У вас вопросы?
У нас ответы:) SamZan.net

Современная теория строения атома опирается на квантовую механику

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

1.Современная теория строения атома опирается на квантовую механику.

Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определённую массу покоя), а с другой — его движение напоминает волну и может быть описано определённой амплитудой, длиной волны, частотой кол***ий и др. Поэтому нельзя говорить о какой-либо определённой траектории движения электрона — можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства. Cледовательно, под электронной орбитой следует понимать не определённую линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определённом расстоянии от ядра. В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда. Представление об электроне как о некотором облаке электрического заряда удобно; оно довольно точно передаёт особенности поведения электрона. Однако следует иметь в виду, что электронное облако не имеет резко очерченных границ, и даже на большом расстоянии от ядра существует вероятность пребывания электрона. Для характеристики формы электронного облака понятие орбиталь вместо понятия орбита было введено именно для того, чтобы не смешивать движение электрона с движением тела в классической физике. Однако при упрощённом рассмотрении строения атома иногда сохраняют термин орбита, помня тем не менее об особом характере движения электрона в атоме.

2.Состояние электронов в атоме с позиции квантово-механической модели определяется плотностью вероятности обнаружения электрона в данной области пространства. Граничная поверхность, внутри которой сосредоточена область наибольшей вероятности обнаружения электрона, называется атомной орбиталью(АО). Атомная орбиталь характеризуется набором трёх параметров, называемых  квантовыми числами. Главное квантовое число n в основном опpеделяет энеpгию АО. Его зна- чение равно номеру энергетического уровня, на котором находится электрон. Оpбитальное квантовое число в основном опpеделяет фоpму АО и, в некоторой степени, ее энеpгию. Значение определяет энергетический подуровень (s-, p-, d- или f-), на котором находится электрон. Магнитное квантовое число m опpеделяет пpостpанственную оpиентацию данной АО. Кpоме этих квантовых чисел, хаpактеpизующих АО, имеется еще одно квантовое число − s (спиновое), являющееся собственной хаpактеpистикой электpона. Электроны в атоме расположены на энергетических уровнях, которые содержат различные энергетические подуровни, состоящие, в свою очередь, из определенного количества атомных орбиталей: s- подуровень состоит из одной, р- подуровень ─ из трех, d- подуровень ─ из пяти и f- подуровень ─ из семи орбиталей. Условная запись, представляющая распределение электронов атома по энергетическим уровням и подуровням (атомным орбиталям), называется электронной формулой атома. Для составления электронной формулы, в которой представлено состояние каждого электрона (его энергия, форма орбитали, магнитные характеристики), необходимо знать: − последовательность заполнения подуровней электронами (принцип наименьшей энергии), − максимальную емкость каждого подуровня. При распределении электронов по квантовым ячейкам следует руководство- ваться принципом Паули: в атоме не может быть двух электронов с одинаковым набором значений всех квантовых чисел, т.е. атомная орбиталь не может содержать более двух электронов, причем их спиновые моменты должны быть противоположнымиПринцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений. Количество электронов в отдельном атоме равно количеству протонов. Так как электроны являются фермионами, принцип Паули запрещает им принимать одинаковые квантовые состояния. В итоге, все электроны не могут быть в одном квантовом состоянии с наименьшей энергией (для невозбуждённого атома), а заполняют последовательно квантовые состояния с наименьшей суммарной энергией (при этом не стоит забывать, что электроны неразличимы, и нельзя сказать, в каком именно квантовом состоянии находится данный электрон). Примером может служить невозбуждённый атом лития (Li), у которого два электрона находятся на 1S орбитали (самой низкой по энергии), при этом у них отличаются собственные моменты импульса и третий электрон не может занимать 1S орбиталь, так как будет нарушен запрет Паули. Поэтому, третий электрон занимает 2S орбиталь (следующая, низшая по энергии, орбиталь после 1S).Правило Хунда определяет порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: модуль суммарного значения спинового квантового числа электронов данного подслоя должен быть максимальным. Сформулировано Фридрихом Хундом в 1925 году.Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

 3. Периодические изменения свойств химических элементов обусловлены правильным повторением электронной конфигурации внешнего энергетического уровня (валентных электронов) их атомов с увеличением заряда ядра. Графическим изображением периодического закона является периодическая таблица. Она содержит 7 периодов и 8 групп.Период - горизонтальные ряды элементов с одинаковым максимальным значением главного квантового числа валентных электронов. Номер периода обозначает число энергетических уровней в атоме элемента. Периоды могут состоять из 2 (первый), 8 (второй и третий), 18 (четвертый и пятый) или 32 (шестой) элементов, в зависимости от количества электронов на внешнем энергетическом уровне. Последний, седьмой период незавершен. Все периоды (кроме первого) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом (ns2 np6). Металлические свойства рассматриваются, как способность атомов элементов легко отдавать электроны, а неметаллические - присоединять электроны из-за стремления атомов приобрести устойчивую конфигурацию с заполненными подуровнями. Заполнение внешнего s- подуровня указывает на металлические свойства атома, а формирование внешнего p- подуровня - на неметаллические свойства. Увеличение числа электронов на p- подуровне (от 1 до 5) усиливает неметаллические свойства атома. Атомы с полностью сформированной, энергетически устойчивой конфигурацией внешнего электронного слоя (ns2 np6) химически инертны. В больших периодах переход свойств от активного металла к благородному газу происходит более плавно, чем в малых периодах, т.к. происходит формирование внутреннего (n - 1) d- подуровня при сохранении внешнего ns2 - слоя. Большие периоды состоят из четных и нечетных рядов. У элементов четных рядов на внешнем слое ns2 - электроны, поэтому преобладают металлические свойства и их ослабление с ростом заряда ядра невелико; в нечетных рядах формируется np- подуровень, что объясняет значительное ослабление металлических свойств.Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns- и np- подуровнях. Побочные подгруппы состоят из элементов только больших периодов. Их валентные электроны находятся на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне). В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы периодической системы подразделяются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды). В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп сильно отличаются по свойствам. Номер группы показывает высшую валентность элемента (кроме O, F, элементов подгруппы меди и восьмой группы). Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I - III групп (кроме бора) преобладают основные свойства, с IV по VIII - кислотные.Группа I II  III IV  V  VI VII VIII  (кроме инертных газов)Для элементов главных подгрупп   общими являются формулы водородных соединений. Элементы главных подгрупп I - III групп образуют твердые вещества - гидриды (водород в степени окисления - 1), а IV - VII групп - газообразные. Водородные соединения элементов главных подгрупп IV группы (ЭН4) - нейтральны, V группы (ЭН3) - основания, VI и VII групп (Н2Э и НЭ) - кислоты. От положения элементов в периодической системе зависят свойства атома, связанные с его электронной конфигурацией: атомный радиус - по периоду слева направо уменьшается, а в подгруппе сверху вниз возрастает; энергия ионизации - по периоду возрастает, а в подгруппе уменьшается; электроотрицательность - по периоду увеличивается, а в подгруппе уменьшается. По положению элемента в периодической системе можно прогнозировать его основные свойства как средние всех его соседей:

4.Периодическая система Менделеева является естественной классификацией хим.элементов по электронной структуре их атомов. Об электронной структуре атома, а значит, и свойствах элемента судят по положению элемента в соответствующем периоде и подгруппе пер системы. Закономерностями заполнения эл.уровней объясняется различное число элементов в периодах. Строгая периодичность расположения элементов в пер системе хим.элементов Менделеева полностью объясняется последовательным характером заполнения энергетических уровней. Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом - физический смысл периодического закона. В малых периодах с ростом положительного заряда ядер атомов возраст число электронов на внешнем уровне (от 1 до 2-в первом периоде, и от 1 до 8-во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметалл. В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1.Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических. В свете учения о строении атомов становится обоснованным разделение Д.И. Менделеевым всех элементов на 7 периодов. Номер периода соответствует числу энергетических уровней атомов, заполняемых электронами. Поэтому s-элементы имеются во всех периодах, р-элементы - во втором и последующих, d-элементы - в четвертом и последующих и f-элементы - в шестом и седьмом периодах. Легко объяснимо и деление групп на подгруппы, основанное на различии в заполнении электронами энергетических уровней. У элементов главных подгрупп заполняются или s-подуровни (это s-элементы), или р-подуровни (это р-элементы) внешних уровней. У элементов побочных подгрупп заполняется (d-подуровень второго снаружи уровня (это d-элементы).У лантаноидов и актиноидов заполняются соответственно 4f- и 5f-подуровни (это f-элементы).Таким образом, в каждой подгруппе объединены элементы, атомы которых имеют сходное строение внешнего электронного уровня. При этом атомы элементов главных подгрупп содержат на внешних уровнях число электронов, равное номеру группы. В побочные же подгруппы входят элементы, атомы которых имеют на внешнем уровне по два или по одному электрону.

В зависимости от состояния электронов в атомах различают s-, p-, d-, f-орбитали и соответствующие им s-, p-, d-, f-подуровни. В зависимости от того, какой подуровень (s, p, d или f) заполняет очередной электрон, соответственно различают s-, p-, d- или f-элементы. В главных подгруппах ПСХЭ Д.И.Менделеева находятся s- и р-элементы, а в побочных подгруппах – d- и f-элементы.

 5.Периодическое изменение свойств химических элементов с точки зрения строения атомов можно объяснить так. Возрастание положительного заряда атомных ядер приводит к возрастанию числа электронов в атоме. Число электронов равно заряду ядра атома. Электроны же располагаются в атоме не как угодно, а по электронным слоям. Каждый электронный слой имеет определенное число электронов. По мере заполнения одного слоя начинает заполняться следующий. А поскольку от числа электронов на внешнем слое в основном зависят свойства элементов, то и свойства периодически повторяются. В качестве примера можно рассмотреть накопление электронов на внешнем электронном слое атомов второго и третьего периодов. Каждый из периодов начинается с элементов, атомы которых на внешнем слое имеют один валентный электрон (Li, Na). Вследствие легкой отдачи этих электронов элементы проявляют сходные свойства и называются щелочными металлами. В конце этих периодов находятся галогены, имеющие семь электронов на внешнем слое атомов, и инертные газы, у которых внешний слой завершен и содержит восемь электронов. Таким образом, в каждом периоде с возрастанием заряда ядра металлические свойства элементов постепенно ослабевают, усиливаются неметаллические. Накопление восьми электронов на внешнем слое (инертные газы) и появление еще одного электрона у следующего атома приводит к резкому скачку в свойствах элементов и началу нового периода. На основе периодического закона были система тизированы элементы, или, говоря иначе, построена периодическая система химических элементов. Гра фическое изображение этого закона называется периодической таблицей.В таблице каждый химический элемент имеет атомный номер, который определяется числом протонов в ядре атома, т. е. атомный номер численно равен заряду ядра. Таким образом, основной признак, который определяет химический элемент, — это заряд его ядра. Массу атома в основном определяют протоны и нейтроны, составляющие ядро

6.Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Осн положение

1   Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, принадлежащими двум атомам.

2.   Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

3   Характеристики химической связи определяются типом перекрывания АО.

4   Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

7.Полярность молекул - это несимметричное распределение электронной плотности, возникающее из-за различной электроотрицательности элементов, входящих в состав молекулы.

Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.

Сте́пень окисле́ния (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.

8.Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами или атомами.

9. Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции

10. Кристаллические решётки веществ-это упорядоченное расположение частиц(атомов, молекул, ионов) в строго определённых точках пространства. Точки размещния частиц называют узлами кристаллической решётки.

В зависимости от типа частиц, расположенных в узлах кристаллической решётки, ихарактера связи между ними различают 4 типа кристаллических решёток: ионные, атомные, молекулярные, металлические. Рассмотрим каждую из решёток в отдельности и поподробней.

ИОННЫЕ

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов.

Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия.

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

АТОМНЫЕ

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, которые соединены очень прочными ковалентными связями.Ниже показана кристаллическая решётка алмаза.

В природе встречается немного веществ с атомной кристаллической решёткой. К ним относятся бор, кремний, германий, кварц, алмаз. Вещества с АКР имеют высокие температуры плавления, обладают повышенной твёрдостью. Алмаз-самый твёрдый природный материал.

