Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

ФОРМА И РАЗМЕРЫ ЗЕМЛИ 4 1

Работа добавлена на сайт samzan.net:


                                              СОДЕРЖАНИЕ

ВВЕДЕНИЕ 3

ГЛАВА 1. ФОРМА  И РАЗМЕРЫ ЗЕМЛИ 4

1.1. Форма Земли и гравитация. 4

1.2. Аномалии  силы  тяжести. 8

ГЛАВА 2. ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ 16

2.1. Теории Ньютона и Эйнштейна. 16

2.2. Физические основы гравитационных аномалий. 28

ЗАКЛЮЧЕНИЕ 35

СПИСОК ЛИТЕРАТУРЫ 37


ВВЕДЕНИЕ

Гравитационное поле Земли – силовое поле, обусловленное притяжением Земли и центробежной силой, вызванной ее суточным вращением.

До настоящего времени мы, практически, забыли о существовании гравитационного поля Земли, и не обращаем внимания на его влияние на нашу жизнедеятельность, хотя, если внимательно присмотреться, то можно заметить, что влияние его окружает нас повсюду. На данный момент мы используем свои знания о гравитационном поле Земли только в геологии при поисках полезных ископаемых или в ракетно-космической деятельности. В данной статье будет сделана попытка рассмотреть данное физическое явление в более широком плане. Из курса физики известно, что любое физическое тело, находясь на наклонной поверхности, имеет свойство скатываться вниз. С этой точки зрения можно подойти и к рассмотрению гравитационного поля Земли, причем его положительные значения будут являться низом, а отрицательные – верхом, что как раз наоборот изображается на его графических изображениях. А физический смысл данного графика обратен, то есть зона притяжения или низ для физического тела является положительный максимум, а верх – отрицательный минимум. Таким образом, можно сказать, что территория находящаяся в районе положительного гравитационного поля является зоной консолидации, или иначе, зоной накопления, а территория входящая в зону отрицательного гравитационного поля – зоной выноса или иначе – зона разубоживания. 
Но, кроме этого, нужно еще учитывать, что гравитационное поле Земли не является постоянным, а все время изменяется под влиянием притяжения Луны, Солнца и планет Солнечной системы, т.е. все: тропосфера, атмосфера, моря, океаны, земная кора и подкорковая субстанция находятся под влиянием постоянно меняющегося гравитационного поля, причем их подвижность (т.е. ответная реакция) тем больше, чем меньше их плотность. Таким образом большая ответная реакция распределена следующим образом: тропосфера, атмосфера, моря, океаны, земная кора, и последнее – подкорковая субстанция. Исходя из вышеизложенного можно сделать следующий вывод, что все перечисленные субстанции постоянно находятся в движении под влиянием меняющегося гравитационного поля в большей или меньшей степени, в зависимости от их плотности, а зная механизм, силу и направление изменения данного поля, можно достаточно уверенно долгосрочно прогнозировать различные природные явления, начиная от наводнений, наступления и отступления морей, а так же составлять прогнозы не только землетрясений а, и возможно метеоусловий.

Цель работы: изучение гравитационного поля Земли                 

         Задачи: для достижения поставленной цели требовалось решить следующие задачи:  

  1.  изучить историю развития всех теорий  

ГЛАВА 1. ПЛАНЕТА ЗЕМЛЯ

1.1. Форма Земли и гравитация

     Первые представления о формах и размерах Земли появились еще в глубокой древности. Античные мыслители (Пифагор - V в. до н.э., Аристотель - III в. до н.э. и др.) высказывали мысль, что наша планета имеет шарообразную форму.

     Геодезические и астрономические исследования последующих столетий дали возможность судить о действительной форме Земли и ее размерах. Известно, что формирование Земли происходило под действием двух сил - силы взаимного притяжения частиц ее массы и центробежной силы, обусловленной вращением планеты вокруг своей оси. Равнодействующей обеих названных сил является сила тяжести, выражаемая в ускорении, которое приобретает каждое тело, находящееся у поверхности Земли. На рубеже XVII и XVIII вв. впервые Ньютон теоретически обосновал положение о том, что под воздействием силы тяжести Земля должна иметь сжатие в направлении оси вращения и, следовательно, ее форма представляет эллипсоид вращения, или сфероид.

  1.  Рисунок 1. Эллипсоид вращения (Учебник по геофизике – 2000 г. – Орлёнок Ю.А. стр.9)

Рисунок 2. Поверхности рельефа, сфероида и геоида (Учебник по геофизике – 2000 г. – Орлёнок Ю.А стр.8)

     Степень сжатия зависит от угловой скорости вращения. Чем быстрее вращается тело, тем больше оно сплющивается у полюсов. На рисунке 1, изображающем эллипсоид вращения, выражена большая экваториальная ось (ЗОВ) и малая полярная ось (СОЮ). Величиныа = ЗОВ/2 и в = СОЮ/2 соответствуют полуосям эллипсоида. Сжатие эллипсоида будет выражено - в)/а. Разница полярного и экваториального радиусов составляет 21 км. Детальными последующими измерениями, особенно новыми методами исследования с искусственных спутников, было показано, что Земля сжата не только на полюсах, но также несколько и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 м), т.е. Земля является не двухосным, а трехосным эллипсоидом. Кроме того, расчетами Т. Д. Жонгловича и С. И. Тропининой показана несимметричность Земли по отношению к экватору: южный полюс расположен ближе к экватору, чем северный.В связи с расчленением рельефа (наличием высоких гор и глубоких впадин) действительная форма Земли является более сложной, чем трехосный эллипсоид. Наиболее высокая точка на Земле - гора Джомолунгма в Гималаях - достигает высоты 8848м. Наибольшая глубина 11 034 м обнаружена в Марианской впадине. Таким образом, наибольшая амплитуда рельефа земной поверхности составляет немногим менее 20 км. Учитывая эти  особенности, немецкий физик Листинг в 1873 г. фигуру Земли назвал геоидом, что дословно обозначает "землеподобный".

Геоид - некоторая воображаемая уровенная поверхность, которая определяется тем, что направление силы тяжести к ней всюду перпендикулярно. Эта поверхность совпадает с уровнем воды в Мировом океане, который мысленно проводится под континентами. Это та поверхность, от которой производится отсчет высот рельефа. Поверхность геоида приближается к поверхности трехосного эллипсоида, отклоняясь от него местами на величину 100 - 150 м (повышаясь на материках и понижаясь на океанах рис.2), что, по-видимому, связано с плотностными неоднородностями масс в Земле и  появляющимися из-за этого аномалиями силы тяжести. В  настоящее время принимается эллипсоид Ф. Н. Красовского и его учеников (А. А. Изотова и др.), основные параметры которого подтверждаются современными исследованиями и с орбитальных станций. По этим данным экваториальный радиус равен 6378,245 км, полярный радиус - 6356,863 км, полярное сжатие- 1/298,25. Объем Земли составляет 1,083 • 1012 км3, а масса - 6 • 1027 г. Ускорение силы тяжести на полюсе 983 см/с2, на экваторе 978 см/с2.Площадь поверхности Земли около 510 млн. км2, из которых 70,8% представляет Мировой океан и 29,2% - суша. В распределении океанов и материков наблюдается определенная дисимметрия. В Северном полушарии это соотношение составляет 61 и 39%, в Южном-81 и 19%.Фигура Земли в первом приближении представляет собой эллипсоид вращения, у которого экваториальный радиус (а) больше полярного (b) на 21389 км. Отсюда полярное сжатие земного эллипсоида составляет:.

