Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Часто выделяют кинетическую энергию поступательного и вращательного движения

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

Вопрос11

Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

Потенциальная энергия  — скалярная физическая величина, характеризует запас энергии некоего тела (или материальной точки), находящегося в потенциальном силовом поле, который идет на приобретение (изменение) кинетической энергии тела за счет работы сил поля. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы.

Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек) тела или системы.

                                                                     

Мо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Различают среднюю мощность за промежуток времени       

                                                 

и мгновенную мощность в данный момент времени:

                                                

Вопрос26

Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

  1. все тела состоят из частиц: атомов, молекул и ионов;
  2. частицы находятся в непрерывном хаотическом движении (тепловом);
  3. частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

  1. Диффузия
  2. Броуновское движение
  3. Изменение агрегатных состояний вещества

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

Основное уравнение МКТ:

                                                      

Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Вопрос 28
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа.

Универса́льная га́зовая постоя́нная (также — постоянная Менделеева)— термин, впервые введённый в употребление Д. Менделеевым в 1874 г. Численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К.

В Международной системе единиц (СИ) универсальная газовая постоянная равна:

                                                  

Уравнение Менделеева- Клапейрона — уравнение состояния идеального газа:

                                      

Вопрос 36

Круговые процессы  (термодинамические циклы) — то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают. Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая — способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Необратимым называется процесс – который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.




1. Развитие и размещение промышленности Ульяновской области
2. Система образования в Бельгии
3. Информационные технологии 1 2 Планирование вывода вагонов и
4. Реферат- Виды и характер воздействия опасностей
5. Тема или проблема Литература Опыт Сроки Практический выход
6. экономическая формацияrdquo; ldquo;общественное бытиеrdquo; ldquo;общественное сознаниеrdquo; ldquo;базисrdquo; ldquo;над
7. Генезис Курдского вопроса
8. Обмен В детстве у каждого человека возникало желание поиграть игрушкой своего товарища
9. Банки задачи и реклама
10.  ТЕОРИТИЧЕСКИЕ ОСНОВЫ И ФУНКЦИИ БУХГАЛТЕРСКОГО БАЛАНСА 1
11. в зависимости от содержания они подразделяются на- исходные нормы которые определяют основы правового ре
12. реферату- Теорія комунікації в маркетингуРозділ- Маркетинг Теорія комунікації в маркетингу Маркетингова.html
13. Организация производства дистанции сигнализации и связи
14. Олимпийские игры
15. 2005 ~ 29 В НЦРМ під моніторингом 164 ГПХпацієнти 88 неверифікована і 76 ~ верифікована ГПХ
16. тематика Отчет по выполнению лабораторной работы N4
17. Катенин П
18. Сообщается Подробно описывается Кратко рассматривается Излагаются Комментируются и др
19. ИССЛЕДОВАТЕЛЬСКИЙ КАБИНЕТ Кафедра кинорежиссеры Профессор М
20. 25 nton Индивидуальный путешественник SintPetersburgРоссия 26 декабря 2013 г.