МОЛЕКУЛЯРНЫЕ

Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в них ковалентные, как полярные, так и неполярные. Связи в молекулах прочные, но между молекулами связи не прочные. Ниже представлена кристаллическая решётка I2

Вещества с МКР имеют малую твёрдость, плавятся при низкой температуре, летучие, при обычных условиях находятся в газообразном или жидком состоянии

МЕТАЛЛИЧЕСКИЕ

Металлическими называют решётки, в узлах которых находятся атомы и ионы металла.

Для металлов характерны физические свойства: пластичность, ковкость, металлический блеск, высокая электро- и теплопроводность

11.МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, хим. связь, обусловленная взаимод. электронного газа (валентные электроны) в металлах с остовом положительно заряженных ионов кристаллич. решетки. Идеальная модель металлической связи отвечает образованию частично заполненных валентными электронами металла зон энергетич. уровней (см. Твердое тело), наз. зонами проводимости. При сближении атомов, образующих металл, атомные орбитали валентных электронов переходят в орбитали, делокализованные по кристаллич. решетке аналогично делокализованным p-орбиталям сопряженных соединений. Количественно описать металлическая связь можно только в рамках квантовой механики, качественно образование металлической связи можно понять исходя из представлений о ковалентной связи.Проводники Различают две группы проводников электрического тока: проводники первого рода, электрическая проводимость которых обусловлена электронами (металлы, графит) и проводники второго рода, обладающие ионной проводимостью (расплавы и растворы электролитов) Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются [1]:1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов.Диэлектрики в-ва, обладающие электрич. сопротивлением в пределах 1010 Ч 1020 Ом. м в постоянном электрич. поле при нормальной т-ре.

12. Водородная связь

Водородная связь – взаимодействие между двумя электроотрицательными атомами одной или нескольких разных молекул при помощи атома водорода: А—Н...В (чертой обозначена ковалентная связь, тремя точками – водородная связь).Для водородной связи характерно электростатическое притяжение водорода (несущего положительный заряд ?+) к атому электроотрицательного элемента, имеющего отрицательный заряд ?-. Чаще всего она слабее ковалентной, но сильнее обычного притяжения молекул друг к другу в твердых и жидких веществах.Водородная связь отличается от межмолекулярных взаимодействий тем, что обладает свойствами направленности и насыщаемости.Водородная связь считается разновидностью ковалентной химической связи. Описывается при помощи метода молекулярных орбита-лей в виде трехцентровой двухэлектронной связи.Признак наличия водородной связи – расстояние между атомом водорода и другим атомом, ее образующим, меньше, чем общая сумма радиусов этих атомов.Чаще встречаются несимметричные водородные связи (расстояние Н...В>А—В), редко – симметричные (HF).Угол между атомами А—Н...В ~180o.Водородная связь присутствует во многих химических соединениях. Образуется между наиболее электроотрицательными элементами (фтор, азот, кислород), реже – в некоторых других (хлор, сера).Наиболее прочные водородные связи имеются в воде, фтороводороде, кислородсодержащих неорганических кислотах, карбоновых кислотах, фенолах, спиртах, аммиаке, аминах.При кристаллизации водородные связи сохраняются.Кристаллические решетки водородных связей:1) цепи (метанол);

2) плоские двухмерные слои (борная кислота);3) пространственные трехмерные сетки (лед).

Внутримолекулярная водородная связь– водородная связь, объединяющая части одной молекулы.

Межмолекулярная водородная связь – водородная связь, образующаяся между атомом водорода одной молекулы и атомом неметалла другой молекулы.

13. Внутренняя энергия и энтальпия Экзи и эндо-термические реакции

Внутренняя энергия – это функция состояния системы и ее не следует путать с параметрами (физическими условиями) существования вещества - температурой и давлением (или объем V). Значения p, T и V доступны для непосредственного измерения, а определить запас внутренней энергии вещества невозможно. Для химии интерес представляет не само абсолютное значение внутренней энергии, а изменение внутренней энергии ΔU, вызванное изменением состояния вещества, происходящим при химических процессах. Таким образом, величина ΔU есть результат протекания в системе любого процесса. Изменение внутренней энергии веществ, участвующих в реакции, при постоянном объеме принято кратко называть внутренней энергией реакции. Поскольку все химические реакции сопровождаются перераспределением (обменом) внутренней энергии, сумма внутренней энергии продуктов отличается от суммы внутренней энергии реагентов на значение внутренней энергии реакции:

ΔU = ∑Uпродуктов - ∑Uреагентов. энтальпия реакции ΔH - это тепловой эффект реакции при постоянном давлении ΔH = ΔU + pΔVЕдиница энтальпии в СИ джоуль (Дж); в химии и справочных таблицах чаще используется кратная единица - килоджоуль (кДж).Встречающееся в старой литературе обозначение теплового эффекта реакции через Q (без индекса) обычно относится к условию p = const, т.е. характеризует энтальпию реакции ΔH. Эндотерми́ческие реа́кции (от др.-греч. ἔνδον — внутри и θέρμη — тепло) — химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения (, ), таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.К эндотермическим реакциям относятся:

реакции восстановления металлов из оксидов,электролиза (поглощается электрическая энергия),

электролитической диссоциации (например, растворение солей в воде),

ионизации,фотосинтеза.Эндотермические реакции противоположны экзотермическим реакциям. Экзотермическая реакция — химическая реакция, сопровождающаяся выделением теплоты. Противоположна эндотермической реакции.Полное количество энергии в химической системе чрезвычайно трудно измерить или подсчитать. С другой стороны, изменение энтальпии ΔH в химической реакции гораздо легче измерить или сосчитать. Для этих целей используют калориметры. Измеренное значение ΔH соотносится с энергией связи молекул следующим образом:ΔH = энергия, потраченная на разрыв связей (Энергия разрыва химической связи)— энергия, выделенная при образовании связей продуктов реакции.Для экзотермических реакций эта формула даёт отрицательное значение для ΔH, так как большее значение вычитается из меньшего значения. При сгорании водорода, например:2H2 + O2 → 2 H2Oизменение энтальпии равно ΔH = −483.6 кДж на один моль O2.

