаются маслянокислыми бактериями относящимися к роду Клостридий. Пектиновое брожение наблюдается при мочке лубоволокнистых растений - льна, конопли, кенафа, джута, канатника и др. Для освобождения волокон клетчатки необходимо разложение пектина, что и происходит под действием пектиноразлагающих ферментов анаэробных бактерий.

Брожение клетчатки.  Клетчатка (целлюлоза) является основным веществом клеточных стенок растений. Брожение клетчатки состоит из разложения ее в анаэробных условиях палочковидными споробразующими бактериями рода Клостридий. Они гидролизуют клетчатку до глюкозы в результате активности ферментов целлюлазы (до целлобиозы) и целлобиазы (до глюкозы)     (см. уравнение 1-ниже). Глюкозу они сбраживают с образованием уксусной, масляной, молочной, муравьиной кислот, этилового спирта, СО2  и Н2 (уравнение 2 ниже):

1.(С6Н10О5)n + nН2О С12Н22О11 С6Н12О6;

2. С6Н12О6 СН3СООН +СН3СН2СН2СООН+ СН3СНОНСООН + С2Н5ОН +НСООН +СО2+ Q

Среди этих бактерий есть мезофилы и термофилы, которые накапливают различные органические кислоты.

Окислительные брожения. Окислительное брожение- это процесс окисления органических веществ (спиртов, углеводов) под действием ферментативной активности микроорганизмов не до конечных продуктов, как при дыхании, а до органических кислот и спиртов, как при брожении.

Уксуснокислое брожение. Это процесс окисления этилового спирта под действием ферментов уксусно - кислых бактерий до уксусной кислоты и воды. Окисление этилового спирта протекает в две стадии- сначала образуется уксусный альдегид, который далее окисляется до уксусной кислоты:

  1.  2Н5ОН +О2 2 СН3СНО + 2Н2О;
  2.   2 СН3СНО+О2 2 СН3СООН

         Уксуснокислые бактерии бесспоровые палочки, грамотрицательные, строгие  аэробы. Среди них есть подвижные и неподвижные формы. Уксусно-кислые бактерии относят к двум родам бактерий: Глюконобактер (Gluconobacter)  и Ацетобактер ( Acetobacter). Ацетобактер – перитрихи,  способные окислять уксусную кислоту до СО2 и Н2О (переокисление).

Уксуснокислым бактериям свойственна изменчивость формы клеток, в неблагоприятных условиях могут образовывать толстые длинные нити, иногда раздутые уродливые клетки.

Уксуснокислое брожение лежит в основе получения уксуса для пищевых целей. Исходным сырьем может служить спиртовый раствор, разбавленное подкисленное плодово-ягодное или виноградное вино.

Лимонно-кислое брожение. Это процесс неполного окисления углеводов ферментативной активностью мицеллиальных грибов с образованием органических кислот (лимонной, щавелевой и др.). Окисление глюкозы в лимонную кислоту можно представить следующим суммарным уравнением:

6Н12О6+3О26Н8О7 +4 Н2О

Химизм протекает по гликолитическому пути  до  образования пировиноградной кислоты. Пировинограданая кислота  через ацетил-СoA  включается в цикл Кребса (цикл ди- и трикарбоновых кислот), где происходит накопление яблочной, фумаровой, янтарной и лимонной кислот.

Наибольшее практическое значение имеет процесс получения лимонной кислоты с помощью  гриба Аспергиллус Нигер (Aspergillus niger) в кислой среде. При изменении кислотности среды до нейтральной происходит накопление щавелевой кислоты.

Технические приемы биохимического получения лимонной кислоты в нашей стране были разработаны С.П. Костычевым В.С. Буткевичем. Используют поверхностный и глубинный (более перспективный) способы промышленного получения лимонной кислоты

         Превращения белков - гниение. В метаболизме микроорганизмов азотсодержащие вещества подвергаются разнообразным превращениям. По случайно поверхностному сходству разные виды порчи пищевых продуктов нередко называют гниением. Однако гниение - это процесс глубокого разложения белковых веществ микроорганизмами.

Способность разлагать в той или иной степени белковые вещества свойственна многим микроорганизмам. Некоторые из них разлагают непосредственно белки, другие могут воздействовать только на более или менее простые продукты распада белковой молекулы, например на пептиды, аминокислоты и др.

Продукты разложения белков микробы используют для синтеза собственных органических веществ, а также в качестве энергетического материала.

       Химизм разложения белковых веществ. Гниение - сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава разлагаемых белков, условий процесса и видов вызывающих его микроорганизмов.

Белковые вещества не могут непосредственно поступать в клетки микроорганизмов, поэтому использовать белки могут только те микроорганизмы, которые обладают протеолитическими ферментами — экзопротеазами, выделяемыми клетками в окружающую среду.

Процесс распада белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептоны и пептиды. Они расщепляются до аминокислот, которые являются конечными продуктами гидролиза.

Образующиеся в процессе распада белков различные аминокислоты используются микроорганизмами или подвергаются ими дальнейшим изменениям, например дезаминированию, в результате чего образуются аммиак и разнообразные органические соединения. Процесс дезаминирования может происходить различными путями. Различают дезаминирование гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, аммиак и углекислый газ:

RCHNHСOOН + НО          RСНOНСООН + NН;

RСНNНСООН + НО          RCHOH + NН + CO;

При окислительном дезаминировании образуются кетокислоты и аммиак:

RСНNНСООН + ½ O          RСОCOOН+NНз

При восстановительном деэаминировании образуются карбоновые кислоты и аммиак:

RСНNНСООН + 2Н             RCHСООН + NН

Из приведенных уравнений видно, что среди продуктов разложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты, пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол - вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные - меркаптаны (например, метилмеркаптан СНSН). Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.

Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и углекислый газ. Например, лизин превращается в кадаверин:

NH(CH)CHNHCOOOH      декарбоксилаза     NH(CH) + CO

Аналогично этому орнитин превращается в путресцин.

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды), некоторые из них обладают ядовитыми свойствами.

Дальнейшее превращение азотистых и безазотистых органических соединений, получающихся при распаде различных аминокислот, зависит от окружающих условий и состава микрофлоры. Аэробные микроорганизмы подвергают эти соединения окислению, так что они могут быть полностью минерализованы. В таком случае конечными продуктами гниения являются аммиак, углекислый газ, вода, сероводород, соли фосфорной кислоты. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме аммиака и углекислого газа накапливаются различные органические кислоты, спирты, амины и другие органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, придающие гниющему материалу отвратительный запах.

         Возбудители гниения. Среди множества микроорганизмов, способных в той или иной мере разлагать белки, особое значение имеют микроорганизмы, которые вызывают глубокий распад белков - собственно гниение. Такие микроорганизмы принято называть гнилостными. Из них наибольшее значение имеют бактерии. Гнилостные бактерии могут быть спорообразующими и бесспоровыми, аэробными и анаэробными. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство чувствительны к кислотности среды.

Наиболее распространенными и активными возбудителями гнилостных процессов являются Сенная и Картофельная палочки* - аэробные, подвижные, грамположительные, спорообразующие бактерии. Споры их отличаются высокой термоустойчивостью. Температурный оптимум развития этих бактерий 35 - 45°С, максимум роста - при температуре около 50 - 55°С; при температуре ниже 5°С они не размножаются.

* В соответствии с Международным кодексом номенклатуры бактерий сенная и картофельная палочки ввиду большого сходства объединены в один вид - Васillus subtilis.

Помимо разложения белков, такие бактерии способны разлагать пектиновые вещества, полисахариды растительных тканей, сбраживать углеводы.

          Сенная и картофельная палочки широко распространены в природе и являются возбудителями порчи многих пищевых продуктов. Они вырабатывают антибиотические вещества, подавляющие рост многих болезнетворных и сапрофитных бактерий.

Бактерии рода Рsеudоmоnas - аэробные подвижные палочки, с полярным жгутиком, не образующие спор, грамотрицательные. Многие виды холодоустойчивы, минимальная температура их роста от - 2 до - 5°С, оптимум - около 20°С. Многие псевдомонасы помимо протеолитической обладают липолитической активностью; они способны сбраживать углеводы с образованием кислот, выделять слизь.

Развитие и биохимическая активность этих бактерий значительно тормозятся при рН ниже 5,5 и 5 - 6%-ной концентрации NаСl в среде. Псевдомонады широко распространены в природе, являются антагонистами ряда бактерий и плесеней, так как образуют антибиотические вещества. Некоторые виды Рsеumоnas являются возбудителями болезней (бактериозов) культурных растений, плодов и овощей.

Протей (Ргоtеus vulgаris) - мелкие грамотрицательные бесспоровыс палочки с резко выраженными гнилостными свойствами. Белковые субстраты при развитии в них протея приобретают сильный гнилостный запах. В зависимости от условий жизни эти бактерии способны заметно менять свою форму и размеры. Протей - факультативный анаэроб; сбраживает углеводы с образованием кислот и газов. Он хорошо развивается как при температуре 25 °С, так и при 37°С, прекращая размножаться лишь при температуре около 5°С, однако может сохраняться и в замороженных продуктах.

Характерной особенностью протея является его очень высокая подвижность. Это свойство лежит в основе метода выявления протея на пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды протея выделяют токсические для человека вещества.

Клостридиум путрификум (Сlоstridium putrificum) - анаэробная подвижная, спорообразующая палочка. Относительно крупные споры ее располагаются ближе к концу клетки, которая при этом приобретает сходство с барабанной палочкой. Споры довольно термоустойчивы. Углеводы эта бактерия не сбраживает. Белки разлагают с образованием большого количества газов (NН, НS). Оптимальная температура развития 37 – 43 °С, минимальная 5 °С.

Клостридиум спорогенес (Сlоstridium sporogenes) - анаэробная подвижная спороносная палочка. Споры термоустойчивы, в клетке они расположены ближе к ее концу. Характерным является очень быстрое (в течение первых суток роста) образование спор. Эта бактерия сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная температура развития 35-40 °С, минимальная-около 5°С.

Оба вида клостридий известны как возбудители порчи баночных консервов (мясных, рыбных и др.).

Практическое значение процессов гниения. Гнилостные микроорганизмы наносят нередко большой ущерб народному хозяйству, вызывая порчу ценнейших и богатых белками продуктов питания, например мяса и мясопродуктов, рыбы и рыбопродуктов, яиц, молока и др. Но эти микроорганизмы играют большую положительную роль в круговороте веществ в природе, минерализуя белковые вещества, попадающие в почву, воду.

Нитрификация. Процесс последовательного окисления аммиака до азотистой и азотной кислот называется нитрификацией, а возбудители его—нитрифицирующими бактериями. Сущность этого процесса была раскрыта и изучена С. Н. Виноградским.