Это различие в длинах радиуса обусловливает современное изменение силы тяжести от полюса до экватора на величину 1,6 гал. Отношение центробежной силы Р к силе тяготения F называют геодинамической постоянной q:

.

        Оно показывает, что сила тяжести на поверхности Земли определяется главным образом притяжением ее массы, а вклад центробежного ускорения составляет всего 0,5%. Тем не менее эта величина действует на протяжении длительного времени, играет исключительно важную роль в дифференциации земного вещества, динамике водных и воздушных масс. Изменение силы Р по широте и сжатие Земли совместно определяют нормальное изменение поля силы тяжести у Земли.

    Для вычислений нормальных значений силы тяжести Земли используются формулы, рассчитанные для эллипсоида вращения в предположении, что Земля состоит из концентрических слоев, однородных по плотности.

Формулы Клеро (1743): G0 = ge(1+βsin2φ-β’sin22φ); β = 5/2q-α; β’ = 1/8α2+1/4αβ,

где: g0 – нормальное значение силы тяжести;

ge – значение силы тяжести на экваторе;

φ – широта пункта наблюдения;

q ≈ 1/300.

      Формулы Клеро позволяют вычислить теоретическое значение силы тяжести в какой-либо точке земной поверхности, если известна широта этого пункта. Коэффициенты в формуле Клеро для нормального распределения силы тяжести выводились многими учеными, но практическое применение нашли формула Гельмерта и международная формула Кассиниса.

Формула Гельмерта (1901-1909):

g0 = 978,030(1+0,005302sin2φ-0,000007sin22φ)

Формула Кассиниса:

g0 = 978,049(1+0,0052884sin2φ-0,0000059sin22φ)

     Чтобы наблюденные значения силы тяжести, относящиеся к реальной поверхности Земли, сравнивать с нормальными, их необходимо приводить (редуцировать) к уровню эллипсоида. Есть поправка в свободном воздухе, поправка за промежуточный слой, поправка за рельеф.

1.2. Аномалии  силы  тяжести

    Представляя фигуру Земли эллипсоидом вращения и вводя понятие геоида, мы предполагаем, что масса Земли сложена однородным по плотности веществом. При этом изменение силы тяжести на поверхности Земли должно быть обусловлено лишь изменением по широте потенциала центробежной силы и различием в экваториальном и полярном радиусах. Однако в реальных условиях характер изменения силы тяжести отличается от теоретического нормального распределения, рассчитанного для поверхности однородного геоида, или эллипсоида. Такого рода отклонения силы тяжести от нормальной величины вызваны неоднородным распределением плотностей в теле Земли и особенно в верхних ее частях.

    Разность между наблюденным ускорением силы тяжести g и нормальной величиной 0, полученной по международной формуле , называется аномалией силы тяжести g:        g = g – 0.   

     Аномалии силы тяжести создаются главным образом неоднородным распределением плотностей в земной коре и верхней мантии. Однако, чтобы выявить эту неоднородность, простого вычитания из наблюденной силы тяжести нормальной составляющей оказывается недостаточно. Дело в том, что величина силы тяжести зависит от целого ряда факторов, и в первую очередь от географической широты и высоты места (относительно уровня моря), рельефа окружающей местности, характера плотностных неоднородностей в верхних слоях Земли под точкой наблюдения и др. Для исключения влияния этих факторов в наблюденное значение g вводят поправки или, как их еще называют, редукции. Название редукции определяет название аномалии силы тяжести.

        Аномалия в свободном воздухе, вычисленная с учетом поправки за свободный воздух, называется аномалией Фая: Δgсв.в. = g-g0+ Δgср.а. Следует отметить, что при введении поправки за свободный воздух влияние масс (плотностных неоднородностей), лежащих между уровнем точки наблюдения и уровнем моря, не учитывается. Однако на самом деле между уровнем наблюдения и уровнем моря залегают породы, обладающие определенной плотностью. Наличие таких пород увеличивает наблюденное значение силы тяжести, и чем выше точка отстоит от уровня моря, тем больше их влияние. Этот эффект наиболее ощутим при наблюдениях в горной местности. На равнине редукция за высоту будет постоянна.

      Таким образом, аномалия в свободном воздухе отражает суммарное влияние плотностной неоднородности горных пород и влияние дополнительных масс, вызванное рельефом. Поэтому в условиях расчлененного рельефа с большим перепадом высот (порядка нескольких сотен метров) аномалия в свободном воздухе в значительной степени будет отражать топографию, в то время как гравитационный эффект плотностных неоднородностей верхних этажей геологического разреза Земли будет замаскирован. Исключение, как уже отмечалось, составляют равнинные участки с небольшими перепадами рельефа. В этих условиях аномалия в свободном воздухе может быть использована для изучения глубинной структуры.

     Аномалия, вычисленная с поправкой Буге, называется аномалией Буге: ΔgБ = g-g0+ Δgсв.в.- Δgn+ Δgp Обычно плотность берут равной средней плотности земной коры = 2,67 г/см3. Отклонения от этого среднего в реальных разрезах позволяют выявить области с аномальными плотностями. Аномалия в свободном воздухе используется для изучения фигуры Земли. Аномалии Буге позволяют выделять аномальные массы в верхней части земной коры.
     Основной фон аномального гравитационного поля определяется рельефом поверхности Мохо, что позволяет рассчитать по аномалиям силы тяжести мощность земной коры. Термин аномалии означает отклонения от некоторой "нормы" - то есть значения, которое можно предсказать, вычислив его по формуле. Вычисленное значение силы тяжести называют "нормальным", а наблюденное - аномальным. Если принять Землю равновесным эллипсоидом вращения, то значение силы тяжести можно вычислить по формуле:

в которой постоянные нужно считать известными. Эти данные определяются из наблюдений и зависят от методики их вычислений, от объема и качества наблюдательных данных. Построение "нормальной" формулы для вычисления силы тяжести требует привлечения экспериментальных данных, полученных в разных странах, в разных экспедициях. В последние 3-4 десятилетия широко используются и спутниковые наблюдения, которые резко увеличили надежность результатов. Для того, чтобы карты гравитационных аномалий, полученных разными авторами, можно было сравнивать и анализировать, необходимо, чтобы гравитационные аномалии вычисляли по одинаковым методикам. По этой причине Международный Геофизический и Геодезический союз на своей Генеральной Ассамблее в августе 1971 года утвердил следующую формулу для нормальной силы тяжести

