Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Тема 21 Численные методы решения тепловой задачи

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

Лекция 9

Тема 2.1 Численные методы решения тепловой задачи. Метод конечных разностей

 

Многие математические модели описываются дифференциальным уравнением или системой дифференциальных уравнений с краевыми условиями первого, второго и третьего рода. Точное решение краевых задач удается получить лишь для немногих частных случаев. Поэтому общий способ их решения, в том числе и в САПР, заключается в использовании различных приближенных моделей. В настоящее время наиболее широкое распространение получили модели на основе интегральных уравнений и модели на основе метода сеток.

Основная идея построения модели на основе интегральных уравнений заключается в переходе от исходного дифференциального уравнения в частных производных к эквивалентному интегральному уравнению, подлежащему дальнейшим преобразованиям.

Сущность метода сеток состоит в аппроксимации искомой непрерывной функции совокупностью приближенных значений, рассчитанных в некоторых точках области – узлах. Совокупность узлов, соединенных определенным образом, образует сетку. Сетка, в свою очередь, является дискретной моделью области определения искомой функции.

Применение метода сеток позволяет свести дифференциальную краевую задачу к системе нелинейных, в общем случае, алгебраических уравнений относительно неизвестных узловых значений функций.

Рассмотрим представленную на рис 1.а. задачу распространения тепла в двумерной области W.

Рисунок 1.а.

Если потоки тепла в направлении осей x и y на единицу длины за единицу времени обозначены через qx и qy соответственно, то разность D между исходящим и входящим потоками для элемента размера dx  и dy задается выражением:

      (1)

Для сохранения энергии эта величина должна быть равна сумме тепла, генерируемого в элементе за единицу времени dt, например, Qdxdy, где Q может изменяться в зависимости от координат и времени, и тепла, освобождаемого за единицу времени , а именно – , где с – удельная теплоемкость, р – плотность и j(x, y, t) – распределение температуры. Ясно, что это требование равенства ведет к дифференциальному соотношению:

           (2)

Соотношение выполняется во всей области W, где решается задача.

Вводя теперь физический закон, определяющий поток тепла в изотропной среде, можно записать для компоненты потока в произвольном направлении n:

               (3)

где к – коэффициент теплопроводности, характеризующий свойства среды. В частности, для изотропного материала по направлениям x и y выполняются равенства

,                         (4)

Соотношение (2) и (4) определяют систему дифференциальных уравнений, описывающих рассматриваемую задачу; теперь эти уравнения нужно решить относительно трех зависимых переменных qx, qy и j.

Для такого решения необходимо задать начальные условия, например, в момент времени t=t0 (например, в этот момент времени всюду в W может быть задано распределение температуры), и граничные условия на границе Г области решения задачи, в качестве которых, как правило, могут быть использованы два различных типа условий.

В случае первого условия, скажем применяемого на участке границы Гj, задаются значения температуры (x, y, t), т.е

на          (5)

Граничные условия этого вида часто называют граничными условиями Дирихле.

В случае второго условия, применяемого на остальной части границы Гq, задаются значения потока тепла (x, y, t) в направлении нормали к границе n тогда можно записать

 на ,            (6а)

Или

 на  ,            (6б)

Этот тип краевого условия часто называется граничными условиями Неймана.

Теперь задача полностью определена уравнениями(2), (4), (5) и (6), и решением этой системы уравнений в принципе можно получить числа, представляющие распределения для j, qx и qy в любой момент времени.

Данную задачу можно записать в иной форме, исключив при помощи уравнений(4) величины qx и qy из уравнения (2) и получив в результате дифференциальное уравнение более высокого порядка с одной независимой переменной, а именно уравнение

,

для которого опять требуется задать начальные и краевые условия.

Выше была рассмотрена задача, определенная в пространственно- временной области и требующая задания начальных условий. Независимыми переменными здесь были x, y и t. Если предполагаются стационарные условия (т.е., задача не зависит от времени и, следовательно,), то уравнения (2) и (7) упрощаются. В последнем случае имеет место уравнение

,       (8)

для решения, которого требуется только задать краевые условия вида (5) и (6).

Хотя основные уравнения были записаны для двумерного случая, их легко распространить на трехмерный случай, чтобы иметь возможность иметь дело с более общими задачами. С другой стороны в некоторые задачи входит только одна независимая переменная; на рис 1.б., например, рассматривается поток тепла через плиту, на которых условия не меняются по у.

Рисунок 1.б.

Тогда из уравнения (8) получаем обыкновенное дифференциальное уравнение

,

А областью «определения задачи» является отрезок 0 £ х £ Lx.