Работами С. Н. Виноградского установлено, что процесс нитрификации происходит в две фазы, каждая из которых обусловлена деятельностью специализированных аэробных бактерий. Возбудители первой фазы — нитрозные бактерии-окисляют аммиак до солей азотистой кислоты (нитритов). Возбудители второй фазы - нитратные бактерии - окисляют соли азотистой кислоты в соли азотной кислоты (нитраты).

Нитрифицирующие бактерии относятся к хемоавтотрофам. Они живут в почве, природных водоемах, обогащая их нитратами - лучшим источником азотистого питания для растений.

      Денитрификация. Процесс восстановления нитратов до молекулярного азота называется денитрификацией, а бактерии, осуществляющие его,— денитрифицирующими бактериями.

Денитрифицирующие бактерии - факультативные анаэробы. В аэробных условиях в процессе их дыхания конечным акцептором водорода является кислород. В анаэробных условиях в качестве акцептора водорода используются нитраты (некоторые используют нитриты), которые и восстанавливаются до молекулярного азота. Многие микроорганизмы восстанавливают нитраты только до нитритов.

Денитрифицирующие бактерии широко распространены в природе. Они живут в почве, природных водах. Деятельность денитрифицирующих бактерий в почве отрицательна, особенно при анаэробных условиях, так как азот нитратов, усваиваемый растениями, переходит в неиспользуемый ими свободный азот.

Фиксация молекулярного азота. Некоторые бактерии способны фиксировать свободный атмосферный азот, т. е. переводить его в связанное состояние. Они восстанавливают азот до аммиака; часть его используется самими микроорганизмами, а часть выделяется в окружающую среду.

Одни азотфиксирующие (азотусваивающие) бактерии живут свободно в почве и в воде; другие — в симбиотическом сожительстве с растениями, преимущественно бобовыми, Бактерии поселяются в бородавчатых вздутиях — клубеньках корней этих растений. Отсюда произошло и название этих бактерий — клубеньковые. Необходимую для фиксации азота энергию они получают в процессе окисления безазотистых органических соединений.

Среди свободно живущих азотфиксирующих бактерий наибольшее значение имеют следующие: аэробные бактерии рода азотобактер (Аzоtоbасtег) — слегка приплюснутые кокки, часто объединенные попарно, имеющие слизистую капсулу;  анаэробные бактерии, открытые С. Н. Виноградскнм, Clostridium pasterianum—подвижные спорообразующие палочки, способные сбраживать углеводы по типу маслянокислого брожения, которое и служит этим бактериям источником энергии для связывания молекулярного азота.

Азотфиксирующие бактерии имеют большое значение. В результате их деятельности почва обогащается доступной для растений формой азотистого питания.

 В практике сельского хозяйства в качестве бактериального удобрения используют препараты азотфиксирующих бактерий—азотобактерин (из культур азотобактера) и нитрагин (из культур клубеньковых бактерий).

         Тема № 7. Инфекции и иммунитет. Пищевые заболевания  (пищевые инфекции и пищевые отравления).

           Окружающая среда, кожные покровы и слизистые оболочки верхних дыхательных путей и других органов человека и животных заселены многочисленными группами микроорганизмов. Их жизнь тесно связана с жизнью хозяина (макроорганизма). В большинстве случаев сложившийся симбиоз является выгодным  для микро- и макроорганизмов. Например, пищеварительный тракт человека и животных заселен микрофлорой которая питается за счет хозяина и одновременно помогает организму лучше переваривать пищу и корма, создавая при этом неблагоприятные условия для жизнедеятельности других микробов (мутуализм).

              В отдельных случаях микроорганизм обладает способностью проникать во внутреннюю среду организма-хозяина и размножаться, принося ему вред (паразитизм). Поскольку микроорганизмы-паразиты приспособились в процессе эволюции к обитанию в определенных тканях  организма животных и людей, их присутствие и размножение приводит к повреждению клеток, нарушению функции органов и систем организма, а следовательно, к заболеваниям.

           Роль микроорганизмов в формировании инфекции.  Микроорганизмы, способные вызывать заболевания человека, растений и животных, называют патогенными (болезнетворными). Потенциальную способность микроорганизмов приживляться в тканях и полостях организма, а также размножаться в них называют патогенностью.  Признак патогенности является потенциальным, так как он может быть реализован только в определенных условиях и при восприимчивости организма.

           Патогенные микроорганизмы обладают специфичностью, т.е. вызывают характерные изменения в организме. Это обусловлено их биологическими признаками, местом приживления, распространением в организме и поражением соответствующих органов и тканей.

           Степень патогенности  микроорганизмов одного и того же вида, которую принято называть вирулентностью, может изменяться в значительных пределах. Вирулентность присуща только живым, активно развивающимся клеткам, и тесно связана с их способностью внедряться в ту или иную ткань, размножаться в ней и подавлять защитные функции организма. Большинство патогенных микроорганизмов при размножении вырабатывают особые вещества - токсины, характеризующиеся исключительно высокой ядовитостью. Различают две группы токсинов: экзотоксины и эндотоксины, которые имеют неодинаковые химический состав и свойства.

           Экзотоксины представляют собой белки, выделяющиеся при жизни микробов в окружающую среду. Они обладают выраженной специфичностью, поражают определенные органы и ткани с проявлением характерных внешних признаков. Например, экзотоксин гемолизин растворяет эритроциты, некротоксин вызывает омертвление тканей. Большинство токсинов разрушается при 70-80 °С, т.е. они неустойчивы к действию высокой температуры (термолабильны).

             Эндотоксины по химической  природе являются липополисахаридными соединениями, прочно связанными с  микробными клетками. При жизни микроба они в окружающую среду не выделяются. Выделение эндотоксинов в организм хозяина  происходит после гибели и разрушении  клеток микроорганизмов в результате действия  защитных реакций макроорганизма (иммунитет). Эндотоксины не обладают специфичностью действия, при этом симптомы их воздействия  напоминают признаки общей интоксикации организма. Эти вещества выдерживают нагревание до 80-100 °С, а некоторые и до более высоких температур.

           Экзотоксины и эдотоксины, различные ферменты (нейрамидаза, гиалуронидаза, фибринолизин и др.), а также слизистые вещества (капсула)обусловливают патогенность микроорганизмов и поэтому их называют факторами патогенности.

            Существует большая группа микроорганизмов, которые  в обычных условиях обитания в организме человека или животных не причиняют вреда. Однако при ослаблении организма эти микроорганизмы проявляют свои патогенные свойства и могут вызывать заболевания. Такие микроорганизмы называют условно-патогенными

            Патогенные свойства микроорганизмов находятся под контролем групп генов или отдельных генов, локализованных в нуклеоиде или плазмидах. При определенных условиях существования в этих генах происходят изменения, в результате чего патогенность микроорганизмов может снизиться или, наоборот, повыситься.

             Искусственное получение микроорганизмов с ослабленной патогенностью имеет большое практическое значение. Штаммы с ослабленной патогенностью используют в качестве живых вакцин, применяемых для предупреждения заразных болезней человека и животных.

              Источники и пути передачи возбудителей инфекционных болезней.  Инфекция или инфекционный процесс, - это совокупность физиологических  и патологических процессов, возникающих  в организме человека, животного или растения после внедрения и размножения в нем патогенных микроорганизмов. В возникновении инфекционного процесса решающее значение имеют состояние защитных сил макроорганизма, количество (доза) и качество (вирулентность) проникшего в организм микроорганизма, пути его внедрения в макроорганизм и условия окружающей среды, в которой протекает взаимодействие между микро - макроорганизмами. Значение этих факторов неодинаково при различных инфекциях. Микроорганизмы, обладающие высокой вирулентностью  ( например, возбудитель чумы, кори, сибирской язвы и др.),играют главную роль в возникновении и исходе  инфекционного процесса. В большинстве же случаев возникновение инфекционного процесса и особенно исход его определяются в основном состоянием макроорганизма.

          С биологической точки зрения инфекционный процесс представляет собой разновидность парзитизма, когда «борются» два живых организма. При этом в макроорганизме развиваются патологические изменения в тканях, в которых размножаются микроорганизмы, а также происходит мобилизация защитных сил для уничтожения возбудителя и ликвидация последствий его болезнетворного действия.  В том случае, когда патологические изменения в тканях макроорганизма прогрессируют развивается инфекционная болезнь.

             Инфекционную болезнь следует рассматривать как крайнюю степень инфекционного процесса, т.е. неудавшуюся попытку макроорганизма ликвидировать болезнетворное действие микроорганизма.

              Инфекционные болезни отличаются от других заболеваний тем, что они вызываются живыми возбудителями и являются заразными, т.е. могут передаваться от больных здоровым, а также наличием скрытого периода, специфическими реакциями организма на внедренный возбудитель и выработкой у макроорганизма иммунитета. Период от момента проникновения микроорганизма в макроорганизм до появления первых признаков болезни или других изменений, обнаруживаемых с помощью биохимических или иммунологических методов, называют инкубационным.

Продолжительность инкубационного периода в зависимости от вирулентности и дозы возбудителя, места его проникновения, а также физиологического состояния организма может составлять от нескольких дней (сибирская язва, столбняк) до нескольких недель (брюшной, сыпной тиф, туберкулез, бруцеллез) и даже несколько лет (проказа).

Во время инкубационного периода возбудитель интенсивно размножается в организме, может происходить его выделение в окружающую среду. В этом случае человек или животное, не имея видимых признаков заболевания, уже опасны как источник заражения других.

После инкубационного наступает клинический период, когда развивается симптомокомплекс , характерный для данного заболевания, после которого наступает выздоровление или гибель человека или животного. Переболевшие люди или животные могут в течение длительного времени выделять возбудителя во внешнюю среду при кашле, чихании, с мочой и фекалиями. Для них этот возбудитель не представляет опасности, так как в их организме выработалась устойчивость к нему (иммунитет). Однако у окружающих людей и животных выделенный возбудитель может вызвать инфекционный процесс.

Существенное значение в развитии инфекционной болезни имеют так называемые «входные ворота инфекции», т. е. те органы и ткани, через которые микроорганизмы попадают в макроорганизм. Так, сальмонеллы вызывают заболевание только в том случае, если они попали на слизистую оболочку кишечника, бациллы сибирской язвы — на поврежденную кожу слизистые оболочки глаз и кишечника, вирусы гриппа, кори — на слизистые оболочки верхних дыхательных путей.

Следовательно, источниками возбудителей являются больные и переболевшие той или иной инфекционной болезнью люди и животные, которые могут выделять патогенные микроорганизмы во внешнюю среду. Передача возбудителей от больных людей и животных здоровым происходит при их тесном контакте друг с другом, при употреблении загрязненной возбудителем пищи и воды, при вдыхании зараженного воздуха, а также через укусы кровососущих насекомых (комаров, клещей, вшей и др.). Поэтому мясо, молоко, шкуры, субпродукты животных, пищевые продукты животного и растительного происхождения, а также воздух, воду и все предметы окружающей среды, загрязненные патогенными микроорганизмами, называют факторами передачи возбудителей инфекции.