В качестве "нормальной Земли" принят общий земной эллипсоид с параметрами

Сжатие этого эллипсоида, определенное по спутниковым данным, равно . Известно, что сила тяжести зависит от высоты точки наблюдения. Наблюдения производятся, в крайнем случае, на уровне моря, то есть на высоте, равной нулю. Все сухопутные определения силы тяжести выполняются на разных высотах. Так как поверхность эллипсоида не совпадает с поверхностью уровня, поэтому развита теория приведения гравитационной аномалии (редукции) к одной и той же поверхности. Кроме того, сила тяжести зависит и от масс, лежащих между эллипсоидом и геоидом. Чтобы учесть и эти факторы, развита теория геологических редукций. В таком случае вместе с гравитационными аномалиями обязательно должен указываться и вид редукций, с которыми данная аномалия вычислена. Существуют аномалии в свободном воздухе, аномалии Фая, аномалии Буге, изостатические аномалии и т. п. Гравитационные аномалии на Земле, как правило, меньше 100 мГал, их среднеквадратическая вариация по Земле составляет величину около 20 мГал. Следовательно, гравитационное поле Земли достаточно гладкое. Для экстремальных условий (островные дуги, глубоководные впадины) гравитационные аномалии достигают величины 400 мГал, что в 12,5 раз меньше разницы в значениях силы тяжести на полюсе и экваторе и составляют всего 0,04% от величины силы тяжести. Потому для получения данных, по которым можно судить о внутреннем строении нашей планеты, необходимо изучать аномалии на уровне не только миллигалов, но и микрогалов, чего и добиваются геофизики. Вторая характеристика гравитационного поля -это отклонение отвесной линии (вертикали) от нормали к эллипсоиду. Это отклонение также невелико и составляет секунды дуги. Геодезические работы в Индии близ горного массива Гималаев показали, что координаты астрономических пунктов из-за отклонений отвесной линии отличаются от геодезических на 5,2", тогда как вычисленное отклонение, связанное с притяжением гор, составляет 27,9". Для объяснения этого явления английский геодезист Пратт высказал мысль, что под горами плотность пород гораздо меньше, чем коренные породы под равнинами. Иными словами, если все породы разбить на блоки, то плотность этих блоков должна зависеть от их толщины: чем толще блок, тем меньше плотность. При этом вес всех блоков на некоторой поверхности, называемой поверхностью компенсации, один и тот же. Вся земная кора, таким образом, находится в равновесии. Эта гипотеза Пратта получила название изостатической. Конечно, с геологической точки зрения эта гипотеза никуда не годится. Французский геодезист Эри предложил более правдоподобную схему: земные блоки по Эри подобно айсбергами на море плавают на более плотной, но и более пластичной среде - верхней мантии. В этом случае, так же как и у айсбергов, должна образоваться под горными массивами "подводная часть" с плотностью, меньшей, чем плотность вмещающих пород. Таким образом эффект гравитационной компенсации должны создавать корни гор, существование которых сейсмологи подтверждают. Строение земной коры невозможно изучить, пользуясь только одним методом. Геофизики применяют все доступные им методы, прежде всего сейсмологический и гравиметрический. По современным представлениям земная кора имеет разную толщину в разных регионах. В горах толщина ее достигает 60 и более километров. Состоит она из разных слоев. Большой объем занимает кислые (гранитные) породы с плотностью 2,67. Равнины покрыты осадочными породами толщиной несколько километров и с плотностью 2,2. Ниже этих слоев лежат основные породы - базальты с плотностью 2,8. Толщина коры для равнинных регионов полагают равной 30 км. Горные районы и равнины образуют основные морфологические особенности континентов. При переходе к океану, гранитный слой постепенно выклинивается, а осадочные породы покрывают на абиссальных котловинах, в основном, базальтовые породы. При этом толщина коры становится меньше и в среднем составляет 10-15 км. Особенно тонкой кора становится в глубоководных впадинах (4-5 км).                                                                                                                                                         Аномальное гравитационное поле Земли отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Несмотря на сложную структуру аномального гравитационного поля, наблюдаемого как на суше, так и на море, отдельные участки кривой g могут быть использованы для определения параметров гравитирующей массы. Иногда, меняя форму и глубину залегания

гравитирующей массы, рассчитывают создаваемую при этом аномалию. Сравнивая ее с наблюденной аномалией, методом подбора определяют основные параметры возмущающей массы в реальных условиях.Существование гравитационных аномалий над океаническими котловинами и над континентами обусловлено плотностными неоднородностями горных пород. Чем значительнее эти неоднородности, тем лучше они отражаются в аномальном гравитационном поле. Большую роль играют также размеры и форма аномалиеобразующего тела.Для оценки параметров геологических объектов и расчетов создаваемого ими аномального поля силы тяжести вводится понятие избыточной плотности горных пород :

       Избыточной плотностью называется разность плотности вмещающих пород 1 и плотности аномалеобразуюшего тела 2. Знание плотности важно при геологическом истолковании гравитационных аномалий. Аномалии Буге даже после тщательного исключения эффектов, обусловленных высотой и видимым рельефом, систематически коррелируют с рельефом по обширным областям. В возвышенных районах они почти всегда отрицательны, над океаническими бассейнами характеризуются большими положительными значениями. Над сушей вблизи уровня моря средняя аномалия Буге близка к нулю, но для обширных областей с высоким рельефом эти аномалии достигают подчас нескольких сотен миллигал. Это может означать, что породы, слагающие возвышенные области, имеют плотность ниже средней, а под океанами плотность пород выше средней. Видимые массы земной поверхности находятся в равновесии. По гипотезе Пратта, чем выше гора, тем меньше ее средняя плотность. Ниже уровня моря земная кора тянется до некоторой постоянной глубины, а ее плотность меняется с изменением высоты рельефа. В качестве геологического подтверждения Пратт постулировал, что горы формировались посредством удлинения вертикальных блоков земной коры без изменения их массы. Поэтому выше некоторого постоянного уровня все эти блоки имеют одну и туже массу. В модели Пратта высота h рельефа земной коры выше уровня моря связана с плотностью коры ρ следующим образом: ρ(H+h) = ρnH,

где ρn – плотность блока коры мощностью H, протягивающегося от уровня моря до глубины компенсации. В соответствии с теорией компенсации Эйри горы имеют под собой «корень» из легкого материала, так что общая масса под горной структурой не больше, чем под соседней низменностью. Чем выше гора, тем глубже «корень» должен проникать в более плотный субстрат.

     Глубина компенсации зависит от толщины этого «корня». По Эйри, подошва коры соответствует растянутому зеркальному отражению рельефа поверхности.

    Анализируя  геоид Жонгловича для двухосного эллипсоида можно сделать выводы, что аномалии гравитационного поля Земли приурочены к континентальным структурам, причем максимумы аномалий располагаются не в центре континентов, а на границах континент-океан. На рисунке видно, что существует пять максимумов аномалий гравитационного поля (три положительных и две отрицательных). Четыре максимума находятся в восточном полушарии и лишь один в западном. Самая интенсивная положительная аномалия (+136) приурочена к западной границе Южной Америки, а самая интенсивная отрицательная (-160) находится на юге Азии.