14.Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.) Направление химических реакций.Движущие силы химической реакции обусловлены ее стремлением к уменьшению запаса энергии, т.е. к уменьшению энтальпии при p = const и ее стремлением к увеличению энтропии. В ходе химической реакции участвующие частицы перегруппировываются таким образом, чтобы уменьшалась энергия системы; это проявляется в их сближении и взаимодействии. Вместе с тем реагирующие частицы обладают отчетливой тенденцией к беспорядочному расположению. Эти два фактора обусловливают химическую обратимость реакций; преобладающее направление реакции определяется значением и знаком величин ΔH и ΔS.критерием самопроизвольного протекания химических реакций является отрицательное значение энергии Гиббса: ΔG < 0

15.омогенные и гетерогенные реакции

При рассмотрении вопроса о скорости реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной системе (гетерогенные реакции).Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда — вещества, окружающие систему. Обычно система отграничена от среды.Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы. Гетерогенной — система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства системы изменяются скачком.Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор хлорида натрия, сульфата магния, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы: из газовой фазы в первом примере и из водного раствора во втором.Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Например, при сливании (и перемешивании) растворов серной кислоты и тиосульфата натрия помутнение, вызываемое появлением серы, наблюдается вовсемобъемераствора:H2SO4+Na2S2O3= Na2SO4+Н2O+SO2+SЕсли реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Например, растворение металла в кислоте:Fe+2HCl=FeCl2 + H2может протекать только на поверхности металла, потому что только здесь соприкасаются друг с другом оба реагирующих вещества. В связи с этим4скорость гомогенной реакции и скорость гетерогенной реакции определяются различно,Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы. В 1867 г. К. М. Гульберг и П. Вааге открыли так называемый закон действия масс, устанавливающий зависимость скорости химической реакции от концентрации. Согласно этому закону скорость химической реакции при постоянной температуре прямо пропорциональна произведению концентраций реагирующих веществ.

16.каталитический процесс - это совокупность обычных химических реакций (в растворе, на поверхности или в газе), но совокупность особенная, имеющая циклический характер Циклическую природу каталитического процесса можно наглядно представить в виде графа, у которого в вершинах (кружках) будут находиться промежуточные вещества и катализатор, а линии, связывающие вершины (ребра), будут соответствовать стадиям механизма. Тогда схема (2) будет представлена простым циклическим графом  Влияние различных факторов на каталитическую реакцию (особенности электронного строения твердого тела и его поверхности, геометрия поверхности, особенности электронного строения комплексов металлов, свойства растворителей и др.) не отличается от влияния тех же факторов на любую химическую реакцию.

17.ХИМИЧЕСКОЕ РАВНОВЕСИЕ – состояние химической системы, при котором возможны реакции, идущие с равными скоростями в противоположных направлениях. При химическом равновесии концентрации реагентов, температура и другие параметры системы не изменяются со временем.Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия. Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры — в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры. Зависимость константы равновесия от температуры в конденсированных системах описывается уравнением изобары Вант-Гоффа:в системах с газовой фазой — уравнением изохоры Вант-ГоффаВ небольшом диапазоне температур в конденсированных системах связь константы равновесия с температурой выражается следующим уравнением:Например, в реакции синтеза аммиакаN2 + 3H2 ⇄ 2NH3 + Qтепловой эффект в стандартных условиях составляет +92 кДж/моль, реакция экзотермическая, поэтому повышение температуры приводит к смещению равновесия в сторону исходных веществ и уменьшению выхода продукта. Давление существенно влияет на положение равновесия в реакциях с участием газообразных веществ, сопровождающихся изменением объёма за счёт изменения количества вещества при переходе от исходных веществ к продуктам:При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.В реакции синтеза аммиака количество газов уменьшается вдвое: N2 + 3H2 ↔ 2NH3 Значит, при повышении давления равновесие смещается в сторону образования NH3, о чём свидетельствуют следующие данные для реакции синтеза аммиака при 400 °C: Влияние концентрации на состояние равновесия подчиняется следующим правилам:При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

 18.По степени раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10-5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10-7 до 10-9м. Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.Эта классификация была предложена Оствальдом и широко используется до настоящего времени. Недостатком классификации следует считать невозможность отнесения дисперсных систем, приготовленных с твердой или жидкой дисперсной фазой, к какому-либо классу, если размер частиц составляет несколько нанометров. Пример такой классификации приведен в табл. 1.Академик П.А. Ребиндер предложил более совершенную классификацию дисперсных систем по агрегатным состояниям фаз. Он разделил все дисперсные системы на два класса: свободнодисперсные системы и сплошные (или связнодисперсные) системы (табл. 2 и 3). В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивление деформации сдвига. Их называют гелями.Дисперсная система по классификации Ребиндера обозначается дробью, в которой дисперсная фаза ставится в числителе, а дисперсионная среда – в знаменателе. Например: Т1/Ж2. Индекс 1 обозначает дисперсную фазу, а индекс 2 – дисперсионную среду Коллоидная химия изучает свойства как тонко-, так и грубодисперсных систем; как свободно-, так и связнодисперсных систем.Включение в одну науку столь большого количества разнообразных систем, различных как по природе фаз, так и по размерам частиц и агрегатному состоянию фаз, основано на том, что все они обладают общими свойствами - гетерогенностью и принципиальной термодинамической неустойчивостью. Центральное место в коллоидной химии занимают ультрамикрогетерогенные системы со свободными частицами. Это - так называемые, коллоидные системы. Гомогенная система – система, состоящая из одной фазы.Гетерогенная система – система, состоящая из двух или большего числа фаз. Фаза – часть системы, однородная по составу и строению и отделенная от других частей системы (других фаз) границей раздела (межфазной границей).