Инфекционные заболевания, свойственные человеку, называют антропонозами, а присущие животным, но к которым восприимчив и человек, — зооантропонозами.

При развитии инфекционного процесса микроорганизмы из первичного очага («входные ворота инфекции») могут поступать в кровь и, не размножаясь в ней, распространяться по всему организму. Такое состояние организма называют бактериемией, а при вирусных заболеваниях — вирусемией.

Характерным для некоторых инфекционных заболеваний является то, что микроорганизмы, попадая в кровь, начинают в ней размножаться и проникают в органы и ткани организма. В этом случае развивается септицемия. Известны болезни, когда в результате септицемии микроорганизмы, размножаясь в каких-либо органах и тканях, обусловливают их разрушение с образованием гнойных очагов. Септический процесс, приводящий к образованию гнойных очагов в различных органах и тканях организма, называется септикопиемией. Состояние организма, при котором в кровь и органы поступают токсины микроорганизмов, называется токсинемией.

После того как определенная доза микроорганизмов попала в макроорганизм, они либо размножаются там, вызывая местную инфекцию (стрептококки, стафилококки), либо распространяются по всему организму током крови, вызывая генерализованную инфекцию (пастереллы, бацилла антракса и др.).

Различают экзогенную и эндогенную инфекции. Экзогенная инфекция возникает вследствие внедрения микроорганизмов в макроорганизм из окружающей среды, с пищей, водой, воздухом, почвой, а также с выделениями больного человека или животного. При эндогенной инфекции возбудитель находится в организме в составе заселяющей его микрофлоры.

Болезни (сибирская язва, дифтерия, чума, рожа и т. д.), вызываемые одним возбудителем, относятся к простой инфекции, или моноинфекции. Болезни (например, туберкулез и бруцеллез животных, чума и сальмонеллез и др.), вызванные двумя и более возбудителями, называют смешанной инфекцией 

Наслоение нового возбудителя на развившуюся инфекцию (чума свиней и пастереллез, чума и сальмонеллез, парагрипп и пастереллез), в результате которого новый возбудитель становится ведущим в инфекционном процессе, называют вторичной (се-кундарной) инфекцией.

В некоторых случаях животное перенесло болезнь, но вскоре снова инфицировалось этим же видом микроорганизма (туберкулез, дизентерия, колибактериоз). Это явление называется реин-фекцией.

Возможны случаи, когда после заражения болезнь протекает вяло (стерто), защитные силы организма человека или животного вследствие этого ослабевают. Возбудитель, оставшийся в организме, активизируется и атакует организм с новой силой, осложняя течение болезни. Это явление называют рецидив (возврат болезни). Рецидивы свойственны болезням (бруцеллез, туберкулез, возвратный и брюшной тиф, сап и пр.), при которых вырабатывается недостаточно прочный иммунитет.

Непрерывный процесс следующих друг за другом однородных инфекционных заболеваний, выражающийся в значительном их распространении, называется эпидемическим процессом. В зависимости от количества заболевших инфекционной болезнью людей или животных определяется интенсивность эпидемического процесса: спорадическая заболеваемость — единичные случаи заболевания; эпидемическая вспышка — заболевание среди групп людей на ограниченной территории (населенный пункт, дом), связанное с общим источником заражения (молоко, молочные и мясные продукты, вода и т. д,); эпидемия — значительное распространение данной инфекционной болезни на большой территории (район, область); пандемия — сильная эпидемия, распространяющаяся среди людей на больших территориях (несколько областей, целые страны, несколько стран). Степень распространения инфекционных болезней среди животных характеризуют терминами «эпизоотия» и «панзоотия», соответствующими терминам «эпидемия» и «пандемия».

Иммунитет. Иммунитет (от лат.immunitas - освобождение, избавление от чего-либо) — это невосприимчивость организма к любым генетически чужеродным для него агентам, в том числе микроорганизмам и их токсинам. Иммунитет поддерживает биологическую индивидуальность организма, а также защищает его от внедрения чужеродных веществ. Наука, изучающая вопросы иммунитета, называется иммунологией.

У животных в процессе эволюции и индивидуального развития выработались неспецифические и специфические системы защиты генетического постоянства организма, существующие на самых ранних этапах индивидуального развития.

Неспецифический иммунитет, или естественная резистентность. Это врожденные механизмы поддержания генетического постоянства организма, обладающие -широким диапазоном противомикробного действия. К факторам естественной резистентности относятся барьерная (защитная) функция кожи, слизистых оболочек и лимфатических узлов, выделительная функция некоторых органов, нормальная микрофлора кишечника и дыхательных путей. Барьерная функция кожи и слизистых оболочек заключается в том, что они не позволяют микробам проникнуть в организм, а кислая среда потовых желез и наличие жира на коже препятствуют их размножению. Большинство микроорганизмов, попадая на слизистые оболочки ротовой полости и глаза, погибают под действием особого вещества — лизоцима, продуцируемого специальными клетками. При проникновении микроорганизмов через защитный барьер кожи и слизистых оболочек они попадают в лимфатические железы, где и разрушаются. Лимфатические железы — своеобразный фильтр, задерживающий и обезвреживающий микроорганизмы.

Одним из очень важных факторов неспецифического иммунитета является выделительная функция почек, кишечника, потовых желез. Выводя из организма ненужные продукты метаболизма, эти органы очищают кровь от проникших микробов. У человека и животных в процессе эволюции в кишечнике и на слизистых оболочках носовой полости и трахеи заселились определенные виды микроорганизмов. Эта так называемая нормальная микрофлора губительно действует на большинство патогенных микроорганизмов, препятствуя их размножению.

Различают клеточные и гуморальные факторы естественной резистентности. Клеточные факторы участвуют в защите организма посредством фагоцитоза. Фагоцитоз бактерий осуществляют специальные клетки, которые были названы И. И. Мечниковым макро- и микрофаги (фагоциты). Фагоцитоз протекает в несколько стадий: направленное перемещение фагоцитов к объекту, захватывание и переваривание объекта.

Гуморальные факторы естественной резистентности представлены в организме различными противомикробными веществами: естественные (нормальные) иммуноглобулины, лизоцим, бетали-?ин, комплемент, пропердин, лактоферрин, бактерицины. Все эти вещества являются белками, которые лизируют микроорганизмы и активизируют фагоцитоз.

Специфический иммунитет. Он связан с иммунной системой организма. Иммунной системой называют совокупность лимфоидных органов и тканей, производящих специальные клетки (лимфоциты), способные взаимодействовать с чужеродными агентами и синтезировать специфические белки. В состав иммунной системы входят: тимус, или вилочковая железа, сумка, или бурса Фабрициуса (у кур), пейеровы бляшки, расположенные под слизистой оболочкой тонкого отдела кишечника, костный мозг, кровь, селезенка и лимфатические узлы.

Считают, что чужеродные белки, в том числе микробы и их токсины, попадая в организм, захватываются макрофагами, ферментами которых разрушаются, и в виде коллоида попадают в кровь. Образовавшийся при этом коллоидный комплекс адсорбируется на специальных клетках — лимфоцитах, и после серий преобразований эти клетки начинают синтезировать белки (иммуноглобулины), обладающие свойством разрушать микробные клетки или нейтрализовать их токсины.

Все белковые вещества, в том числе микроорганизмы и их токсины, способные вызывать в организме человека и животных выработку защитных белков — иммуноглобулинов, называют антигенами. Защитные белки, выработанные организмом в ответ на введенный антиген, называют антителами. Антигенами являются кроме белков и микроорганизмов яды растительного и животного происхождения, различные ферменты. Выработка в организме антител, действие которых направлено строго против родственного им антигена, определяет специфичность иммунитета, а антитела относят к специфическим факторам иммунитета.

По строению все антитела независимо от антигена, вызвавшего их образование, представляют собой крупномолекулярные белки — глобулины. Однако их функции чрезвычайно разнообразны. Так, первая группа антител, соединяясь с клетками микроорганизмов, вызывает их склеивание. Этот процесс называется агглютинацией, а антитела, вызывающие агглютинацию микроорганизмов, — агглютининами. Вторая группа антител, соединяясь с растворимыми белками микроорганизма, вызывает их осаждение. Эти антитела называются преципитинами, а реакция осаждения микробного белка — реакцией преципитации. Третья группа антител, соприкасаясь с микроорганизмами, вызывает их растворение (лизис). Такие антитела называются бактериолизинами, а реакция — бактериолизом.

Имеются также антитела, способные нейтрализовать токсины и вирусы. Это — антитоксины и вируснейтрализующие антитела. В связи с тем что все антитела образуются в ответ на введение в организм антигена и представляют собой белки, они способны соединяться с антигеном.

Иммунный ответ организма на проникший антиген сопровождается не только продуцированием специфических иммуноглобулинов — антител, обусловливающих невосприимчивость, но и развитием состояния повышенной чувствительности к повторному введению антигена.

Изменение реакции макроорганизма под действием микроорганизмов, токсинов, лечебных препаратов и других веществ называется аллергией, а вещества, вызывающие аллергию, — аллергенами. Аллергенами могут быть различные белковые вещества животного и растительного происхождения (сыворотка крови, чешуйки кожи, шерсть, волос, пыльца растений), а также некоторые химические соединения и лекарства.

Аллергия проявляется в трех формах: гиперергия, гипергия и анергия. Гиперергия — это повышенная реакция клеток организма на повторное попадание (внедрение) аллергенов; проявляется в виде анафилаксического шока (потливость, дрожь, непроизвольное выделение мочи, кала, судороги). Анафилаксический шок часто наступает после введения лечебных сывороток крови. Гиперергия может проявиться в виде крапивницы, воспаления слизистых оболочек глаз и носовой полости при вдыхании пыльцы растений, чешуек кожи животных. Гипергия — это пониженная реакция, а анергия — отсутствие реакции клеток на введение аллергена.

По происхождению различают иммунитет врожденный (видовой) и приобретенный.

Врожденный, или видовой, иммунитет. Это невосприимчивость одного вида животного к инфекционным болезням, поражающим другие виды. Видовой иммунитет передается по наследству и связан с особенностями строения и обмена веществ у животных. Например, для всех видов домашних животных характерен врожденный иммунитет к венерическим болезням, человек же никогда не болеет чумой свиней, а жвачные — сапом.