На рисунке  (трехосный эллипсоид) ситуация несколько иная. Аномалии менее интенсивные. Они в восточном полушарии, также как и в случае с двухосным эллипсоидом тяготеют к континентальным структурам, тогда как в западном полушарии максимумы аномалий приурочены как к континентам, так и к океанам. В данном случае выделяются уже восемь максимумов (четыре положительных и четыре отрицательных). Четыре из них расположены в западном полушарии и четыре в восточном. Самая интенсивная положительная аномалия (+85) располагается между Азией и Австралией. Самая интенсивная отрицательная (-77) на юге Азии.

     Высоты характеризуют уклонения гравитационного поля Земли от нормального поля. Карта показывает, что уклонения не связаны с главными топографическими особенностями Земли (океанами и континентами). Отсюда следует вывод, что континентальные области изостатически скомпенсированы, материки плавают в подкоровом субстрате. Небольшие отклонения гравитационного поля Земли связаны с какими-то изменениями плотности в коре и оболочке.

    Максимальное уклонение (73) располагается в районе Индийского океана, минимальные в Тихом.

Рисунок4. Карта высот геоида по общему неравновесному полю Земли (Наука и жизнь (журнал). 1960-1997г.) стр30


ГЛАВА 2. ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ

1.2 Теории Ньютона и Эйнштейна

     Все весомые тела взаимно испытывают тяготение, эта сила обуславливает движение планет вокруг солнца и спутников вокруг планет. Теория гравитации - теория созданная Ньютоном, стояла у колыбели современной науки. Другая теория гравитации, разработанная Эйнштейном, является величайшим достижением теоретической физики 20 века. В течении столетий развития человечества люди наблюдали явление взаимного притяжения тел и измеряли его величину; они пытались поставить это явление себе на службу, превзойти его влияние, и наконец, уже в самое последнее время рассчитывать его с чрезвычайной точностью во время первых шагов вглубь Вселенной. Необозримая сложность окружающих нас тел обусловлена прежде всего такой многоступенчатой структурой, конечные элементы которой - элементарные частицы - обладают сравнительно небольшим числом видов взаимодействия. Но эти виды взаимодействия резко отличаются по своей силе. Частицы, образующие атомные ядра, связаны между собой самыми могучими из всех известных нам сил; для того чтобы отделить эти частицы друг от друга, необходимо затратить колоссальное количество энергии. Электроны в атоме связаны с ядром электромагнитными силами; достаточно сообщить им весьма скромную энергию,(как правило достаточно энергии химической реакции) как электроны уже отделяются от ядра. Если говорить об элементарных частицах и атомах, то для них самым слабым взаимодействием является гравитационное взаимодействие. При сопоставлении с взаимодействием элементарных частиц гравитационные силы настолько слабы, что это трудно себе представить. Тем не менее они и только они полностью регулируют движение небесных тел. Это происходит потому, что тяготение сочетает в себе две особенности, из-за которых его действие усиливается, когда мы переходим к крупным телам. В отличии от атомного взаимодействия, силы гравитационного притяжения ощутимы и на больших удаленьях от созидающих их тел. Кроме того гравитационные силы - это всегда силы притяжения, то есть тела всегда притягиваются друг к другу.

Рисунок 5. Гравитационное поле и Галактики (velichko.ucoz.ru)

     Развитие теории гравитации произошло в самом начале `становления современной науки на примере взаимодействия небесных тел. Задачу облегчило то , что небесные тела движутся в вакууме мирового пространства без побочного влияния других сил. Блестящие астрономы - Галилей и Кеплер - подготовили своими трудами почву для дальнейших открытий в этой области. В дальнейшем великий Ньютон сумел придумать целостную теорию и придать ей математическую форму. Среди всех сил, которые существуют в природе, сила тяготения отличается прежде всего тем, что проявляется повсюду. Все тела обладают массой, которая определяется как отношение силы , приложенной к телу, к ускорению, которое приобретает под действием этой силы тело. Сила притяжения, действующая между любыми двумя телами, зависит от масс обоих тел; она пропорциональна произведению масс рассматриваемых тел. Кроме того, сила тяготения характеризуется тем, что она подчиняется закону обратной пропорциональности квадрату расстояния. Другие силы могут зависеть от расстояния совсем иначе; известно немало таких сил. Один аспект всемирного тяготения - удивительная двойственная роль, которую играет масса, - послужила краеугольным камнем для построения общей теории относительности. Согласно второму закону Ньютона масса является характеристикой всякого тела, которая показывает, как будет вести себя тело, когда к нему прикладывается сила, независимо от того, будет ли это сила тяжести или какая - то другая сила. Так как все тела, по Ньютону, в качестве отклика на внешнюю силу ускоряются (изменяют свою скорость), масса тела определяет, какое ускорение испытывает тело, когда к нему приложена заданная сила. Если одна и та же сила прикладывается к велосипеду и автомобилю, каждый из них достигнет определенной скорости в разное время. Но по отношению к тяготению масса играет еще и другую роль, совсем не похожую на ту, какую она играла как отношение силы к ускорению: масса является источником взаимного притяжения тел; если взять два тела и посмотреть, с какой силой они действуют на третье тело, расположенного на одном и том же расстоянии сначала от одного, а затем от другого тела, мы обнаружим, что отношение этих сил равно отношению первых двух масс. Фактически оказывается, что эта сила пропорциональна массе источника. Сходным образом, согласно третьему закону Ньютона, силы притяжения, которые испытывают два различных тела под действием одного и того же источника притяжения (на одном и том же расстоянии от него), пропорциональны отношению масс этих тел. В инженерных науках и повседневной жизни про силу, с которой тело притягивается к земле, говорят как о весе тела. Итак, масса входит в связь, которая существует между силой и ускорением; с другой стороны, масса определяет величину силы притяжения. Такая двойственная роль массы приводит к тому, что ускорение различных тел в одном и том же гравитационном поле оказывается одинаковым. Действительно, возьмем два различных тела с массами m и M соответственно. Пусть оба они свободно падают на Землю. Отношение сил притяжения, испытываемых этими телами, равно отношению масс этих тел m/M. Однако ускорение, приобретаемое ими, оказывается одинаковым. Таким образом, ускорение, приобретаемое телами в поле тяготения, оказывается для всех тел в одном и том же поле тяготения одинаковым и совсем не зависит от конкретных свойств падающих тел. Это ускорение зависит только от масс тел, создающих поле тяготения, и от расположения этих тел в пространстве. Двойственная роль массы и вытекающее из нее равенство ускорения всех тел в одном и том же гравитационном поле известно под названием принципа эквивалентности. Это название имеет историческое происхождение, подчеркивающее то обстоятельство, что эффекты тяготения и инерции до известной степени эквивалентны.На поверхности Земли ускорение силы тяжести, грубо говоря, равно 10 м/сек2. Скорость свободно падающего тела, если не учитывать сопротивление воздуха при падении, возрастает на 10 м/сек. Каждую секунду. Например, если тело начнет свободно падать из состояния покоя, то к концу третьей секунды его скорость будет равна 30 м/сек. Обычно ускорение свободного падения обозначается буквой g. Из-за того, что форма Земли не строго совпадает с шаром, величина g на Земле не везде одинакова; она больше у полюсов, чем на экваторе, и меньше на вершинах больших гор, чем в долинах. Если величина g определяется с достаточной точностью, то на ней сказывается даже геологическая структура. Этим объясняется то, что в геологические методы поисков нефти и других полезных ископаемых входит также точное определение величины g. То, что в данном месте все тела испытывают одинаковое ускорение, - характерная особенность тяготения; такими свойствами никакие другие силы не обладают. И хотя Ньютону не оставалось ничего лучшего, как описать этот факт, он понимал всеобщность и единство ускорения тяготения. На долю немецкого физика - теоретика Альберта Эйнштейна ( 1870 - 1955 ) выпала честь выяснить принцип, на основе которого можно было объяснить это свойство тяготения, принцип эквивалентности. Эйнштейну также принадлежат основы современного понимания природы пространства и времени.