19.физ.-хим. системы, содержащие не менее трех компонентов. Компонентами системы наз. в-ва, изменения масс к-рых независимы и выражают все возможные изменения в составе системы. Если в системе отсутствуют обратимые хим. р-ции, число компонентов равно числу в-в, содержащихся в системе. В случае систем с хим. превращениями число компонентов равно разности между числом сортов частиц, содержащихся в системе, и числом независимых р-ций. Это объясняется тем, что условия хим. равновесия выражаются как количеств. связи между концентрациями в-в, а число таких связей равно числу независимых хим. р-ций. СОЛЬВАТЫ, продукты присоединения р-рителя к растворенным в-вам. Частный случай сольватов-гидраты (р-ритель-вода). Обычно сольваты образуются в р-ре, но нередко (при охлаждении р-ра, испарении р-рителя и др.) м. б. получены в виде кристаллич. фаз-кристаллосольватов. Напр., из р-ра LiCl в метаноле и в жидком NH3 кристаллизуются соотв. LiCl·4CH3OH и LiCl·5NH3. Гидраты — продукты присоединения воды к неорганическим и органическим веществам.

20. Концентрацию веществ в растворах можно выразить разными способами. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.1. Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :w(B)= m(B) / m Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах.2. Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.C(B) = n(B) / V = m(B) / (M(B) · V), где М(B)  - молярная масса растворенного вещества г/моль.Молярная концентрация измеряется в моль/л и обозначается "M".Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.C(B) = n(B) / V = m(B) / (M(B) · V), где М(B)  - молярная масса растворенного вещества г/моль.Молярная концентрация измеряется в моль/л и обозначается "M".                3. Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

21. О́смос (от греч. ὄσμος — толчок, давление) — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).

Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Как правило, это связано с размерами и подвижностью молекул, например, молекула воды меньше большинства молекул растворённых веществ. Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворённого вещества . Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация вещества уменьшаться), тогда как объём растворителя будет соответственно уменьшаться. Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу — экзосмосом.

Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворённых в крови питательных веществ и продуктов клеточной жизнедеятельности; для больших белковых молекул, находящихся в растворённом состоянии внутри клетки, она непроницаема.

Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию.

Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом.

22. Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в растворителе или при плавлении.ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ, полный или частичный распад молекул растворенного в-ва на катионы и анионы. Электролитической диссоциацией называют также распад на катионы и анионы ионных кристаллов при растворении или расплавлении. Электролитическая диссоциация, как правило, происходит в полярных р-рителях. При электролитической диссоциации разрываются обычно лишь наиб. полярные связи молекул, Электролитической диссоциацией могут подвергаться молекулы нек-рых р-рителей, напр. воды.Электролитическая диссоциация лежит в основе деления р-ров на два класса - растворы неэлектролитов и растворы электролитов. Наблюдаемое различие в коллигативных св-вах разбавленных р-ров электролитов и неэлектролитов объясняется тем, что из-за электролитической диссоциации увеличивается общее число частиц в р-ре. Это, в частности, приводит к увеличению осмотич. давления р-ра сравнительно с р-рами неэлектролитов, понижению давления пара р-рителя над р-ром, увеличению изменения т-ры кипения и замерзания р-ра относительно чистого р-рителя. Электролитическая диссоциация объясняется также ионная электропроводность электролитов.

электролитическая диссоциация бинарного электролита KA выражается уравнением типа:

Константа диссоциации  определяется активностями катионов , анионов  и недиссоциированных молекул  следующим образом:

Значение  зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:,

где  — средний коэффициент активности электролита.

23.Вода - растворитель

Энергия образования молекул воды высока, она составляет 242 кДж/моль. Этим объясняется устойчивость воды в природных условиях. Устойчивость в сочетании с электрическими характеристиками и молекулярным строением делают воду практически универсальным растворителем для многих веществ. Высокая диэлектрическая проницаемость обусловливает самую большую растворяющую способность воды по отношению к веществам, молекулы которых полярны. Из неорганических веществ в воде растворимы очень многие соли, кислоты и основания* Из органических веществ растворимы лишь те, в молекулах которых полярные группы составляют значительную часть — многие спирты, амины, органические кислоты, сахара и т.д.  Растворение веществ в воде сопровождается образованием слабых связей между их молекулами или ионами и молекулами воды. Это явление называется гидратацией. Для веществ с ионной структурой характерно формирование гид ратных оболочек вокруг катионов за счет донорно-акцепторной связи с неподеленной парой электронов атома кислорода. Катионы гидратированы тем в большей степени, чем меньше их радиус и выше заряд. Анионы, обычно менее гидратированные, чем катионы, присоединяют молекулы воды водородными связями.  В процессе растворения веществ изменяется величина электрического момента диполя молекул воды, изменяется их пространственная ориентация, разрываются одни и образуются другие водородные связи. В совокупности эти явления приводят к перестройке внутренней структуры. Растворимость твердых веществ в воде зависит от природы этих веществ и температуры и изменяется в широких пределах. Повышение температуры в большинстве случаев увеличивает растворимость солей. Однако растворимость таких соединений, как CaSO4·2H2O, Ca(OH)2 при повышении температуры снижается.  При взаимном растворении жидкостей, одной из которых является вода, возможны различные случаи. Например, спирт и вода смешиваются друг с другом в любых соотношениях, так как оба полярны. Бензин (неполярная жидкость) в воде практически нерастворим. Наиболее общим является случай ограниченной взаимной растворимости. Примером могут служить системы вода—эфир, вода—фенол. При нагревании взаимная растворимость для одних жидкостей возрастает, для других — уменьшается. Например, для системы вода—фенол повышение температуры выше 68°С приводит к неограниченной взаимной растворимости.

Газы (например, NH3, СО2, SO2) хорошо растворимы в воде, как правило, в тех случаях, когда они вступают с водой в химическое взаимодействие; обычно же растворимость газов невелика. При повышении температуры растворимость газов в воде уменьшается. Ниже приведены данные по растворимости в воде (при атмосферном давлении) кислорода важнейшего элемента для всех биологических процессов в водоемах и сооружениях по очистке загрязненных вод. Температура воды, °С 0 10 20 30

Концентрация О2, мг/л  14,62 11,33 9,17 7,63

Следует отметить, что растворимость кислорода в воде почти в 2 раза выше, чем растворимость азота. Вследствие этого состав растворенного в воде водоемов или очистных сооружений воздуха отличается от атмосферного. Растворенный воздух обогащен кислородом, что очень важно для организмов, обитающих в водной среде.