Приобретенный иммунитет. Это невосприимчивость (устойчивость) организма к инфекционным агентам или их токсинам, приобретенная индивидуумом в течение жизни. Такая форма иммунитета создается самим организмом после перенесенного инфекционного заболевания (естественный приобретенный иммунитет) или же вследствие введения в организм человека как убитых, так и живых микроорганизмов (искусственный приобретенный иммунитет). Результатом введения в организм убитых или живых микроорганизмов (вакцин) является создание активного искусственного приобретенного иммунитета. Если же в организм вместо вакцины вводят сыворотку крови, содержащую защитные белки — иммуноглобулины, то возникает пассивный искусственный иммунитет.

Приобретенный иммунитет (естественный, активный и пассивный искусственный) является строго индивидуальным и характеризуется невосприимчивостью к данному возбудителю конкретного индивидуума.

Невосприимчивость организма к тому или иному вирусу, микробу, токсину и грибку называется соответственно антивирусным, антимикробным, антитоксическим и антигрибковым иммунитетом.

Если невосприимчивость сопровождается полным удалением возбудителя из организма, то иммунитет называют стерильным, а в случае сохранения невосприимчивости только при наличии в организме возбудителя — нестерильным.

Реакции иммунитета (агглютинации, преципитации и др.) широко используют при лабораторной диагностике инфекционных болезней, идентификации различных микроорганизмов, определении групп крови и т. д. Методы приготовления вакцин и иммунных сывороток, применяемых в целях предупреждения вспышек инфекционных болезней у человека и животных, также тесно связаны с вопросами иммунологии.

У животных в процессе эволюции и индивидуального развития выработались неспецифические и специфические системы защиты генетического постоянства организма, существующие на самых ранних этапах индивидуального развития.

Неспецифический иммунитет, или естественная резистентность. Это врожденные механизмы поддержания генетического постоянства организма, обладающие широким диапазоном противомикробного действия. К факторам естественной резистентности относятся барьерная (защитная) функция кожи, слизистых оболочек и лимфатических узлов, выделительная функция некоторых органов, нормальная микрофлора кишечника и дыхательных путей. Барьерная функция кожи и слизистых оболочек заключается в том, что они не позволяют микробам проникнуть в организм, а кислая среда потовых желез и наличие жира на коже препятствуют их размножению. Большинство микроорганизмов, попадая на слизистые оболочки ротовой полости и глаза, погибают под действием особого вещества — лизоцима, продуцируемого специальными клетками. При проникновении микроорганизмов через защитный барьер кожи и слизистых оболочек они попадают в лимфатические железы, где и разрушаются. Лимфатические железы — своеобразный фильтр, задерживающий и обезвреживающий микроорганизмы.

Одним из очень важных факторов неспецифического иммунитета является выделительная функция почек, кишечника, потовых желез. Выводя из организма ненужные продукты метаболизма, эти органы очищают кровь от проникших микробов. У человека и животных в процессе эволюции в кишечнике и на слизистых оболочках носовой полости и трахеи заселились определенные виды микроорганизмов. Эта так называемая нормальная микрофлора губительно действует на большинство патогенных микроорганизмов, препятствуя их размножению.

Различают клеточные и гуморальные факторы естественной резистентности. Клеточные факторы участвуют в защите организма посредством фагоцитоза. Фагоцитоз бактерий осуществляют специальные клетки, которые были названы И. И. Мечниковым макро- и микрофаги (фагоциты). Фагоцитоз протекает в несколько стадий: направленное перемещение фагоцитов к объекту, захватывание и переваривание объекта.

Гуморальные факторы естественной резистентности представлены в организме различными противомикробными веществами: естественные (нормальные) иммуноглобулины, лизоцим, беталиин, комплемент, пропердин, лактоферрин, бактерицины. Все эти вещества являются белками, которые лизируют микроорганизмы и активизируют фагоцитоз.

Специфический иммунитет. Он связан с иммунной системой организма. Иммунной системой называют совокупность лимфоидных органов и тканей, производящих специальные клетки (лимфоциты), способные взаимодействовать с чужеродными агентами и синтезировать специфические белки. В состав иммунной системы входят: тимус, или вилочковая железа, сумка, или бурса Фабрициуса (у кур), пейеровы бляшки, расположенные под слизистой оболочкой отдела тонкого кишечника, костный мозг, кровь, селезенка и лимфатические узлы.

Считают, что чужеродные белки, в том числе микробы и их токсины, попадая в организм, захватываются макрофагами, ферментами которых разрушаются, и в виде коллоида попадают в кровь. Образовавшийся при этом коллоидный комплекс адсорбируется на специальных клетках — лимфоцитах, и после серий преобразований эти клетки начинают синтезировать белки (иммуноглобулины), обладающие свойством разрушать микробные клетки или нейтрализовать их токсины.

Все белковые вещества, в том числе микроорганизмы и их токсины, способные вызывать в организме человека и животных выработку защитных белков — иммуноглобулинов, называют антигенами. Защитные белки, выработанные организмом в ответ на введенный антиген, называют антителами. Антигенами являются кроме белков и микроорганизмов яды растительного и животного происхождения, различные ферменты. Выработка в организме антител, действие которых направлено строго против родственного им антигена, определяет специфичность иммунитета, а антитела относят к специфическим факторам иммунитета.

По строению все антитела независимо от антигена, вызвавшего их образование, представляют собой крупномолекулярные белки — глобулины. Однако их функции чрезвычайно разнообразны. Так, первая группа антител, соединяясь с клетками микроорганизмов, вызывает их склеивание. Этот процесс называется агглютинацией, а антитела, вызывающие агглютинацию микроорганизмов, — агглютининами. Вторая группа антител, соединяясь с растворимыми белками микроорганизма, вызывает их осаждение. Эти антитела называются преципитинами, а реакция осаждения микробного белка — реакцией преципитации. Третья группа антител, соприкасаясь с микроорганизмами, вызывает их растворение (лизис). Такие антитела называются бактериолизинами, а реакция — бактериолизом.

Имеются также антитела, способные нейтрализовать токсины и вирусы. Это — антитоксины и вируснейтрализующие антитела. В связи с тем что все антитела образуются в ответ на введение в организм антигена и представляют собой белки, они способны соединяться с антигеном.

Иммунный ответ организма на проникший антиген сопровождается не только продуцированием специфических иммуноглобулинов — антител, обусловливающих невосприимчивость, но и развитием состояния повышенной чувствительности к повторному введению антигена.

Кишечные заболевания. Заболевания, причиной которых служит пища, инфицированная патогенными или условно-патогеннымит микроорганизмами называют алиментарными (пищевыми). Пищевые заболевания в зависимости от специфических особенностей обычно подразделяют на две группы: пищевые инфекции и пищевые отравления. Сравнительная характеристика пищевых заболеваний приведена в таблице 2.

Таблица 2

Пищевые инфекции

Пищевые отравления

1. Заразные заболевания

1.Незаразные заболевания

2. Распространяются не только через пищу, но также через воду, воздух, контактно-бытовым путем и др.

2. Возникают только при употреблении инфицированной пищи.

3. Большинство возбудителей в пищевых продуктах не размножается, но длительное время сохраняет жизнеспособность и вирулентность

3. Возбудители интенсивно размножаются в пищевых продуктах и образуют токсины

4. Заражающая доза микробов может быть невелика.

4. Заболевание возникает при значительной концентрации микробов в продукте.

5. Инкубационный период довольно продолжительный, характерный для каждого заболевания: от нескольких дней, до нескольких недель и более.

5. Инкубационный период короткий: обычно несколько часов.

Эти микроорганизмы попадают на продукты разными путями. Они могут быть занесены руками персонала, обрабатывающего или отпускающего пищевые продукты, воздушно-капельным или воздушно-пылевым путем, с загрязненной водой, льдом, тарой и упаковочными материалами. Некоторые продукты (мясо, молоко и др.) представляют опасность, если они получены от больного животного. Патогенные микробы также распространяются насекомыми и домашними животными.

        Пищевые инфекции. Для возникновения пищевых инфекций достаточно содержания в пище относительно небольшого числа живых клеток возбудителя. Пищевые продукты служат чаще лишь передатчикам] нтогенных микроорганизмов, которые в них обычно не раз шожаются, но длительное время сохраняют свою жизне яособность и вирулентность. Источником заражения про-(уктов питания — возбудителями пищевых инфекций — шляются люди (больные, бактерионосители) и животные. Пи-цевые инфекции заразны и могут принимать характер эпидемии.

Наибольшую опасность представляют так называемые кишечные инфекции: холера, брюшной тиф, паратифы, рзентерия. Их объединяет: источник — человек; способ заражения — через рот, пути распространения — инфицированные пища, вода, посуда др.

Холера — древнейшая, особо опасная инфекция. Возбудитель — холерный вибрион (УШгю спо!егае), подвижный, не образует спор и капсул, грамотрицательный. Холерный вибрион — факультативный анаэроб, растет только в щелочной или нейтральной среде при 14—42°С (оптимум 25— 37"С). Погибает при нагревании до 80°С через 5 мин. При 100"С — мгновенно. Чувствителен к действию УФО, кислот, к высушиванию. Хорошо сохраняется при низких температурах. На пищевых продуктах остается жизнеспособным до 10—15 сут., в почве — до 2 мес., в воде — несколько суток. Холерный вибрион продуцирует экзотоксин (холероген), эндотоксин и множество ферментов патогенности. Инкубационный период от нескольких часов до 2—3 сут. Степень тяжести заболевания различна; бывают тяжелые формы инфекции с высокой летальностью.

Возбудители брюшного тифа, паратифов и дизентерии входят в семейство кишечных бактерий — Еп1;егоЬас1;епасеае. Они имеют много общих признаков. Все палочки грамотри-цательны, не образуют спор, факультативные анаэробы, растут при 15—41°С (оптимум 37°С). При кипячении и при обработке дезинфицирующими средствами они погибают через несколько секунд. Различаются биохимической активностью, антигенным составом и вызываемыми заболеваниями. Источником и "резервуаром" инфекции служит человек (больной или носитель).

        Брюшной тиф и паратифы — возбудители относятся к роду 8а1топе11а. Бактериальные клетки содержат сильнодействующий термостабильный эндотоксин. В природе (воде, почве), на пищевых продуктах сохраняются длительное время, например на сливочном масле, сыре, сале, на овощах, фруктах --до двух недель. Инкубационный период длится 10—14 дней. Заболевание характеризуется воспалением и изъязвлением тонкого кишечника, попаданием патогена в кровь и интоксикацией всего организма. Перенесенное заболевание нередко приводит к длительному бактерионосительству.

Бактериальная дезинтврия вызывается рядом биологически близких бактерий, объединенных в род 8Ы§е11а. Наи-| более распространенными возбудителями являются виды Зонне и Флекснер. Отличительные особенности шигелл -неподвижность, наличие микроворсинок, способность проникать в клетки толстого кишечника и размножаться в них, вызывая язвенное воспаление. Шигеллы содержат сложный эндотоксин. Инкубационный период продолжается от 2 д> 7 дней. В пищевых продуктах, на посуде сохраняются дс 10—20 дней. Палочки Зонне способны размножаться при повышенной температуре в пищевых продуктах, особенно в молочных (сметана, творог, крем). При употреблении в пищу таких продуктов, содержащих большое количество бактерий, заболевание протекает нетипично, как пищевое отравление типа токсикоинфекции.