Рисунок 6. Теория относительности и гравитация по Эйнштейну (фото mysciencestyle.blogspot.com)

     Уже со времен Ньютона считалось, что все системы отсчета представляют собой набор жестких стержней или каких -то других предметов, позволяющих устанавливать положение тел в пространстве. Конечно, в каждой системе отсчета такие тела выбирались по - своему. Вместе с тем принималось, что у всех наблюдателей одно и то же время. Это предположение казалось интуитивно настолько очевидным, что специально не оговаривалось. В повседневной практике на Земле это предположение подтверждается всем нашим опытом. Но Эйнштейну удалось показать, что сравнения показаний часов, если принимать во внимание их относительное движение, не требует особого внимания лишь в том случае, когда относительные скорости часов значительно меньше, чем скорость распространения света в вакууме. Итак, первым результатом анализа Эйнштейна явилось установление относительности одновременности: два события, происходящие на достаточном удаления друг от друга, могут оказаться для одного наблюдателя одновременными, а для наблюдателя, движущегося относительно него, происходящими в разные моменты времени. Поэтому предположение о едином времени не может быть оправданно: невозможно указать определенную процедуру, позволяющую любому наблюдателю установить такое универсальное время независимо от того движения, в котором он участвует. В системе отсчета должны присутствовать еще и часы, движущиеся вместе с наблюдателем и синхронизированные с часами наблюдателя.      

       Следующий шаг, сделанный Эйнштейном, состоял в установлении новых взаимоотношений результатов измерений расстояний и времени в двух различных инерциальных системах отсчета. Специальная теория относительности вместо “абсолютных длин” и “абсолютного времени” явила на свет иную “абсолютную величину”, которую принято называть инвариантным пространственно - временным интервалом. Для двух заданных событий, происходящих на некотором удалении друг от друга, пространственное расстояние между ними не является абсолютной ( т.е. не зависящим от системы отсчета ) величиной даже в Ньютоновской схеме, если между наступлением этих событий есть некоторый интервал времени. Действительно, если два события происходят не одновременно, наблюдатель, движущийся с некоторой системой отсчета в одном направлении и оказавшийся в той точке, где наступило первое событие, может за промежуток времени, разделяющий два эти события, оказаться в том месте, где наступает второе событие; для этого наблюдателя оба события будут происходить в одном и том же месте пространства, хотя для наблюдателя, движущегося в противоположном направлении, они могут показаться происшедшими на значительном удалении друг от друга. 4. Теория относительности и гравитация. Чем глубже уходят научные исследования в конечные составляющие вещества и чем меньше остается число частиц и сил, действующих между ними, тем настойчивее становятся требования исчерпывающего понимания действия и структуры каждой компоненты материи. Именно по этой причине, когда Эйнштейн и другие физики убедились в том, что специальная теория относительности пришла на смену ньютоновской физике, они занялись снова фундаментальными свойствами частиц и силовых полей. Наиболее важным объектом, требующим пересмотра, была гравитация. Следовало бы ввести представление о гравитационном поле, которое распространялось бы примерно так же, как электрическое и магнитное поля, и которое оказалось бы посредником при гравитационном взаимодействии тел, в согласии с представлениями теории относительности. Это гравитационное взаимодействие сводилось бы к ньютоновскому закону тяготения, когда относительные скорости рассматриваемых тел были бы малы по сравнению со скоростью света. Эйнштейн попытался построить релятивистскую теорию тяготения на этой основе, но одно обстоятельство не позволило ему осуществить это намерение: никто ничего не знал о распространении гравитационного взаимодействия с большой скоростью, имелась лишь некоторая информация относительно эффектов, связанных с большими скоростями движения источников гравитационного поля - масс. Влияние больших скоростей на массы непохоже на влияние больших скоростей на заряды. Если электрический заряд тела остается одним и тем же для всех наблюдателей, масса тел зависит от их скорости относительно наблюдателя. Чем выше скорость, тем больше наблюдаемая масса. Для заданного тела наименьшая масса будет определена наблюдателем, относительно которого тело покоится. Это значение массы называется массой покоя тела. Для всех остальных наблюдателей масса окажется больше массы покоя на величину, равную кинетической энергии тела, деленной на c. Значение массы стало бы бесконечным в той системе отсчета, в которой скорость тела стала бы равной скорости света. О такой системе отсчета можно говорить лишь условно. Поскольку величина источника тяготения столь существенно зависит от системы отсчета, в которой определяется ее значение, порождаемое массой поле должно быть более сложным, чем электромагнитное поле. Эйнштейн заключил поэтому, что гравитационное поле, по - видимому, представляет собой так называемое тензорное поле, описываемое большим числом компонент, чем электромагнитное поле.