Для водных растворов, как и для любых других, характерны понижение упругости пара над раствором (по сравнению с чистым растворителем), понижение температуры замерзания и повышение температуры кипения. Одно из общих свойств растворов проявляется в явлении осмоса. Если два раствора разной концентрации разделены полупроницаемой перегородкой, молекулы растворителя проникают через нее из разбавленного раствора в концентрированный. Механизм осмоса можно понять, если учесть, что, согласно общему естественному принципу, все молекулярные системы стремятся к состоянию наиболее равномерного распределения (в случае двух растворов — стремление к выравниванию концентраций по обе стороны перегородки). Количественной характеристикой осмоса служит осмотическое давление. По закону Вант-Гоффа осмотическое давление раствора равно давлению, которое проявляло бы растворенное вещество, если бы оно было газообразным и занимало бы объем, равный объему раствора.

24. ИО́ННЫЕ РЕА́КЦИИ (от греч. «ion» — идущий), химические реакции между ионами Протекают в растворах электролитовс большой скоростью. Их механизм объясняется с точки зрения теории электролитической диссоциации. Различают обратимые и необратимые ионные реакции. Условиями необратимости являются образование осадка или малодиссоциирующих веществ, а также выделение газа. Ионные реакции записываются как в полной, так и в сокращенной форме: Mg2+ + 2Cl- + 2Na+ + 2OH- ® Mg(OH)2 + 2Na+ + 2Cl- (полное)  Mg2+ + 2OH- ® Mg(OH)2 (сокращенное).Одинаковые ионы сокращаются и получается сокращенное ионное уравнение.В растворах слабых электролитов между недиссоциированных молекул и их ионами устанавл ивается равновесие при определенных условиях (концентрация, температура). Изменение условий приводит смещение равновесия. Так, введение в раствор одноименных ионов смещает ионное равновесие

25. Водоро́дный показа́тель, pH мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

Вывод значения pH    В чистой воде при 25 °C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH−]) одинаковы и составляют 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH−] и составляет 10−14 моль²/л² (при 25 °C).Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH−] говорят, что раствор является кислым, а при [OH−] > [H+] — щелочным.Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторовДля грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1—2 единицы.Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

26. Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке.Могут быть неупорядоченными (с хаотическим расположением атомов), частично или полностью упорядоченными. Экспериментально упорядоченность определяют, главным образом, рентгеновским структурным анализом.Способность образовывать твёрдые растворы свойственна всем кристаллическим твёрдым телам. В большинстве случаев она ограничена узкими пределами концентраций, но известны системы с непрерывным рядом твёрдых растворов (например, CuAu, TiZr, GaAsGaP). По существу, все кристаллические вещества, считающиеся чистыми, представляют собой твёрдые растворы с очень малым содержанием примесей.Различают три вида твёрдых растворов:твёрдые растворы замещения;твёрдые растворы внедрения;твёрдые растворы вычитания.непрерывный ряд твёрдых растворов замещения в металлических системах образуются лишь теми элементами, которые, во-первых, имеют близкие по размерам атомные радиусы (отличающиеся не более чем на 15 %) и, во-вторых, находятся не слишком далеко друг от друга в электрохимическом ряду напряжений. При этом элементы должны иметь один и тот же тип кристаллической решётки. В твёрдых растворах на основе полупроводников и диэлектриков, благодаря более «рыхлым» кристаллическим решёткам образование твёрдых растворов замещения возможно и при большем различии атомных радиусов.Если атомы компонентов существенно различаются по размерам или электронной структуре, возможно внедрение атомов одного элемента в междоузлия решётки, образованной другим элементом. Подобные твёрдые растворы часто образуются при растворении неметаллов (B, H2, O2, N2, C) в металлах.Твёрдые растворы вычитания, возникающие за счёт появления в кристаллической решётке вакантных узлов, образуются при растворении одного из компонентов в химическом соединении и характерны для нестехиометрических соединений.Образование твёрдых растворов при легировании элементов и соединений имеет большое значение в производстве сплавов, полупроводников, керамики, ферритов.Твёрдые растворы — основа всех важнейших конструкционных и нержавеющих сталей, бронз, латуней, алюминиевых и магниевых сплавов высокой прочности. Свойства твёрдых растворов регулируют их составом, термической или термомеханической обработкой. Легированные полупроводники и многие сегнетоэлектрики, являющиеся основой современной твердотельной электроники, также являются твёрдыми растворами.При распаде твёрдых растворов сплавы приобретают новые свойства. Наиболее ценными качествами обладают сплавы с очень тонкой неоднородностью — так называемые дисперсионно-твердеющие, или стареющие твёрдые растворы. Дисперсионное твердение может наблюдаться и при распаде твёрдых растворов на основе соединений, например, нестехиометрических шпинелей.

27. Гидро́лиз (от др.-греч. ὕδωρ — вода и λύσις — разложение) — один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия.Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).Различают обратимый и необратимый гидролиз солей[1]:Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)Гидролиз соли слабой кислоты и слабого основания:(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация.Степень гидролизаПод степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр);α = (cгидр/cобщ)·100 %

где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли.Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.Является количественной характеристикой гидролиза.Факторы, влияющие на степень гидролиза.Температура. Поскольку реакция гидролиза эндотермическая, то повышение температуры смещает равновесие в системе вправо, степень гидролиза возрастает.Концентрация продуктов гидролиза. В соответствии с принципом Ле Шателье, повышение концентрации ионов водорода приведет к смещению равновесия влево. Степень гидролиза будет уменьшаться.Концентрация соли-  равновесие в системе смещается вправо, но степень гидролиза уменьшается.Разбавление. при разбавлении равновесие смещается в сторону протекания этой реакции, вправо, степень гидролиза возрастает.Добавки посторонних веществ могут влиять на положение равновесия в том случае, когда эти вещества реагируют с одним из участников реакции.