Вирусный гепатит А (болезнь Боткина) — одна из наиболее распространенных пищевых инфекций. Возбудитель - - мелкий, РНК-содержащий вирус. Вирус выдерживает нагревание до 60°С в течение почти 2 с, длительно сохраняется на холоде. Источник заражения — человек (больной или вирусоноситель). Вирусным гепатитом А заражаются в основном через пищевые продукты и воду. Переносчиками могут быть мухи. Инкубационный период 3—6 недель. Вирус поражает печень, циркулирует в крови. Выделяется с испражнениями.

В профилактике бактериальных кишечных инфекций и гепатита А особое значение имеет соблюдение работниками торговых и пищевых предприятий правил личной и производственной гигиены.

К пищевым инфекциям, передающимся человеку от животного (больного или бактерионосителя), относятся бруцеллез, туберкулез, сибирская язва, ящур. Их называют зоонозами (зооантропонозы).

Бруцеллез — заболевание, которое поражает крупный и мелкий рогатый скот, свиней, крыс и других животных. Возбудители — бруцеллы — мелкие кокковидные бактерии, неподвижные, грамотрицательные, не образуют спор, аэробы. Содержат эндотоксин. Крайние границы роста 6— 45"С, оптимум 37°С. При нагревании до 60—65°С погибают через 20—30 мин, при кипячении - - через несколько секунд.

Бруцеллы характеризуются большой устойчивостью и жизнеспособностью В пищевых продуктах - - масле, брынзе, замороженном мясе, сыре - - они сохраняются в течение нескольких месяцев.

Люди заражаются алиментарным путем — через молоко и молочные продукты, а также при контакте с животными и разделке туш. Для человека наиболее опасен возбудитель бруцеллеза овец и коз. Инкубационный период 1—3 недели и более. Заболевание протекает тяжело, с поражением опорно-двигательного аппарата, печени, селезенки, нервной и половой систем и нередко принимает хроническую форму. Молоко из зараженных хозяйств пастеризуют при повышенной температуре (70"С) в течение 30 мин; кипятят 5 мин или стерилизуют. Мясо подвергают длительному провариванию небольшими кусками или направляют на переработку в консервное производство.

Туберкулез вызывают микобактерии рода МусоЪас1;епит, относящиеся к актиномицетам. Форма клеток изменчива: палочки прямые, изогнутые и ветвистые. Они аэробы, неподвижны, спор не образуют, но благодаря высокому содержанию миколовой кислоты и липидов устойчивы к воздействию кислот, щелочей, спирта, нагреванию и высушиванию. В воде, замороженном мясе сохраняются до года, в сыре — 2 мес., в масле — до 3 мес. Микобактерии чувствительны к солнечному свету, УФО, высокой температуре: при 70"С они погибают через 10 мин, при 100°С — через 10 с. Существует несколько видов возбудителей, из них для человека опасны три: человеческий, бычий и птичий.

Туберкулез отличается от других инфекций и инкубационным периодом — от нескольких недель до нескольких лет и продолжительностью заболевания. Микобактерии сен держат ряд токсичных веществ, освобождающихся при распаде их клеток.

Возбудители проникают в макроорганизмы контактным! и алиментарным путями. С целью профилактики пищевых! заболеваний не разрешено использовать в пищу молоко от! больных животных. Куриные яйца из зараженных хозяйств! используют в кондитерском производстве при условии вы-| сокой температурной обработки. Мясо в зависимости от сте-1 пени поражения проваривают несколько часов, перерабатывают в консервы или подвергают технической утилизации.

Сибирская язва относится к числу особо опасных ин-1 фекций. Возбудитель — ВасШиз апШгас1з — крупная, неподвижная споровая палочка; клетки часто располагаются цепочкой, аэроб. Вегетативные формы погибают при 75°С| через 2—3 мин. Споры термоустойчивы — выдерживают кш пячение в течение более часа и даже автоклавирование до! 10 мин; десятки и сотни лет сохраняются в почве. Возбуди-1 тель образует сложный экзотоксин.

Сибирской язвой болеют почти все виды домашних животных, поглощая с кормом споры возбудителя. Люди заражаются при прямом контакте с больным животным, через инфицированное кожевенное и меховое сырье, предметы и изделия из него. Сибирская язва у человека может протекать в трех формах: кишечной, легочной и кожной. "В стране благодаря систематическим профилактическим мероприятиям ветеринарной и медицинских служб случаи заболевания встречаются редко.

Ящур — острозаразная болезнь крупного рогатого скота, овец, коз, свиней. Возбудитель — мелкий, РНК-содер-жащий вирус. Вирус ящура сохраняется в масле до 25 дней, в мороженом мясе — до 145 дней; чувствителен к нагреванию (70°С выдерживает 15 мин, при 100"С погибает моментально), формалину и щелочам. Человек может заразиться через молоко, мясо, а также при контакте с больными животными и предметами ухода за ними. Инкубационный период — от 2 до 18 дней. Вирус проникает в кровь. Заболевание сопровождается появлением на слизистой ротовой полости пузырьков, которые затем лопаются и превращаются в болезненные язвы.

Мясо от больных или подозрительных на заболевание ящуром животных подвергают длительному провариванию и используют для приготовления колбас, консервов. Молоко подвергают тепловой обработке при 80°С в течение 30 мин или кипятят 5 мин и реализуют в хозяйстве.

          Пищевые отравления. Они связаны с употреблением в пищу внешне доброкачественных продуктов, содержащих живые клетки возбудителей или их токсины. Пищевые отравления, как правило, путем прямого контакта не передаются. Они характеризуются острым, но в основном быстрым течением процесса и проявляются вскоре после употребления зараженной пищи (обычно через несколько часов). Пищевые отравления могут протекать либо по типу интоксикаций (токсикозов), либо по типу токсикоинфекций.

          Пищевые интоксикации (токсикозы). Пищевые интоксикации (токсикозы) могут возникать при отсутствии в пище живых клеток токсигенных микроорганизмов, но при наличии их токсинов, которые относятся к экзотоксинам. Они накапливаются в продукте при жизни бактерий, а далее (например, при тепловой обработке продукта) клетки токсигенных микроорганизмов могут погибнуть, а токсин сохраняется.

Пищевые интоксикации бывают бактериальной и грибковой природы. К бактериальным интоксикациям относятся ботулизм и стафилококковая интоксикация.

Ботулизм - это тяжелое пищевое отравление, возникающее в результате употребления пищи, содержащей токсины бактерий Clostridium botulinum. Эти бактерии широко распространены в природе и встречаются в почве, иле водоемов, кишечнике рыб (особенно осетровых) и теплокровных животных, на поверхности плодов, овощей, грибов. Попав каким - либо путем в пищевые продукты, возбудитель ботулизма в благоприятных для него условиях размножается и выделяет токсин. При этом в продуктах, как правило, отсутствуют видимые признаки их порчи.

Возбудитель ботулизма - спорообразующая палочка (рисунок 4), в которой спора располагается на конце клетки и клетка имеет вид теннисной ракетки. Это строгий анаэроб, холодоустойчив, чувствителен к кислой реакции среды (не развивается при рН ниже 4,5 - 4). Поваренная соль задерживает его развитие и токсинообразование, но не разрушает уже образовавшийся в продукте токсин. Споры очень устойчивы к высоким температурам, они переносят нагревание до 100° в течение 5 - 6 ч и до 120° - 10 - 20 мин. Поэтому при недостаточной тепловой обработке зараженного продукта (колбас, баночных консервов и др.) споры могут сохранять жизнеспособность, а анаэробные условия (например, в глубоких слоях продукта или в консервной банке) способствуют развитию бактерий и токсинообразованию.

Ботулинический экзотоксин - наиболее сильный из известных микробных ядов. Этот токсин чрезвычайно устойчив, он не разрушается под действием соляной кислоты желудочного сока, при продолжительном нагревании продукта до 70—80 °С (в течение 1 ч) и даже сохраняется при кипячении в течение 10 - 15 мин, а также при замораживании продуктов, мариновании, посоле, копчении.

Попадая с пищей в кишечник человека, токсин поступает в кровь и поражает сердечно-сосудистую и центральную нервную систему. Инкубационный период продолжается обычно от 6 до 24 ч и более. Основные признаки заболевания - расстройство зрения, речи и дыхания, паралич мышц. Смертность от ботулизма довольно высокая.

Поражение организма ботулизмом чаще всего наступает при употреблении различного рода консервов, особенно растительных с низкой кислотностью, рыбных, преимущественно из осетровых пород. Эффективным лечебным средством являете антиботулиническая сыворотка. Профилактикой ботулизма является соблюдение технологических режимов обработки и кон сервирования пищевых продуктов и строгое соблюдение санитарно - гигиенического режима.

Стафилококковая интоксикация вызывается не всеми типам стафилококков, а только патогенными стафилококками и стоит на первом месте среди отравлений бактериальной природы. Пищевые отравления преимущественно вызываются золотистым стафилококком (Staphilococcus aureus), образующим в клетка золотистый пигмент (рисунок 5). Развиваясь в пищевых продуктах, он может выделять энтеротоксин (кишечный яд).

Основное местообитание золотистого стафилококка - слизистая носоглотки и кожа. Помимо энтеротоксина, он вырабатывает другие токсины и вызывает различные гнойно - воспалительные процессы любой ткани и в любом органе. Помимо токсинов, стафилококк образует ряд активных ферментов, обладающих патогенным действием, например плазмокоагулазу, способную коагулировать (свертывать) плазму крови. Наличие плазмокоагулазы является важнейшим признаком патогенности стафилококков. Такие стафилококки называются коагулазоположительными.

        Стафилококковый энтеротоксин выделяется как в аэробных, так и в анаэробных условиях, он устойчив к низким и высоким температурам, высушиванию, высокому содержанию поваренной соли (8—15%). Для полного разрушения требуется кипячение около 2 ч или нагревание в течение 30 мин при 120°С.

Отравление проявляется в виде острого желудочно - кишечного заболевания через 1—6 ч после приема зараженной пищи, смертные случаи редки. Характерным является высокий процент заболевших среди употреблявших одну и ту же пищу (90 - 100%).

Стафилококковые пищевые отравления чаще всего вызываются молочными, а также мясными продуктами. Эти отравления также могут быть связаны с употреблением рыбных консервов в масле, кондитерских изделий с заварным кремом. При этом пищевые продукты не имеют внешних признаков порчи.