       В качестве следующего исходного принципа Эйнштейн постулировал, что законы гравитационного поля должны получаться на основе математической процедуры, аналогичной процедуре, приводящей к законам электромагнитной теории; законы гравитационного поля, получаемые таким способом, очевидно, должны быть сходны по форме с законами электромагнетизма. Но даже принимая во внимание все эти соображения, Эйнштейн обнаружил, что он может построить несколько различных теорий, которые в равной степени удовлетворяют всем требованиям. Нужна была иная точка зрения, чтобы однозначно прийти к релятивистской тории тяготения. Эйнштейн нашел такую новую точку зрения в принципе эквивалентности, согласно которому ускорение, приобретаемое телом в поле сил тяготения, не зависит от характеристик этого тела. В специальной теории относительности, как и в ньютоновской физике, постулируется существование инерциальных систем отсчета т.е. систем относительно которых тела движутся без ускорения, когда на них не действуют внешние силы. Экспериментальное нахождение такой системы зависит от того, сможем ли мы поставить пробные тела в такие условия, когда на них не действуют никакие внешние силы, причем должно быть экспериментальное подтверждение отсутствия таких сил. Но если наличие, например, электрического (или любого другого силового) поля может быть обнаружено по различию в действии, которые эти поля оказывают на различные пробные частицы, то все пробные частицы, помещенные в одно и то же поле тяготения, приобретают одно и то же ускорение.     Однако даже при наличии гравитационного поля существует некоторый класс систем отсчета, который может быть выделен чисто локальными экспериментами. Так как все гравитационные ускорения в данной точке (малой области) у всех тел одинаковы как по величине, так и по направлению, все они окажутся равными нулю по отношению к системе отсчета, которая ускоряется вместе с другими физическими объектами, которые находятся под действием только силы тяготения. Такая система отсчета называется свободно падающая система отсчета. Такую систему нельзя неограниченно продолжить на все пространство и на все моменты времени. Она может быть однозначно определена лишь в окрестности мировой точки, в ограниченной области пространства и для ограниченного промежутка времени. В этом смысле свободно падающие системы отсчета можно назвать локальными системами отсчета. По отношению свободно падающим системам отсчета материальные тела, на которые не действуют никакие силы, кроме сил тяготения, не испытывают ускорения.  Свободно падающие системы отсчета в отсутствие гравитационных полей тождественны с инерциальными системами отсчета; в этом случае они неограниченно продолжимы. Но такое неограниченное распространение систем становится невозможным, когда появляются гравитационные поля. То, что свободно падающие системы вообще существуют хотя бы только как локальные системы отсчета, есть прямое следствие принципа эквивалентности, которому подчиняются все гравитационные эффекты. Но тот же самый принцип ответственен за то, что никакими локальными процедурами невозможно построить инерциальные системы отсчета при наличии гравитационных полей. Эйнштейн рассматривал принцип эквивалентности как самое фундаментальное свойство тяготения. Он понял, что от представления о неограниченно продолжимых инерциальных системах отсчета следует отказаться пользу локальных свободно падающих систем отсчета; и лишь поступив таким образом, можно принять принцип эквивалентности как основную часть фундамента физики. Такой подход дал возможность физикам глубже заглянуть в природу тяготения. Наличие гравитационных полей оказывается равносильным невозможности распространения в пространстве и времени локальной свободно падающей системы отсчета; таким образом , при изучении гравитационных полей следует фокусировать внимание не столько на локальной величине поля, сколько на неоднородности гравитационных полей. Ценность такого подхода, который в конечном счете отрицает универсальность существования инерциальных систем отсчета, состоит в том, что он ясно показывает следующее: нет никаких оснований принимать без размышлений возможность построения инерциальных систем отсчета, несмотря на то, что такие системы использовались на протяжении нескольких столетий.

Рисунок 8. Гравитационное поле в настоящее время (фото: vzglyadzagran.ru)

    В теории тяготения Ньютона ускорение тяготения, вызываемое заданной большой массой, пропорционально этой массе и обратно пропорционально квадрату расстояния от этой массы. Тот же самый закон можно сформулировать немного иначе, но при этом мы сможем выйти на релятивистский закон тяготения. Эта иная формулировка опирается на представление о гравитационном поле как о чем - то таком, что впечатано в окрестность большой гравитирующей массы. Поле можно полностью описать, задавая в каждой точке пространства вектор, величина и направление которого соответствуют тому гравитационному ускорению. Которое приобретает любое пробное тело, помещенное в эту точку. Можно описать поле тяготения графически, проводя в нем кривые, касательная к которым в каждой точке пространства совпадает с направлением локального поля тяготения (ускорения); эти кривые проводятся с плотностью (определенное число кривых на единицу площади поперечного сечения), равной величине локального поля. Если рассматривается одна большая масса, такие кривые - их называют силовыми линиями - оказываются прямыми линиями; эти прямые указывают прямо на тело, создающее поле тяготения. Обратно пропорциональная зависимость от квадрата расстояния выражается графически так: все силовые линии начинаются на бесконечности и заканчиваются на больших массах. Если плотность силовых линий равна величине ускорения, число линий, проходящих через сферическую поверхность, центр которой расположен на большой массе, как раз равно плотности силовых линий, умноженной на площадь сферической поверхности радиуса r; площадь сферической поверхности пропорциональна квадрату его радиуса. В общем случае ньютоновский закон обратной зависимости от квадрата расстояния может быть приведен в такой форме, которая в равной степени пригодна для источника тяготения в виде одной большой массы и для произвольного распределения масс: все силовые линии гравитационного поля начинаются на бесконечности и оканчиваются на самих массах. Полное число силовых линий, оканчивающихся в некоторой области, содержащей массы, пропорционально полной массе, заключенной в этой области. Кроме того, гравитационное поле - поле консервативное: силовые линии не могут принимать форму замкнутых кривых, а перемещение пробного тела вдоль замкнутой кривой не может привести ни к выигрышу, ни к потере энергии.  В релятивистской теории гравитации роль источников отводится комбинациям массы и импульса ( импульс выступает связующим звеном между состоянием одного и того же объекта в разных четырехмерных или, лоренцевых, системах отсчета ). Неоднородности релятивистского поля тяготения описываются тензором кривизны. Тензор представляет собой математический объект, полученный обобщением представления о векторах. В многообразии, описываемом с помощью координат, тензорам можно сопоставить компоненты, полностью определяющие тензор. Релятивистская теория связывает тензор кривизны с тензором, описывающим поведение источников тяготения. Эти тензоры пропорциональны друг другу. Коэффициент пропорциональности определяется из требования: закон тяготения в тензорной форме должен сводиться к ньютоновскому закону тяготения для слабых гравитационных полей и при малых скоростях тел; этот коэффициент пропорциональности с точностью до мировых констант равен постоянной тяготения Ньютона. Этим шагом Эйнштейн завершил построение теории тяготения, называемой иначе общей теорией относительности.

2.2. Физические основы гравитационных аномалий

     Аномальное гравитационное поле отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Поэтому для однозначного решения вопроса о природе аномалий необходимо уметь разделять гравитационные поля на региональные, создаваемые глубоко залегающими массами, и локальные, вызванные местными геологическими неоднородностями разреза. В частности, для исключения высокочастотного локального фона пользуются различными методами пересчета аномального поля в верхнее полупространство, т.е. наблюдатель как бы удаляется от объекта возмущений. В результате таких операций мелкие неоднородности поля сглаживаются и остается низкочастотный региональный фон, обусловленный действием глубоко залегающих гравитирующих масс.

      Другая задача интерпретации заключается в исключении регионального фона и выделения локальных аномалий, связанных с неглубоко залегающими массами. Методы решения этих задач разработаны довольно обстоятельно и в целом носят полуколичественный характер.

      Несмотря на сложную структуру аномального гравиметрического поля, наблюдаемого как на суше, так и на море, отдельные участки кривой g могут быть использованы для определения параметров гравитирующей массы. Иногда, меняя форму и глубину залегания гравитирующей массы, рассчитывают создаваемую при этом аномалию. Сравнивая ее с наблюденной аномалией, методом подбора определяют основные параметры возмущающей массы в реальных условиях.

       Нахождение гравитационного поля по известной форме, плотности и глубине залегания гравитирующей массы называется прямой задачей гравиразведки.