28. Для всех обсуждаемых теорий характерно, что в них определения кислоты и оснований зависят от определения понятия кислотно-основного процесса, в котором реагирующие между собой Кислоты и основания являются таковыми лишь по отношению друг к другу. Единой теории кислотно-основного взаимодействия и, следовательно, понятий кислоты и основания пока нет. В настоящее время наиболее широко используются две теории кислоты и оснований: электронная и протонная. Кислоты и основания в современной электронной теории классифицируют по типу орбиталей, принимающих участие в образовании межмолекулярных донорно-акцепторных связей в кислотно-основном комплексе. При таком подходе все кислоты (акцепторы) разделяют на s-, v- и p-типы, все основания (доноры) - на п-, s- и p-типы.Любое основание может вступать во взаимодействии с любой кислотой. Одно и то же соединение в зависимости от партнера может выступить как основание или как кислота.Протонная теория Брёнстеда-ЛауриВ ней понятие о кислотах и основаниях было объединено в единое целое, проявляющееся в кислотно-основном взаимодействии: А  В + Н+ (А - кислота, В - основание). Согласно этой теории кислотами являются молекулы или ионы, способные быть в данной реакции донорами протонов, а основаниями являются молекулы или ионы, присоединяющие протоны (акцепторы). Кислоты и основания получили общее название протолитов.Сущностью кислотно-основного взаимодействия является передача протона от кислоты к основанию. При этом кислота, передав протон основанию, сама становится основанием, так как может снова присоединять протон, а основание, образуя протонированную частицу, становится кислотой. Таким образом, в любом кислотно-основном взаимодействии участвуют две пары кислот и оснований, названные Бренстедом сопряженными: А1 + В2  А2 + В1.Одно и то же вещество в зависимости от условий взаимодействия может быть как кислотой, так и основанием (амфотерность). Например, вода при взаимодействии с сильными кислотами является основанием: H2O + H+  H3О+, а реагируя с аммиаком, становится кислотой: NH3 + H2O  NH4+ + OH−.Электронная теория ЛьюисаВ теории Льюиса (1923 г.) на основе электронных представлений было ещё более расширено понятие кислоты и основания. Кислота Льюиса — молекула или ион, имеющие вакантные электронные орбитали, вследствие чего они способны принимать электронные пары. Это, например, ионы водорода – протоны, ионы металлов (Ag+, Fe3+), оксиды некоторых неметаллов (например, SO3, SiO2), ряд солей (AlCl3), а также такие вещества как BF3, Al2O3. Кислоты Льюиса, не содержащие ионов водорода, называются апротонными. Протонные кислоты рассматриваются как частный случай класса кислот. Основание Льюиса — это молекула или ион, способные быть донором электронных пар: все анионы, аммиак и амины, вода, спирты, галогены. Примеры химических реакций между кислотами и основаниями Льюиса:AlCl3 + Cl− → AlCl4−BF3 + F− → BF4−PCl5 + Cl− → PCl6−.

29. Комплексные соединения — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.Комплексные соединения мало диссоциируют в растворе Комплексные соединения могут содержать комплексный малодиссоциирующий анион ([Fe(CN)6]3−), комплексный катион ([Ag(NH3)2]+), либо вообще не диссоциировать на ионы (соединения типа неэлектролитов, например карбонилы металлов). Комплексные соединения разнообразны и многочисленны.Комплексное соединение — химическое вещество, в состав которого входят комплексные частицы.Комплексообразователь — центральный атом комплексной частицы. Обычно комплексообразователь — атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Комплексообразователь обычно положительно заряжен и в таком случае именуется в современной научной литературе металлоцентром; заряд комплексообразователя может быть также отрицательным или равным нулю.Координационное число (КЧ) — число связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов — числу таких лигандов, умноженному на дентатность.Комплексные соединения имеют важное значение для живых организмов, так гемоглобин крови образует комплекс с кислородом для доставки его к клеткам, хлорофилл находящийся в растениях является комплексом.Комплексные соединения находят широкое применение в различных отраслях промышленности. Химические методы извлечения металлов из руд связаны с образованием КС. Например, для отделения золота от породы руду обрабатывают раствором цианида натрия в присутствии кислорода.

30.Классификация комплексных соединений.Комплексное соединение — химическое вещество, в состав которого входят комплексные частицы. В настоящее время строгого определения понятия «комплексная частица» нет. Обычно используется следующее определение.1. Аквакомплексы в качестве лигандов содержат молекулы воды - H2O. Образуются они при взаимодействии безводных веществ с водой (в частности, при растворении в воде), например:CuSO4(т) + 4H2O = [Cu(H2O)4]SO4(р)  CuSO4 + 4H2O = [Cu(H2O)4]2+ + SO42-2. Гидроксокомплексы в качестве лигандов содержат гидроксид-ионы - OH-. Образуются при взаимодействии металлов, оксиды и гидроксиды которых амфотерны, а также указанных оксидов и гидроксидов с избытком раствора щелочи, например:Zn(т) + 2H2O(р) = Zn(OH)2(т) + H2(г) - 1 стадия Zn(OH)2(т) + 2NaOH(р) = Na2[Zn(OH)4] (р) - 2 стадия Сложив два уравнения, получим итоговое уравнение реакции: Zn(т) + 2H2O(р) + 2NaOH(р) = Na2[Zn(OH)4] (р) + H2(г) Zn + 2H2O + 2OH- = [Zn(OH)4]2+ + H2

Кроме того, гидроксокомплексы получают обменной реакцией взаимодействия солей металлов, гидроксиды которых амфотерны, с избытком раствора щелочи, например: 3. Амминокомплексы (аммиакаты, аммины) в качестве лигандов содержат молекулы аммиака - NH3. Образуются амминокомплексы как в водном растворе гидрата аммиака (при его избытке):так и при действии на вещества (или при пропускании через раствор вещества) газообразного или жидкого аммиака, например:

Mg(ClO4)2(т) + 6NH3(г) = [Mg(NH3)6](ClO4)2(р)

Mg(ClO4)2 + 6NH3 = [Mg(NH3)6]2+ + 2ClO4

4. Ацидокомплексы в качестве лигандов содержат анионы (кислотные остатки), их получают взаимодействием, чаще всего, двух солей:

а также взаимодействием металлов, оксидов с солями, кислотами, смесями кислот (царская водка и др.):5. Карбонилкомплексы (карбонилы) в качестве лигандов содержат молекулы монооксида углерода - CO. Карбонилкомплексы получают взаимодействием d- металлов в порошкообразном состоянии с газообразным CO при повышенном давлении и обычных температурах или небольшом (200-300 °С) нагревании,