Стафилококковая инфекция может передаваться лицами, страдающими гнойничковыми заболеваниями кожи или носителями токсигенных стафилоккоков в носоглотке (ангина). Перенос стафилококков от людей на продукты происходит воздушно - капельным или пылевым путем. На производстве и предприятиях общественного питания перенос инфекции осуществляется через руки персонала, аппаратуру и инвентарь.

Дальнейшее развитие стафилококков в пищевых продуктах зависит от многих факторов внешней среды. Они могут размножаться при температуре 15—16°С и образовывать энтеротоксин. Скорость накопления токсина резко возрастает при температуре 37°С. Длительность накопления токсина в количестве, достаточном для отравления человека, зависит от характера продукта. В сильно обсемененном заварном креме при температуре - 37°С энтеротоксин накапливается уже через 4 ч.

К интоксикациям грибковой природы относятся микотоксикозы (отравления, причиной которых служат токсины мицелиальных грибов). К пищевым микотоксикозам относятся алиментарно - токсическая алейкия (прежнее название - септическая ангина) и «пьяный хлеб». Эти отравления вызываются разными видами грибов рода Fusarium из класса дейтеромицетов (несовершенных грибов). К микотоксикозам относятся также эрготизм, вызываемый грибом спорыньей из класса аскомицетов, и афлатоксикозы, вызываемые грибами родов Aspergillus и Реniсillium.

Алиментарно - токсическая алейкия связана с употреблением в пищу зерна проса, пшеницы, гречихи, овса, перезимовавшего в поле. Применение в пищу продуктов переработки такого зерна приводит к отравлению токсином, вырабатываемым грибом только при минусовой температуре (от - 1 до - 5°С). Токсин обладает высокой устойчивостью, не теряет токсичности при длительном хранении зерна (несколько лет), не разрушается при варке каши и супа, выпечке хлеба из продуктов переработки зараженного зерна (муки, крупы).

Отравление проявляется в повышении температуры, резких болях во рту и пищеводе вследствие развивающегося некроза (омертвления тканей), кровоточивости, угнетения процессов кроветворения.

Профилактика отравления сводится к недопущению употребления зерна, перезимовавшего в поле.

Пищевое отравление «пьяный хлеб» по симптомам напоминает тяжелое опьянение. Оно возникает при употреблении в основном хлеба, приготовленного из муки, содержащей микотоксин, который поражает центральную нервную систему.

Эрготизм - отравление, возникающее при употреблении зерна, пораженного спорыньей, когда в колосьях вместо семян образуются твердые «рожки» - покоящаяся стадия гриба. В них содержатся токсины (эрготин, эрготинин и др.), вызывающие сильные судороги («злые корчи») или гангрену. Остро отравление наступает при содержании спорыньи в муке, приготовленной из такого зерна, равном 1 - 2%. Законодательством предусмотрено допустимое содержание спорыньи в мук не выше 0,05%. Профилактика эрготизма - очистка зерна от спорыньи.

Афлатоксикозы вызываются грибами. Некоторые аспергилы образуют особые токсины - афлатоксины при развитии их на кормах, а также на некоторых пищевых продуктах (зерне злаков, сухофруктах, на арахисе и др.), а пенициллы - токсин патулин. Эти вещества обладают канцерогенным действием.

С целью профилактики афлатоксикозов необходимо соблюдать правильные условия хранения зерна, исключающие возможность его увлажнения, самосогревания и плесневения, что способствует накоплению афлатоксинов.

        Пищевые токсикоинфекции. Отравления такого рода возникают обычно при употреблении в пищу продуктов содержащих большое количество размножившихся в них живых токсигенных микроорганизмов - возбудителей. Количество возбудителей составляет до 107—108 клеток в 1 г продукта. В кишечнике человека они продолжают размножаться и отмирать, при этом из их клеток освобождается высокотоксичный термоустойчивый эндотоксин.

В большинстве случаев пищевые токсикоинфекции вызываются салмонеллами. Наиболее распространенными возбудителями салмонеллезных токсикоинфекции являются бреславльская палочка (S. tyрhinurium) и палочка Гертнера (S. Еnteritidis). Вызываемые ими отравления протекают как острые желудочно-кишечные заболевания, и имеют короткий (несколько часов) инкубационный период.

Салмонеллы не образуют спор, однако устойчивы к действию низких температур (долго не погибают при температурах от - 10 до - 20°С), кислот (молочной, уксусной), высушиванию копчению. Поваренная соль в концентрации 6 - 8% угнетает их развитие, а в концентрации 10 - 12% подавляет. Салмонеллы устойчивы к тепловой обработке, поэтому, чтобы предохранить продукты от этой инфекции, необходим правильный режим термической обработки. Мясо полностью обезвреживается только при отваривании кусками по 500 г (при толщине 6 см) в течение 3 ч при 100°С.

Сальмонеллы находятся в кишечнике многих животных, особенно у крупного рогатого скота, водоплавающей домашней птицы и грызунов, причем не только у больных, но и у здоровых (носителей инфекции), а также у выздоровевших людей.

Мясо, рыба, молочные продукты чаще всего служат причиной отравления. Заражение мяса сальмонеллами может происходить при жизни животного или при разделке, транспортировании и хранении туш.

В ткани рыб сальмонеллы попадают преимущественно в местах сброса сточных вод. Переносить возбудителей могут мухи, грызуны и некоторые птицы, например чайки. Возбудителями сальмонеллезных токсикоинфекций часто являются утиные и гусиные яйца, поэтому их разрешается использовать только для смазки поверхностей при изготовлении мелкоштучных кондитерских изделий из теста, подвергающихся высокотемпературной обработке.

Изменения органолептических свойств (вкуса, запаха) в зараженных продуктах не наблюдается.

Пищевые токсикоинфекций, вызываемые условно - патогенными бактериями. В возникновении токсикоинфекций значительная роль принадлежит условно-патогенным микроорганизмам. Они являются постоянными обитателями кожи, кишечника, дыхательных путей человека и при нормальных условиях жизни не вызывают заболеваний. Однако при изменении условий их существования или ослаблении макроорганизма они вызывают заболевания. Так, в нормальной микрофлоре толстого отдела кишечника постоянно обитает кишечная палочка, она является комменсалом (сожителем), не приносящим вреда, но при ее попадании в другой орган (мочевой, желчный пузырь, почки) и при снижении устойчивости макроорганизма может возникнуть воспалительный процесс.

Некоторые условно-патогенные бактерии вырабатывают эндотоксины. Различные представители этих бактерий обладают неодинаковой вирулентностью и токсигенностью. Отравление возникает при употреблении в пищу только обильно обсемененных пищевых продуктов (более 105—106 кл/г), при этом их органолептические свойства не меняются.

Токсикоинфекции, вызываемые токсигенными культурами условно-патогенных бактерий, протекают наподобие салмонеллезных токсикоинфекций (общая слабость, боль в кишечнике, рвота и т. д.).

Токсикоинфекции, вызванные условно-патогенными бактериями, чаще связаны с потреблением в пищу готовых изделий, зараженных уже вторично, т. е. после кулинарной обработки. Быстрому размножению этих бактерий в продуктах способствуют нарушения температурных условий и сроков хранения продуктов.

К условно - патогенным бактериям, наиболее часто вызывающим пищевые токсикоинфекции, относятся бактерии кишечной группы - энтеробактерии (кишечная палочка и протей, а также фекальный стрептококк), являющиеся обитателями нормальной микрофлоры кишечника человека и теплокровных животных. Они также встречаются в почве, воде. Кроме них возникновение пищевых токсикоинфекций могут вызывать условно-патогенные спорообразующие палочки, относящиеся к родам Сlostridium (С. реrfringens) и Васillus (В. сеrеus).

Основой профилактики отравлений через готовые блюда после кулинарной обработки является их немедленная реализация. При необходимости хранения продуктов после термической обработки их следует быстро охлаждать до температуры ниже 10°С для предотвращения размножения бактерий и хранить на холоде.

На всех предприятиях пищевой промышленности необходимо строго соблюдать санитарно - гигиенические условия производства, правила личной гигиены, проводить текущий микробиологический и санитарный контроль.

Тема № 8. Основы микробиологического и санитарно-гигиенического  контроля на предприятиях.

          Санитарно- показательные микроорганизмы. Быстрое и непосредственное обнаружение в объектах внешней среды (воде, воздухе, пищевых продуктах) патогенных микроорганизмов осуществить очень трудно, так как их количество ничтожно мало по сравнению с сапрофитной микрофлорой исследуемых объектов. Поэтому возможное загрязнение их патогенными микроорганизмами определяют косвенно - на основании количественного и качественного учета санитарно - показательных микроорганизмов.

К санитарно - показательным микроорганизмам относятся кишечная палочка, гемолитические (растворяющие эритроциты крови) стрептококки и стафилококки. Они являются постоянными обитателями естественных полостей тела человека и животных (кишечника, слизистых оболочек полости рта и верхних дыхательных путей). Присутствие санитарно - показательных микроорганизмов в объектах внешней среды указывает на загрязненность их выделениями человеческого организма, а следовательно, и возможность наличия в них соответствующих патогенных микроорганизмов.

Кишечная палочка (Еscherichia coli ) Название связано с именем ученого Эшериха, впервые выделившего ее из испражнений человека, и латинского слова «колон» (кишка). Она является постоянным обитателем толстых кишок, безвредна для человека. Она является показателем фекального загрязнения воды и пищевых продуктов, т. е. выделениями кишечника человека, что свидетельствует о возможном наличии возбудителей тяжелых кишечных заболеваний (дизентерии, брюшного тифа, паратифов и т. п.), которые выделяются из больного организма, или носителем инфекции во внешнюю среду (также с фекалиями). Для санитарно-гигиенической оценки воды, пищевых продуктов и других объектов необходимо не только установить наличие в них кишечной палочки, но в ряде случаев провести количественный учет этих бактерий.

Интенсивность фекального загрязнения характеризуется двумя микробиологическими показателями: коли-титром и коли-индексом.

       Коли-титр - наименьшее количество исследуемого материала (объем, масса), в котором обнаруживается одна кишечная палочка. Чем меньше величина коли-титра, тем опаснее данный объект в эпидемиологическом отношении.

Коли-индекс - это количество кишечных палочек в единице объема (массы) исследуемого вещества.

Гемолитические стрептококки и стафилококки. Эти постоянно обитающие па слизистых оболочках полости рта и верхних дыхательных путей микроорганизмы также являются санитарно-показательными. Их наличие указывает на обсемененность воздушной среды и некоторых продуктов микрофлорой дыхательных путей, среди которой могут быть возбудители ангины, коклюша, туберкулеза и др., попадающие туда при кашле, чихании и пр.

Чем больше количество санитарно - показательных микроорганизмов в исследуемом объекте, тем больше он загрязнен выделениями человеческого организма и тем вероятнее, что в нем содержатся патогенные микроорганизмы - возбудители инфекционных заболеваний.