      Нахождение параметров гравитирующей массы по характеру аномалии называется обратной задачей гравиразведки.

На практике чаще всего приходится решать обратную задачу. При этом наиболее удовлетворительное приближение удается достигнуть для тел простой геометрической формы.

      Существование гравитационных аномалий в земной коре, под дном океана, равно как и на суше, обусловлено плотностными неоднородностями горных пород. Чем значительнее эти неоднородности, тем лучше они отражаются в аномальном гравитационном поле. Большое значение имеют также размеры и форма аномалиеобразующего тела. Для оценки параметров геологических объектов и расчетов создаваемого ими аномального поля силы тяжести вводится, как уже говорилось, понятие избыточной плотности горных пород:

.

     Избыточной плотностью называется разность плотности вмещающих пород 1 и плотности аномалиеобразующего тела 2. Знание плотности важно при геологическом истолковании гравитационных аномалий.

     Сведения о плотностях горных пород получают различными способами: непосредственными измерениями в скважинах или по образцам, или косвенным путем по данным о сейсмических скоростях распространения волн в толщах пород, или аналитически по наблюденным гравитационным аномалиям.

     Плотность горной породы определяется как отношение массы вещества m к ее объему V:

       Она зависит от минералогического состава, пористости и влажности породы. Чем больше пористость, тем меньше плотность, и наоборот. Если поры заполнены водой, то плотность такой породы повышается. Различные геологические процессы оказывают существенное влияние на плотность пород. Например, в зонах тектонических разломов в результате дробления пород и замещения их более легкими породами может происходить разуплотнение первоначально более плотного субстрата. В случае внедрения интрузий основного или ультраосновного состава происходит замещение менее плотных пород более плотными. Увеличение плотности пород наблюдается в сводах антиклинальных складок в результате сжатия пород.В целом плотность осадочных пород меньше, чем плотность магматических и метаморфических пород, и возрастает с увеличением основности пород. Ниже приведены плотности наиболее распространенных пород.

        В реальных средах наблюдаются довольно значительные отклонения плотности от указанных средних значений в ту или иную сторону.

Сопоставление плотности с другими физическими свойствами горных пород обнаруживает в ряде случаев определенные статистические связи. Так, отмечается параболическая зависимость скорости распространения продольных сейсмических волн от плотности. С увеличением скорости плотность закономерно возрастает. Это позволяет проводить оценку плотностных характеристик геологического разреза по материалам сейсмических исследований. Выше приводились данные об увеличении плотности пород по мере повышения их основности. В этом же направлении происходит и увеличение магнитной восприимчивости пород, хотя более определенной статистической закономерности здесь определить не удается.

Плотность горных пород дна океана в большинстве случаев удается определить на образцах, драгированных лишь с поверхности дна. Начавшееся в 1969 г. глубоководное бурение с «Гломар Челленджер» позволило проводить непосредственные определения плотности осадочных и базальтовых пород на глубину до 1 км под поверхность дна океана.

     Измерения плотности на образцах производятся либо путем гидростатического взвешивания, либо с помощью специального прибора – денситометра. В первом случае значение плотности непористых образцов определяется по формуле :,

где P1 и P2 – вес образца соответственно в воздухе и в воде. При измерениях на денситометре значение плотности  отсчитывается по шкале прибора, отградуированной в г/см3.Чем детальнее нам нужно знать гравитационное поле, тем большее число параметров определяют аналитическое выражение для силовой функции поля тяготения планеты. В эпоху, когда спутники еще были недоступны,основным методом исследования  гравитационного поля  был гравиметрический. Гравиметрия - область геофизики, изучающая способы наиболее высокоточного определения удельной силы тяжести и ее геологической интерпретации. Этой наукой занимаются как физики, механики так и геологи. До 20-х годов ХХ столетия наука не располагала средствами для измерения удельной силы тяжести на морях и океанах с точностью достаточной, для ее геологического истолкования. В 1922-1929 гг голландский ученый-геодезист Венинг-Мейнес разработал способ наблюдения колебаний маятников на слабо качающемся основании. Используя подводную лодку в качестве лаборатории, он совершил ряд плаваний в Юго-Восточную Азию, исследовал регион, содержащий островные дуги и глубоководные впадины. Идеи Венинг-Мейнеса были реализованы в Государственном астрономическом институте им. П.К. Штернберга профессором Л.В.Сорокиным. До Великой Отечественной войны Л.В.Сорокин с учениками совершил ряд плаваний на подводных лодках на Черном море, в Баренцовом, Охотском и Беринговом морях. Только война остановила эти исследования. Однако, после войны они вновь активизировались. Были разработаны и другие методы для измерения силы тяжести на обычных исследовательских судах, были изобретены морские гравиметры, способные измерять приращение силы тяжести с относительной точностью не хуже . В морских гравиметрических исследованиях после войны принимали активное участие и другие страны, в частности США, Англия, Германия, Франция, Италия и Япония. Они и сейчас продолжают активное исследование гравитационных полей акваторий, в особенности нефтегазоносных акваторий. Накопился достаточно большой материал для определения модели гравитационного поля Земли как планеты. По мере накопления новых данных производилась ревизия этих моделей. Одна из последних моделей гравитационного поля по геофизическим данным была построена в ГАИШ профессором Н.П. Грушинским. Настоящую революцию в определении гравитационного поля планеты произвели первые запуски искусственных спутников Земли. Был отмечен резкий скачек в точности определения постоянной - постоянной, ответственной за сжатие планеты -- одним из основных параметров, необходимых для развертывания карт на Земной поверхности. Сейчас разработаны новые методы наблюдения ИСЗ, которые позволяют определить положение спутника с точностью 2 см. Возникло новое направление небесной механики, позволяющее по видимым неравенствам в движении спутника определять возмущающие силы – гравитационное поле планеты. Как известно обратные задачи динамики относятся к типу некорректных, теорию которых разработали ученые МГУ и успешно используются для решения задач как геофизики, так и астрофизики. Сейчас построено достаточно много моделей  гравитационного  поля  Земли  разной детальности и точности. Отмечено, что с увеличением степени и порядка разложения падает точность определения коэффициентов. Для описания регионального поля  часто прибегают к модели степени и порядка 36 (36х36). Наиболее детальная из известных моделей, по-видимому, модель, получившая шифр EGM-96 (360х360).  Такой карты не было еще никогда. Переливы цветов показывают еле уловимые изменения  гравитационного поля Земли. Если бы вам пришлось пролетать над красными зонам, вас бы тянуло вниз чуть сильнее, а голубым обозначены области, где притяжение планеты слегка ослабевает. Гравитационные аномалии не воспринимаются человеческими органами чувств, поэтому ученые нанесли эти данные на сферу, преувеличив пики и провалы. Так была получена удивительно четкая иллюстрация предмета исследования. Выглядит она, возможно, несколько странно, но не надо обольщаться – эта карта и те, что последуют за ней, позволят получить новые сведения о том, как океаны движутся и влияют на климат. Само понимание того, как парниковые газы могут изменить планету, будет зависеть от этих пиков и впадин. Карта была составлена совместной американо-германской экспедицией Grace (Эксперимент по реверсии гравитации и климата). Карта – первый продукт проекта, в котором участвуют два спутника, находящихся в 450 км от Земли. Спутники собирают информацию, выполняя тщательно выверенные маневры на орбите. В то время как один покачивается и медленно перемещается в неровном гравитационном поле земли, второй, следующий на расстоянии 220 километров, измеряет колебания в разделяющем их расстоянии вплоть до микрона. Именно изменения расстояния и описывают природу и масштабы гравитационных аномалий, над которыми пролетают спутники. Очевидные пики гравитации были известны уже некоторое время - например, Гималаи, где масса продолжает накапливаться вместе с гравитационным притяжением, в то время как порода собирается в этой области в результате перемещения тектонических плит Земли. Но собрать подробности удалось только с помощью Grace, особенно в отношении океанов, которые образует постоянно перемещающаяся водная масса. Первая карта, созданная Grace, статична – своего рода "гравитационный слепок" Земли. Но этот профиль постоянно изменяется – вместе с движениями земной коры, океанов и атмосферы над ними. Теперь Grace будет раз в 30 дней присылать на Землю новый профиль, из которых в будущем можно будет составить динамическую модель и следить за изменениями.


