Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тематики и информатики КУРСОВАЯ РАБОТА по информатике ВАРИАНТ 1- Визуализация численных ме

Работа добавлена на сайт samzan.net:


Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №1:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студент гр. МЕ-71

Арапов И.А.

Руководитель:

Доцент Минина Е.Е

Екатеринбург

2008

Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов. Дифференциальные уравнения - уравнения, связывающие между собой независимую  переменную , искомую функцию и ее производную.

Если решить сложно или невозможно, используют числовые методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели и задачи работы:

Целью моей работы является изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков разработки программного обеспечения для операционных систем  Windows.

1. Постановка задачи

Решить методами Эйлера и Рунге-Кутта 4 порядка задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [1,2; 2] с шагом h=0.1 и начальным условием: Y(0) = 1. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Рунге-Кутта 4 порядка, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

2.1 . Решение поставленной задачи методами Эйлера  и Рунге-Кутта 4 порядка

2.1. 1. Метод Эйлера

1. Строим оси координат;

2. Отмечаем A(1,2; 1) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

α= arctg(f(x0; y0))=arctg(f(1,2; 1))=arctg(-0.598)=333º

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1,2+ 1 · 0,1 = 1,3

6. Проводим прямую x = x1 = 0,1  до пересечения с прямой l0, отмечаем точку B(x1; y1);

7. Ищем y точки B:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

Δx = x1 – x0 = h,

f(x0; y0) = (y1 – y0)/h =>

y1 = y0 + h · (f(x0; y0)) = 1 + 0,1 · f(1,2; 1) = 0,95

Следовательно, точка B имеет координаты (1,3;  0,95).

2.1.2. Метод Рунге-Кутта 4 порядка

1. Строим оси координат;

2. Отмечаем А(1,2; 1) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih

x1 = 1,2 + 1 · 0,1 = 1,3;

  1.  Находим по формулам:

k1=0,1·f(1,2; 1)=0,1*(-0.55)=-0,055

k2=0,1· f(1,2+0,1/2; 1+(-0,055)/2)=-0,05403

k3=0,1· f(1,2+0,1/2; 1+(-0,054)/2)=-0,05406

k4=0,1· f(1,2+0,1; 1+(-0,05406))=-0,05346

y1=((-0,055)+2*(-0,05403)+2*(-0,05406)+(-0,05346))/6=-0,03619

 y2=1+(-0,03619)=0,964

Следовательно, следующая точка графика решения имеет координаты (1,3; 0,964)

3. Блок-схемы основных процедур.

Блок-схема функции.

Блок-схема методЭйлера.

Блок-схема методом Эйлера модифицированным.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Dim x(50) As Single, y(50) As Single, k(50) As Single, z(50) As Single, p(50) As Single

Private y0 As Single

Private x0 As Single

Private xk As Single

Private C As Single

Function f(t As Single, q As Single) As Single

f = 2 * t * q / t + 1

End Function

Private Sub Command2_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y(0) = Val(Text4.Text)

h = Val(Text3.Text)

p(0) = y(0)

z(0) = y(0)

n = Round((xk - x0) / h)

C = (y(0) * (x0 + 1) ^ 2) / Exp(2 * x0)

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.Cols = 4

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "P"

MSFlexGrid1.TextMatrix(0, 2) = "Yэ"

MSFlexGrid1.TextMatrix(0, 3) = "Yэм"

Max = y(0)

Min = y(0)

For i = 1 To n

x(i) = x0 + i * h

p(i) = Round(C * (x(i) * x(i) * x(i)) )

y(i + 1) = Round(y(i) + f(x(i), y(i)) * h )

z(i + 1) = Round(z(i) + f(x(i) + h / 2, z(i) + h / 2 * f(x(i), z(i))) * h)

If y(i) > Max Then Max = y(i)

If y(i) < Min Then Min = y(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(p(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(z(i))

Next i

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

Label4.Caption = Str(Min)

Label5.Caption = Str(Max)

Label6.Caption = Str(x0)

Label7.Caption = Str(xk)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (y(i) - Min) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (y(i + 1) - Min) * ky)

z5 = Round(5400 - (p(i) - Min) * ky)

z6 = Round(5400 - (p(i + 1) - Min) * ky)

z7 = Round(5400 - (z(i) - Min) * ky)

z8 = Round(5400 - (z(i + 1) - Min) * ky)

Picture1.Line (z1, z7)-(z3, z8), vbRed

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Picture1.Line (z1, z5)-(z3, z6), vbBlue

Next i

End Sub

Private Sub Command1_Click()

End

End Sub

6. Решение задачи в MathCAD.

Заключение

В данной курсовой работе я изучил численные методы решения задачи

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.


Eiler

h=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

yi=yi-1+h*f(xi-1,yi-1)

end

Eiler mod

=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Yi=y(i-2)+h*F(x(i-2)+h/2,y(i-2)+h/2*F(x(i-2), y(i-2))

end

end

F=2*t*q/t+1

F(t,q)

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”YЭ

MSFlexGrid1.TextMatrix(0,2)=”YЭМ

MSFlexGrid1.TextMatrix(0,3)=”P”

x(0)=x0

y(0)=y0

c=y0*(x0+1)^2/exp(2*x0)

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

x(i)=x0+h*i

Z(0)=y0

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=exp(2*x(i)) *C/(x(i)+1)^2

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

нет

да

нетт

да

p(0)=y0

For i=0 to N-1

p1=720+(x(i)-x0)*kx

p2=5400-(y1(i)-min)*ky

p3=720+(x(i+1)-x0)*kx

p4=5400-(Y(i+1)-min)*ky

p5=5400+(p(i)-min)*ky

p6=5400-(p(i+1)-min)*ky

p7=5400-(z(i)-min)*ky

P8=5400-(z(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbRed

Picture1.Line(p1,p3)-(p5,p7),vbGreen

Picture1.Line(p1,p4)-(p5,p8),vbBlue

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=y(0)*(x0+1)^2/exp(2*x0)

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=( exp(2*x(i)) *C/(x(i)+1)^2

x(i),y1(i),y2(i),Y(i)

end




1. Шире круг Толерантность означает уважение принятие и правильное понимание богатого многообразия к
2. Вопросы к экзамену
3. Запись и считывание данных (работа с файлами).html
4. 35 Химическая термодинамика Скорость химических процессов
5. Локализация функций в коре больших полушарий Электрическая активность головного мозга
6. Розрахунки в системі клієнт-банк та шляхи їх удосконалення
7. і. Випадковим процесом Хt називають процес значення якого при будь ~ якому значенні аргументу t є величин.
8. . Прямые иностранные инвестиции понятие формы
9. тема дисперсия одного вещества дисперсная фаза в другом веществе называемом дисперсионной средой обычно
10. Теория и методика воспитания младших школьников НО 1101 Барабошкина Олеся Юрьевна 5 Баранова Ольга Ал
11. Основы бизнеса Отчет о выполнении лабораторной работы 6 Создание системы б
12. Разработка системы стабилизации температуры низкотемпературного кипящего слоя
13. Финансовые стимулы
14. вилами по воде писано и несет мало смысла и много телодвижений ну кроме что догадок из опыта но мы не спецы
15. 2000 Порядок создания автоматизированных систем в защищенном исполнении
16. Лабораторная работа 4 студента группы ЖД11 МАЛЫХИНА В
17. О полиции14 6
18. Психологический анализ выбора брачного партнер
19. Федерация спортивной и фитнес аэробики Республики Карелия ____________С
20. ФИЛОСОФСКАЯ АВТОБИОГРАФИЯ Работа Смагина Алексея студента 2го курса