        Микробиологический и санитарно-гигиенический контроль. Задачей микробиологического контроля является возможно быстрое обнаружение и выявление путей проникновения микроорганизмов - вредителей в производство, очагов и степени размножения их на отдельных этапах технологического процесса; предотвращение развития посторонней микрофлоры путем использования различных профилактических мероприятий; активное уничтожение ее путем дезинфекции с целью получения высококачественной готовой продукции.

Микробиологический контроль должен проводиться заводскими лабораториями систематически. Он осуществляется на всех этапах технологического процесса, начиная с сырья и кончая готовым продуктом, на основании государственных стандартов (ГОСТ), технических условий (ТУ), инструкций, правил, методических указаний и другой нормативной документации, разработанной для каждой отрасли пищевой промышленности. Для отдельных пищевых производств имеются свои схемы микробиологического контроля, в которых определены объекты контроля, точки отбора проб, периодичность контроля, указываются, какой микробиологический показатель необходимо определить, приводятся нормы допустимой общей бактериальной обсемененности.

Микробиологический контроль будет действенным и будет способствовать значительному улучшению работы предприятия только если он сочетается с санитарно - гигиеническим контролем, назначение которого - обнаружение патогенных микроорганизмов. Они обнаруживаются по содержанию кишечной палочки. Санитарно - гигиенический контроль включает проверку чистоты воды, воздуха производственных помещений, пищевых продуктов, санитарного состояния технологического оборудования, инвентаря, тары, гигиенического состояния обслуживающего персонала (чистоты рук, одежды и т. п.). Он осуществляется как микробиологической лабораторией предприятия, так и санитарно-эпидемиологическими станциями по методикам, утвержденным Министерством здравоохранения.

В пищевых производствах, основанных на жизнедеятельности микроорганизмов, необходим систематический микробиологический контроль за чистотой производственной культуры, условиями ее хранения, разведения и т. д. Посторонние микроорганизмы в производственной культуре выявляют путем микроскопирования и посевов на различные питательные среды. Микробиологический контроль производственной культуры кроме проверки биологической чистоты включает также определение ее физиологического состояния, биохимической активности, наличия производственно - ценных свойств, скорости размножения и т.п. В тех пищевых производствах, где применяются ферментные препараты, также обязателен микробиологический контроль их активности и биологической чистоты.

         Контроль пищевых продуктов. Для оценки качества сырья полуфабрикатов, вспомогательных материалов, готовой продукции в нашей стране в основном используются два показателя – МАФАМ КоЕ – количество мезофильных аэробных и факультативно - анаэробных микроорганизмов колоний образующих единиц и количество бактерий кишечной группы (преимущественно кишечной палочки)

МАФАМ определяют в основном чашечным методом. Выполнение анализа включает четыре этапа: приготовление ряда разведений из отобранных проб (при обследовании поверхности продукта или оборудования пробу отбирают путем смыва или соскоба с определенной площади); посев на стандартную плотную питательную среду (для выявления бактерий - на мясо - пептонный агар в чашки Петри); выращивание посевов в течение 24—28 ч в термостате при 30°С; подсчет выросших колоний. Число колоний, выросших на каждой чашке, пересчитывают на 1 г или 1 мл продукта с учетом разведения. Окончательным результатом будет среднее арифметическое от результатов подсчета колоний в 2 - 3 чашках.

Полученные результаты будут меньше истинного обсеменения продукта, так как чашечным методом учитываются только сапрофитные мезофильные бактерии (аэробы и факультативные анаэробы). Термофильные и психрофильные бактерии не растут из-за несоответствия температуры оптимальной; анаэробы не растут, поскольку выращивание проводится в аэробных условиях; другие бактерии (в частности, патогенные) не растут из-за несоответствия питательной среды и условий культивирования. Не образуют колоний мертвые клетки. Однако эти микроорганизмы можно не учитывать и ошибкой анализа пренебречь, поскольку сапрофиты являются основными возбудителями порчи пищевых продуктов.

В некоторых производствах (консервном, сахарном, хлебопекарном и др.) используются дополнительные микробиологические показатели, например количество анаэробных, термофильных, спорообразующих и других микроорганизмов, характерных для каждого вида исследуемого объекта. Для их учета имеются специальные методические приемы, описанные в соответствующей нормативной документации. Например, для определения процентного содержания спорообразующих бактерий посев производят из пробирок с разведениями проб, предварительно прогретых несколько минут в кипящей водяной бане. При посевах из прогретых проб вырастают только спороносные бактерии, а из непрогретых - все остальные. Затем рассчитывают процентное содержание спорообразующих форм микроорганизмов.

Чем выше показатель МАФАМ, тем больше вероятность попадания в исследуемый объект патогенных микроорганизмов - возбудителей инфекционных болезней и пищевых отравлений. Обычно в 1 г (или 1 мл) продукта, не прошедшего термической обработки, содержится не более 100 тысяч сапрофитных мезофильных бактерий. Если же их количество превышает 1 млн. клеток, то стойкость готового продукта при хранении снижается и его употребление может нанести вред здоровью человека.

Определение бактерий кишечной группы основано на способности кишечной палочки сбраживать лактозу до кислоты и газа. При санитарно - гигиеническом контроле сырья, полуфабрикатов, готовой продукции исследование на наличие бактерий кишечной группы ограничивают проведением так называемой первой бродильной пробы.

Бродильную пробу осуществляют путем посева в пробирки со специальной дифференциально-диагностической средой для кишечной палочки (среда Кесслера с лактозой) различных объемов (или навесок) исследуемого объекта - 1,0; 0,1; 0,01; 0,001 мл (или г). Пробирки с посевами, .помещают в термостат при 37°С на 24 ч, затем их просматривают и устанавливают бродильный титр, т. е. те пробирки, в которых наблюдается рост (помутнение среды) и образование газа в результате брожения. При отсутствии газообразования объект контроля считают не загрязненным кишечной палочкой. При наличии газообразования производят вычисление коли-титра для различных объектов контроля по специальным таблицам. Существуют нормы допустимой общей бактериальной обсемененности и содержания кишечной палочки в объектах контроля.

      Контроль воды.Для санитарно-гигиенической оценки воды используются два микробиологических показателя: общее количество бактерий в воде и коли-индекс, которые определяются в. соответствии с ГОСТ 18963—73 “Вода питьевая. Методы санитарно - бактериологического анализа”.

Общее количество бактерий - это количество колоний аэробных и факультативно-анаэробных мезофильных сапрофитных бактерий, вырастающих при посеве 1 мл неразбавленной воды на мясо - пептонном агаре (МПА) за 24 ч при 37°С.

Для оценки качества воды наиболее важное значение имеет не общее количество бактерий, а наличие в ней патогенных микроорганизмов. Микробиологическим показателем загрязненности воды патогенными бактериями кишечной группы служит коли-индекс. В соответствии с ГОСТ 2874—82 “Вода питьевая. Гигиенические требования и контроль за качеством” общее количество клеток бактерий в 1 мл воды должно быть не более 100, а коли-индекс - не более 3 в 1 л.

Анализ воды проводится при пользовании городским водопроводом 1 раз в квартал, а при наличии собственных источников водоснабжения - 1 раз в месяц.

Выявление патогенных микроорганизмов в воде (возбудителей брюшного тифа, холеры и дизентерии) осуществляется местными санитарно-эпидемиоло-гическими станциями только по эпидемиологическим показателям.

          Контроль воздуха производственных помещений. Для санитарно - гигиенической оценки воздуха закрытых помещений определяют два показателя.

Первым является общее количество сапрофитных микроорганизмов в 1 м3 воздуха. Воздух производственных цехов пищевых производств считается чистым, если в нем содержится не более 500 сапрофитных микроорганизмов в 1 м3. Вторым показателем является количество в том же объеме воздуха санитарно - показательных микроорганизмов - гемолитических стрептококков и стафилококков. Нормативов по этому показателю в настоящее время нет. Обнаружение их в воздухе производственных помещений указывает на санитарное неблагополучие данного объекта и возможность возникновения у персонала инфекционных заболеваний, вызываемых микрофлорой дыхательных путей, которая передается через воздух (ангины, гриппа, коклюша, дифтерии, туберкулеза и др.). Такой воздух может стать источником обсеменения пищевых продуктов, а следовательно, представлять потенциальную опасность для здоровья людей. Определение в воздухе санитарно - показательных микроорганизмов производят только по эпидемиологическим показаниям санитарно-эпидемиологическими станциями.

Для санитарно-гигиенического контроля воздуха применяют седиментационные и аспирационные методы анализа, описание которых имеется в нормативной документации.

         Контроль оборудования, инвентаря, тары. Для предотвращения загрязнения посторонними микроорганизмами сырья и полуфабрикатов в процессе их переработки и готовой продукции при хранении необходимым условием является поддержание чистоты на рабочем месте, в производственных помещениях, санитарная обработка оборудования, инвентаря, тары.

Под санитарной обработкой подразумевается механическая очистка рабочих поверхностей от остатков пищевых продуктов, тщательное промывание горячей водой с применением моющих средств; дезинфекция и заключительное тщательное промывание горячей водой до полного удаления дезинфицирующего средства (дезинфектанта). Дезинфекция преследует цель уничтожить оставшуюся микрофлору. Дезинфекция оборудования может осуществляться путем пропаривания его насыщенным паром, при котором гибнут как вегетативные клетки, так и споры микроорганизмов. Дезинфекцию можно проводить и химическими дезинфицирующими средствами. Заключительная обработка горячей водой играет двоякую роль: с одной стороны, удаляются остатки дезинфектанта, с другой - происходит нагревание поверхностей, что способствует их быстрому высыханию.

После санитарной обработки проводят санитарно - гигиенический контроль качества мойки и дезинфекции оборудования, инвентаря, тары, который включает определение общей бактериальной обсемененности смывов с технологического оборудования. Смывы берут с помощью стерильных нержавеющих металлических трафаретов с вырезанной серединой (площадь выреза 10, 25 или 100 см2 ). Эту площадь протирают стерильным ватным тампоном, смоченным в стерильной воде в пробирке на 10 мл, после чего тампон погружают в эту пробирку, тщательно перемешивают содержимое и высевают 1 мл смыва на мясо - пептонный агар. После термостатирования посевов при 30°С в течение 24 - 28 ч определяют общую бактериальную обсемененность в пересчете на 1 см2 исследуемой поверхности.

В смывах с хорошо вымытого оборудования общее количество микроорганизмов и коли-индекс не должны превышать их содержания в чистой воде, поступающей на мойку.

Контроль качества мойки и дезинфекции трубопроводов, рукавов, шлангов подобным образом осуществить нельзя, так как с их внутренней поверхности трудно сделать смывы с помощью трафарета. В этом случае общее количество микроорганизмов и коли-индекс определяют в последней промывной воде путем ее микроскопирования и посева. Общая бактериальная обсемененность и коли-индекс промывной воды не должны отличаться от показателей воды, применяемой в производстве.