Конечные разности в одномерном случае

Предположим, что решается просто одномерная краевая задача, т.е. требуется определить функцию j(х), удовлетворяющую заданному дифференциальному уравнению на отрезке 0 £ х £ Lx вместе с надлежащими краевыми условиями при х = 0 и  х =  Lx. как было только что показано, типичным примером такого рода задачи является задача вычисления распределения температуры j(х) в плите толщиной Lx из материала с коэффициентом теплопроводности к; на плоскостях х = 0 и х = Lx, ограничивающих плиту, сохраняются заданные значения температуры  и соответственно, и в плите генерируется тепло со скоростью Q(x) на единицу толщины. Дифференциальное уравнение для этой задачи является уравнением (1.9), которая при предположении, что теплопроводность материала постоянно, сводится к уравнению

Соответствующие краевые условия задаются равенствами вида (5) и могут быть записаны в виде

,           

Для решения этой задачи методом конечных разностей, прежде всего, производится дискретизация независимой переменной х, т.е. строится множество (или сетка) L+1 дискретных равноотстоящих точек хl (l=0, 1, 2,…,L)  на отрезке 0 £  х £ Lx        х0=0, хL=Lx и хl+1-xl= x.

Следующий шаг состоит в замене в дифференциальном уравнении членов, содержащих дифференцирование членами, в которых используется только алгебраические операции. Этот процесс по необходимости включает аппроксимацию и может быть выполнен путем использования конечно-разностных аппроксимаций для производных функции.

Конечно-разностные аппроксимации производных.

Основная идея метода заключается в замене частных производных их разностными аналогами. Рисунок 2 (графическая интерпретация некоторых конечно-разностных аппроксимаций для производных).

Рисунок 2.

 

          - правая схема

          - левая схема

 

 - центральная схема

 

Получение разностных аналогов:

 (1)

  (2)

Центральная разность (1) - (2):

 

 

Алгоритм метода конечных разностей

 

Метод конечных разностей (МКР) является старейшим методом решения краевых задач.

Алгоритм (рис 3) МКР состоит из этапов традиционных для метода сеток:

1. Построение сетки в заданной области. В МКР используется сетка, задаваемая конечным множеством узлов. В узлах сетки определяются приближенные значения φh искомой функции φ. Совокупность узловых значений φh называют сеточной функцией.

2. Замена дифференциального оператора Lh=∂φ/∂u в исходном дифференциальном уравнении разностным аналогом Lh, построенным по одной из схем, рассмотренных ниже. При этом непрерывная функция φ аппроксимируется  сеточной функцией φh.

3. Если есть граничные условия второго и третьего рода, то для граничного узла с этим условием записывается соответствующая аппроксимация. В результате должна получиться замкнутая система НАУ.

4.  Решение полученной системы алгебраических уравнений.

 

В МКР используются, как правило, регулярные сетки, шаг которых либо постоянен, либо меняется по несложному закону. Примеры сеток предложены на рис. 3.

Рисунок 3.

 

Решение одномерной линейной задачи с краевым условием второго рода

В реальных задачах одно или несколько краевых условий часто могут быть выражены через производную (краевые условия Неймана).

Решение одномерных нестационарных задач

Часто при работе с математическими моделями приходится исследовать зависимость параметров системы от времени. Такой класс задач называется нестационарные. Существует два способа получения решения: явный и неявный метод. При использовании любого из способов нам надо принять шаблон для замены частных производных на разностные аналоги.

Сходимость, аппроксимация и устойчивость разностных схем.

 

LV+P=0   исходный дифференциальный оператор

 

LhVh+ph=0   разностный оператор. h – шаг сетки

 

|| V(h)-Vh ||≤c1*hk – сходимость порядка К. Разностная схема аппроксимируется с точностью К.

                           с1=Const, не зависит от h

 

Аппроксимация

LhV(h)+phh<o:p</o:p

Если норма невязки || δh || ≤ c2*hk – имеет место аппроксимация порядка К.

Устойчивость к возмущению

       LhVh+ph=0

       LhZh+ph=εh

 




1. Предмет философии не соответствует обыденному пониманию этого слова
2. О нарцизме Зигмунд Фрейд О нарцизме None Smilodon http---online
3. темах счисления двоичнодесятичном коде
4. Лекция 10 Порядок учета расчетов по инкассо План Общая характеристика расчетов по инкассо
5. реферат на здобуття наукового ступеня кандидата технічних наук Дніпропетровськ 2006 Дисерта
6. Реферат О предметной сфере маркетинговых исследований
7. Статья- Особливості інноваційної діяльності у зеленому туризмі
8. монголам на р. Вожа.html
9. Основные функции службы управления персоналом
10. Реферат- Прогноз развития телевизионного рекламного рынка России
11. Отчет о научноисследовательской работе
12. . История возникновения и роль банковской системы 2
13. Центр детского и юношеского туризма и экскурсий
14. Инструментальное развитие познавательной и учебной мотивации в детском возрасте
15. Конституционно-правовой статус счётных палат зарубежных стран
16. Введении С. Л. Рубинштейн развертывает основные положения подхода который теперь принято называть личнос
17. Северное Сияние на 2014 годв расчете на одного человека в сутки.
18. на тему- Выполнил-Давутов И.html
19. Многочисленные хозяйствующие субъекты классифицируются по различным признакам и их разграничения по том.
20. нормативной системы в процессе исторического развития