У вас вопросы?
У нас ответы:) SamZan.net

тематика Специальность 240 01 01 Программное обеспечение информационных технологий Группа Препод1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

План учебного занятия № 33.

дисциплины «Высшая математика»

Специальность  2-40 01 01 Программное обеспечение информационных технологий

Группа     

Преподаватель Моисеева Т.И.

Раздел программы   Линейная алгебра.

Тема: Матрицы и линейные операции над ними.

Цель обучения: Сформировать понятие  о работе с матрицами

Цель развития: Показать возможность работы над матрицами: сложения, умножения матриц,  нахождения транспонированной матрицы.

Цель воспитания: Способствовать воспитанию аккуратности, четкости мышления и восприятия незнакомых образов.

Тип занятия: Урок изучения нового материала.

Вид занятия:  Урок-лекция.

Межпредметные связи: Науки, изучающие расположение  прямой в пространстве.

Ход занятия:

1                                              Основные определения.

Определение. Матрицей размера mn, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

А =

2.                                             Основные действия над матрицами.

 Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.

 Определение.  Матрица вида:

= E,

называется единичной матрицей.

Определение. Если am n = an m , то матрица называется симметрической.

Пример.    - симметрическая матрица

Определение. Квадратная матрица вида  называется диагональной матрицей.

 Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

cij = aij  bij

С = А + В = В + А.

 Операция умножения (деления) матрицы любого размера на произвольное число сводится к  умножению (делению) каждого элемента матрицы на это число.

(А+В) =А  В

А() = А  А

Пример. Даны матрицы А = ; B = , найти 2А + В.

2А = ,                                 2А + В = .

3.                                                    Операция умножения матриц.

 Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

AB = C;

.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

4.                                               Свойства операции умножения матриц.

1)             Умножение матриц не коммутативно, т.е. АВ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

АЕ = ЕА = А

Очевидно, что для любых матриц выполняются следующее свойство:

AO = O;  OA = O,

где О – нулевая матрица.

2)                     Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3)              Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения  А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4)                            Если произведение АВ определено, то для любого числа верно соотношение:

(AB) = (A)B = A(B).

5)                             Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство:

(АВ)Т = ВТАТ, где

индексом Т обозначается транспонированная матрица.

6)                    Заметим также, что для любых квадратных матриц det (AB) = detAdetB.

Что такое det  мы уже знаем.

  Определение. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А = ;                  В = АТ=;

другими словами,  bj i = ai j.

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC)T = CTBTAT,

при условии, что определено произведение матриц АВС.

 Пример.    Даны матрицы А = , В = , С =  и число = 2. Найти АТВ+С.

 AT = ;                 ATB = =  = ;

C = ;                           АТВ+С = + = .

 Пример. Найти произведение матриц А =  и В = .

АВ = = .

ВА = = 21 + 44 + 13 = 2 + 16 + 3 = 21.

 Пример. Найти произведение матриц А=, В =

АВ = = = .

 




1. Контрольная работа- Финансовый анализ эффективности работы предприятия в программе Project Expert
2. 40485 [15] Основное обозначение 10 При
3. Ученики и Писание
4. Деякі люди категорично не сприймають безхатченків вважаючи що вони є сміттям в нашому місті
5. Введение Вся жизнь человека постоянно ставит перед ним острые и неотложные задачи и проблемы
6. Я вернусь... правдивая история любви русской женшины и восточного мужчины
7. Форсированная индустриализация Красноярского края
8. Ласточка через ворота и снова прямо вдоль набережной- справа река слева строения -
9. ЛЕКЦІЯ 6 СТРУКТУРА ЦІНИ ТА ФОРМУВАННЯ ЇЇ ЕЛЕМЕНТІВ Мета лекції- Ознайомити зі складом ціни т
10. Персональные компьютеры1
11. Структурные и прагматические особенности директивных высказываний
12. Шпоры по ботанике
13. Отчет о патентных исследованиях по объекты Зубные пасты
14. Лабораторная работа 4 ПРОЕКТИРОВАНИЕ ФИЗИЧЕСКОЙ КОНФИГУРАЦИИ СЕТИ Дисциплина- Информационные сети и те
15. вступає з ним у певне відношення але так наче перебуває поряд або ззовні світу
16. Тип кольчатые черви
17. Гiстарызмы i архаiзмы i цяжкасцi iх перакладу на беларускую мову
18. под поверхности моря
19. Физика Твердого Тела
20. Что важнее всего в молодости Полученные результаты представлены в виде гистограммы