Для контроля качества мойки и дезинфекции инвентаря пробы отбирают в тот момент, когда инвентарь подготовлен к работе. С мелкого инвентаря (мешалки, пробники, термометры, ножи, шприцы и т. п.) мазки берут стерильным тампоном со всей поверхности предмета и исследуют на общее количество микроорганизмов и на наличие кишечной палочки. Со столов, стеллажей, лотков, ведер, лопат и т. д. мазки берут стерильным тампоном при помощи обожженного трафарета и производят аналогичные анализы.

Для контроля качества мойки и дезинфекции тары (бочки,. бидоны, цистерны) пробы последней промывной воды микроскопируют или высевают на плотные питательные среды. Общее количество микроорганизмов в 1 мл и коли-индекс не должны значительно отличаться от обсемененности воды, применяемой в производстве.

        Контроль чистоты рук и одежды персонала. При несоблюдении личной гигиены (чистоты рук, санодежды), особенно во время ручных операций, на пищевые продукты могут попадать микроорганизмы, в том числе и патогенные.

Бактериальную загрязненность рук и одежды определяют путем исследования микрофлоры смывов. В смывах, которые берут перед началом работы, обычно определяют общую бактериальную обсемененность и наличие кишечной палочки. Чистоту рук оценивают по количеству микроорганизмов в 1 мл смыва. Наличие бактерий группы кишечной палочки в смывах с рук и одежды не допускается. Контроль за соблюдением правил личной и производственной гигиены осуществляется работниками санитарного надзора и санитарными постами.

Для соблюдения правильного санитарно - гигиенического режима на предприятиях пищевой промышленности эффективным способом уничтожения и подавления развития посторонних микроорганизмов является дезинфекция.

Дезинфекцией (обеззараживанием) называется уничтожение в объектах внешней среды сапрофитных микроорганизмов - вредителей данного производства, которые вызывают порчу сырья, полуфабрикатов и готовой продукции, а также патогенных микроорганизмов - возбудителей пищевых инфекций и пищевых отравлений. Дезинфекция оборудования, инвентаря, тары, производственных и бытовых помещений пищевых предприятий является профилактической мерой для предупреждения загрязнения продуктов микроорганизмами. Она проводится систематически в соответствии с установленными санитарными требованиями для каждой отрасли промышленности. Это так называемая текущая, или профилактическая, дезинфекция.

Кроме того, на пищевых предприятиях возможно проведение экстренной дезинфекции по эпидемиологическим показаниям: при подозрении на пищевое отравление, в случае инфекционных заболеваний среди персонала, при поступлении инфицированного сырья, полуфабрикатов, тары и т. п.

По виду действующего агента методы дезинфекции бывают физические и химические. К физическим средствам дезинфекции относятся: кварцевое и ультрафиолетовое облучение, ультразвук, действие высоких температур (обжигание, прокаливание, кипячение, ошпаривание посуды, тары и оборудования, обработка острым паром).

К химическим средствам дезинфекции относится большое количество химических веществ, обладающих антимикробным действием. Кроме питательных химических веществ, оказывающих положительное влияние на микроорганизмы, имеется ряд химических веществ, тормозящих или полностью прекращающих их рост. Химические вещества вызывают либо микробоцидное (гибель микроорганизмов), либо микробостатическое действие (приостанавливают их рост, но после удаления этого вещества рост вновь возобновляется). Характер действия (микробоцидный или микробостатический) зависит от дозы вещества, времени его воздействия, также температуры и рН. Малые дозы антимикробных веществ часто стимулируют развитие микроорганизмов. С повышением температуры токсичность многих антимикробных веществ, как правило, возрастает. Температура влияет не только на активность самого химического вещества, но и на микроорганизмы. При температурах, превышающих максимальную для данного микроорганизма, даже небольшие дозы таких веществ вызывают их гибель. Аналогичное действие оказывает и рН среды.

К различным антимикробным веществам один и тот же микроорганизм проявляет разную степень устойчивости. Одно и то же вещество может оказывать неодинаковое действие на различные виды микроорганизмов - одни вызывают быструю гибель, другие приостанавливают их развитие, третьи могут вообще не оказывать действия. Это зависит от наличия спор и капсул, устойчивых к химическим веществам. Антимикробные вещества значительно сильнее действуют на вегетативные клетки, чем на споры.

Из неорганических веществ сильным антимикробным действием обладают соли тяжелых металлов (ртути, меди, серебра), окислители - хлор, озон, йод, пероксид водорода,. хлорная известь, перманганат калия), щелочи и кислоты (едкий натр, сернистая, фтористоводородная, борная кислоты), некоторые газы (сероводород, оксид углерода, сернистый, углекислый газ). Вещества органической природы (спирты, фенолы, альдегиды, особенно формальдегид) также оказывают губительное действие на микроорганизмы. Механизм губительного действия антимикробных веществ различен и зависит от их химической природы. Например, спирты, эфиры растворяют липиды ЦПМ, вследствие чего они легко проникают в клетку и вступают во взаимодействие с различными ее компонентами, что нарушает нормальную жизнедеятельность клетки. Соли тяжелых металлов, формалин вызывают быструю коагуляцию белков цитоплазмы, фенолы - инактивацию дыхательных ферментов, кислоты и щелочи - гидролиз белков. Хлор и озон, обладающие сильным окислительным действием, также инактивируют ферменты. Антимикробные химические вещества используются в качестве дезинфицирующих средств и антисептиков.

Дезинфицирующие вещества вызывают быструю (в течение нескольких минут) гибель бактерий, они более активны в средах, бедных органическими веществами, уничтожают не только вегетативные клетки, но и споры. Они не вызывают появления устойчивых форм микроорганизмов. Микробоцидное действие антисептиков, в отличие от дезинфектантов, проявляется через 3 ч и более. Наибольшая активность проявляется в средах, содержащих органические вещества. Антисептики уничтожают только вегетативные клетки и вызывают образование устойчивых форм микроорганизмов.

Такие антимикробные вещества, как фенолы, хлорамин, формалин, в больших концентрациях (2 - 5%) являются дезинфектантами, но их же растворы, разбавленные в 100 - 1000 раз, могут быть использованы как антисептики. Многие антисептики используют в качестве консервантов пищевых продуктов (сернистая, бензойная, сорбиновая кислоты, юглон, плюмбагин и др.).

Дезинфицирующие вещества в пищевой промышленности используются, как правило, для обработки рабочих поверхностей аппаратов и другого технологического оборудования, инвентаря, тары, посуды и помещений. В пищевой промышленности можно применять лишь такие препараты, которые не оказывают токсического действия на организм человека, не имеют запаха и вкуса. Кроме того, они должны обладать антимикробным действием при минимальной концентрации, растворяться в воде и быть эффективными при небольших сроках действия. Большое значение имеет также их стойкость при хранении. Препараты не должны оказывать разрушающего действия на материал оборудования, должны быть дешевы и удобны для транспортирования.

Для обработки оборудования на предприятиях пищевой промышленности в основном применяются хлорсодержащие вещества, дезинфицирующее действие которых обусловлено выделением активного хлора. Обычно для дезинфекции применяют растворы, содержащие 150—200 мг активного хлора в 1 л. Наиболее уязвимые в смысле бактериального загрязнения места обрабатывают растворами, содержащими 400 мг активного хлора в 1 л. Продолжительность обработки оборудования должна быть не менее 15 мин.

К неорганическим хлорсодержащим дезинфицирующим веществам относятся: хлорная известь, антиформин (смесь хлорной извести, кальцинированной и каустической соды), гипохлорит натрия; к органическим - хлорамин Б, новые синтетические препараты (дихлордиметилгидантоин) и сложные комбинации новых хлорактивных соединений с поверхностно - активными веществами (например, сульфохлорантин, обладающий одновременно смачивающим, моющим и высоким аптимикробным эффектом). В качестве дезинфектантов применяют также формалин (водный раствор формальдегида), известковое молоко, кальцинированную и каустическую соду.

Высокой антимикробной активностью в малых дозах обладают органические синтетические дезинфектанты - так называемые четвертичные аммониевые соединения. Их преимущество перед существующими антимикробными средствами заключается в том, что они хорошо растворимы в воде, не имеют запаха, вкуса, малотоксичны для организма человека, не вызывают коррозии металлов, не раздражают кожи рук персонала. Среди отечественных препаратов этой группы можно назвать цетозол и катамин-АБ. Механизм действия этого класса соединений на микроорганизмы еще не совсем ясен. Предполагают, что они повреждают клеточную стенку бактерий, в результате чего резко возрастает проницаемость клетки, происходит денатурация белков, инактивация ферментных систем и лизис (растворение) микроорганизмов.

Сильным бактерицидным действием обладают многие газообразные вещества (формальдегид, сернистый ангидрид, окись этилена и β-пропиолактон).

При применении дезинфектантов для обработки оборудования необходимо соблюдать следующие общие правила: применять их только после тщательной механической мойки оборудования; растворы дезинфектантов должны быть свежеприготовленными; после дезинфекции все обработанное оборудование и коммуникации тщательно промывают до полного удаления дезинфектанта.

Питьевую воду, а также воду промышленного назначения обычно обеззараживают разнообразными путями - с помощью сильных окислителей (большое количество воды - хлором, малое - соединениями хлора, йодом, ионами тяжелых металлов), путем озонирования, облучения ультрафиолетовыми лучами с длиной волны 200—295 нм, обработки гамма - излучением, ультразвуком.

Для дезинфекции воздуха наиболее часто применяют хлорсодержащие препараты и триэтиленгликоль в виде их испарений или аэрозолей. Указанные дезинфектанты снижают общее количество микроорганизмов в воздухе более чем на 90%. Хорошие результаты для обеззараживания воздуха произведственных цехов и холодильных камер дает озонирование и ультрафиолетовое облучение. Периодическое применение физических (вентиляция, фильтрование) и химических способов дезинфекции, очистки и обеззараживания воздуха и сочетание их с влажной уборкой помещений позволяет значительно понизить бактериальную обсемененность воздуха производственных и бытовых помещений.




1. Демография семьи
2. на тему Архитектурные особенности города Чермоза Автор- Третьяков Д
3. Вариант ’ дерева Высотам Диаметр на Протяжен.html
4. Реферат Организация системы управления производства Подготовила ст гр 110 229 Ми.html
5. на тему- Прохождение практики на предприяти
6. реферат дисертації на здобуття наукового ступеня кандидата філологічних наук ІваноФр
7. Самарский государственный технический университет Россия 443100 Самара ул
8. Проектирование судна
9. а б в Рис
10. Измените шрифт размер шрифта межстрочный интервал выравнивание текста интервал перед абзацем сделайте к