ЗАКЛЮЧЕНИЕ

Общая теория относительности дала возможность несколько иначе взглянуть на вопросы, связанные с гравитационными взаимодействиями. Она включила в себя всю ньютоновскую механику только как частный случай при малых скоростях движения тел. При этом открылась широчайшая область для исследования Вселенной, где силы тяготения играют решающую роль.

Масштабы космического пространства и времени (точнее - Пространства-Времени) не могут не завораживать и не вдохновлять. Еще больше завораживают ее тайны - открытые и неоткрытые. Последних, конечно, неизмеримо больше. И по мере развития наших знаний о Вселенной, практического освоения Космоса и реального проникновения человека сначала в ближайшие окрестности Солнечной системы, а затем и за ее пределы - будут появляться все новые и новые тайны, требующие новых усилий в их разгадке и, следовательно, новых книг.

В общем случае гравитационная масса (гравитационный заряд) тела не равна его инертной массе. Гравитационной массой определяется взаимодействие тела с g-полем, а инертной массой - способность транспортировать энергию в пространстве.

Стационарное g-поле не способно изменить ни полную массу, ни полную энергию свободно падающего тела. В гравитационном поле лишь перераспределяются энергетические составляющие полной энергии тела, характеризующие его исходное состояние и меняется импульс тела.

Фотон есть первооснова вещества, обладающего инертными свойствами (постулат о единстве состава материи на уровне первомассы).

Таким образом, наша планета Земля - активная динамическая система, субсферическийтороид.

В любой движущейся и взаимодействующей (гравитирующей) системе суммарный импульс взаимодействующего вещества равен суммарному импульсу порождаемого этим веществом излучения.

Выводы по теме:
- гравитационное поле в виде гравитационных волн существуют у всех
вращающихся масс.
- скорость распространения гравитационных ,да и волн э.м.полей
есть функция от длины волны ,что ставит выводы ОТО Энштейна и
второго уравнения Максвелла под сомнения. Скорость волн в вакууме
не равна 299792,5км/сек
- гравитационное поле земли определяет границы его
геомагнитного поля R=17692-33641км минимальные и максимальные
значения границ геомагнитного поля земли.
- рассчитываются критические скорости движения земли по орбите.
- гравитационные волны сворачивают пространство вокруг ,возвращая
в своем частотном диапазоне свободные заряды к источнику
генерации .
- Пространство ,или вакуум,есть неоднородная по сумме волновых
сопротивлений среда ,в каждой точке которой могут быть несколько
гравитационных спектров поглощения и спектров излучения.
- отсутствие сфер генерации у черных дыр доказывает наличие у них
мощного ,в большом диапазоне частот спектра поглощения
гравитационных волн.

СПИСОК ЛИТЕРАТУРЫ

  1. Азимов А. Вселенная. М., 1969г.
  2. Анисимов А.Ф. Космические представления народов Севера. М. - Л. 1959г.
  3. Берри А. Краткая история астрономии. М. - Л., 1946г.
  4. Вайнберг С. Первые три минуты: Современный взгляд на происхождение Вселенной. М., 1981г.
  5. Ван-дер-Варден Б. Пробуждающаяся наука. Рождение астрономии. М., 1991г.
  6. Засов А.В., Кононович Э.В. Астрономия: Атлас для общеобразовательных учреждений. М., 1996г.
  7. Земля и Вселенная (журнал). 1980-1997г.
  8. Знание - сила (журнал). 1960-1997г.
  9. Ландау, Л. Д., Лифшиц, Е. М. Теория поля — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с.
  10. Международный бюллетень по гравиразведки  - 2002 г.
  11. Мизнер Ч., Торн К., Уилер Дж. Гравитация. В 3-х томах. Бишкек, 1994г.
  12. Нарликар Дж. Гравитация без формул. М., 1985г.
  13. Наука и жизнь (журнал). 1960-1997г.
  14. Сборник статей по гравитационным аномалиям факультета геологии МГУ.
  15. Советский энциклопедический словарь — 2-е изд. — М.: Советская энциклопедия, 1982. — С. 332.
  16. Струве О., Линдс Б., Пилланс Э. Элементарная астрономия. М., 1964г.
  17. Учебник по геофизике – 2000 г. – Орлёнок Ю.А.
  18. Шкловский И.С. Вселенная, жизнь, разум. М., 1962г.
  19.  http://www.astrogalaxy.ru/823.html
  20.  http://www.kscnet.ru/ivs/publication/tutorials/vikulin/chapter6.pdf
  21.  http://www.astronet.ru/db/msg/1169697/node18.html

 




1. Екстремальні точки Локальний екстремум функції
2.  Засяленне беларускiх зямель
3.  Выезд ребенка совместно с родителями 1
4. Canada and tourism
5. Т4 812 6404698 www
6. Реферат- Политическая карта мира и мировые природные ресурсы
7. Патоморфические изменения в легких крыс при развитии реперфузионного синдрома, отягощенного воздействием излучения
8. Кред. догр его усля порядок закля и значе КД это юрид
9. тема юридических норм регламентирующих имущественные и связанные с ними не имущественные правоотношения в
10. По газонам не ходить
11. Ru Все книги автора Эта же книга в других форматах Приятного чтения Карнеги Дейл Шесть способов р
12. тематических объектов
13. БЕЛОРУССКОРОССИЙСКИЙ УНИВЕРСИТЕТ Кафедра Физические методы контроля
14. Весільна фортеця 2012 Розважальнотуристична агенція.html
15. сложный процесс научнопознавательной деятельности нацеленной на выявление проверку и использование в пр
16. Банкрутство в країнах з розвинутою ринковою економікою.html
17. Убийство в состоянии аффекта
18. 20года
19. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Київ ~р
20. варианте в качестве упаковки используется обычно пищевая плёнка ведь на каждую мисочку и кастрюльку крышек