31.Диссоциация комплексных соединений. Разрушение комплексных соединений.Диссоциация комплексных соединений.В растворах КС имеет место первичная и вторичная диссоциация (в расплавах КС происходит их термическая диссоциация). Первичная диссоциация протекает по типу сильных электролитов - практически необратимо: Первичной диссоциации не подвергаются комплексы без внешней сферы: [Pt(NH3)2Cl2], [Co(NH3)3(NO3)3].Вторичная диссоциация характеризует диссоциацию самого комплекса. Она протекает в незначительной степени, подчиняется закону действия масс. Этот процесс характеризуют константой диссоциации. Так как величина этой константы фактически определяет прочность комплекса, то ее обычно называют константой нестойкости (K ). Вторичная диссоциация протекает по типу слабого электролита - обратимо и ступенчато:В целях упрощения формы записи обычно записывают суммарное уравнение вторичной диссоциации:[Ag(NH3)2] « Ag+ + 2NH3 Выражение константы нестойкости имеет вид:

Общая константа нестойкости комплекса равна произведению констант диссоциации по всем ступеням:

Величину, обратную константе нестойкости, называют константой устойчивости (bn).Значения констант нестойкости, приводимые в справочниках, используют для характеристики устойчивости комплексов, нахождения концентраций частиц (комплекса, комплексообразователя, лигандов) в растворе КС, для определения направленности химических реакций с участием комплексных соединений и др. Например, равновесие в реакции: [Ag(NH3)2]Cl + 2KCN = K[Ag(CN)2] + 2KCl + 2NH3 будет смещено вправо, так как Kнест.([Ag(NH3)2]+) = 9,3·10-8, а Kнест.([Ag(CN)2]-) = 8,0·10-22, т.е. второй комплексный ион значительно прочнее первого:Разрушение комплексных соединений

32.Классификация окислительно-восстановительных реакций. Окислитель и восстановитель.  

Окисли́тельно-восстанови́тельные реа́кцииОВРредокс (от англ. redox ← reduction-oxidation — окисление-восстановление) — это встречно-параллельныехимические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем. В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то естьвосстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого. Окисление - процесс отдачи электронов, с увеличением степени окисления.При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисленияАтомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см.Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:окислитель + e ↔ сопряжённый восстановитель.Восстановле́нием называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидовметаллов до свободных металлов при помощи водородауглерода, других веществ; восстановление органических кислот в альдегиды и спиртыгидрогенизация жиров и др.Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:восстановитель — e ↔ сопряжённый окислитель.Несвязанный, свободный электрон является сильнейшим восстановителем.Окислительно-восстановительная параОкислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, т.е. восстановлением, другая — с отдачей электронов, т.е. окислением.

Окисли́тель — вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель — это акцепторэлектронов.окислитель - частица, забирающая электроны.
восстановитель - частица, отдающая электроны.
окислителем может быть не только вещество, содержащее кислород.
окислителем может быть вещество, которое находится в нестабильной окисленной форме, для которого восстановленная форма является более стабильной.
окислителем может быть любое вещество, которое находится не в низшей степени окисления, при взаимодействии с сильным восстановителем.

33.Составление уравнений окислительно-восстановительных реакций. Уравнения О.В.Р. имеют очень сложный характер, и их составление представляет иногда трудную задачу. Рассмотрим метод электронного баланса, при котором учитывается:общее число электронов отдаваемых всеми  восстановителями равно общему числу электронов, присоединяемых всеми окислителями;одинаковое число одноименных ионов в левой и правой частях уравнения;число молекул воды (в кислой среде) или ионов гидроксида (в щелочной среде), если в реакции участвуют атомы кислорода.Составление уравнений О.В.Р. легче провести в несколько стадий:1)      установление формул исходных веществ и продуктов реакции;2.      определение степени окисления элементов в исходных веществах и продуктах реакции;1)      определение числа электронов отдаваемых восстановителем и принимаемых окислителем и коэффициентов при восстановителях и окислителях;2)      определение коэффициентов при всех исходных веществах и продуктах реакции, исходя из баланса атомов в левой и правой частях уравнения.Составим уравнение реакции окисления сульфата железа (II) перманганатом калия в кислой среде. Так как реакция протекает в кислой среде, то в левой  части уравнения кроме окислителя и восстановителя должна быть кислота. Продуктами реакции являются сульфаты марганца (II), калия, железа (III) и вода.1.

34.РАСЧЕТ МОЛЯРНОЙ МАССЫ ЭКВИВАЛЕНТА В ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССАХ

Ранее мы уже говорили о том, что в ОВР эквивалентное число z равно числу электронов, которое принимает одна формульная единица окислителя или отдает одна формульная единица восстановителя:

Пример 3: Укажите число электронов в окислительных и восстановительных процессах и рассчитайте молярную массу эквивалента окислителя и восстановителя:

a) N+5 + xē = N–3;    б) H2S – xē = S + 2H+.

Решение: а) Число электронов, участвующих в процессе, можно найти по разности зарядов левой и правой части уравнения. В нашем случае число электронов равно n(ē) = 5 – (–3) = 8, и уравнение восстановления азота имеет вид: N+5 + 8ē = N–3.

Окислителем является азот N, его молярная масса равна М(N) = 14 г/моль. Эквивалентное число равно числу электронов z(N) = 8. Таким образом, молярная масса эквивалента азота в данном процессе составляет:

М(1/8 N) ==  = 1.8 г/моль.

        б) Число электронов, участвующих в процессе, равно n(ē) = 0 – 2 = –2 (полученный знак “–“ говорит о том, что  в данном процессе идет отдача электронов):

H2S – 2ē = S + 2H+.

Восстановителем является соединение H2S. Его молярная масса равна М(H2S) = 34 г/моль, эквивалентное число равно z(H2S) = 2. Таким образом, молярная масса эквивалента восстановителя H2S составляет:

М(1/2 H2S) ==  = 17 г/моль.

Ответ: а) 8 электронов, 1.8 г/моль; б) 2 электрона, 17 г/моль.

                      

35.Понятие об электродном потенциале. Гальванические элементы.

ПОНЯТИЕ ОБ ЭЛЕКТРОДНОМ ПОТЕНЦИАЛЕВзаимные превращения электрической и химической форм энергии мож-

но разделить на два типа: – процессы превращения химической энергии в электрическую (происходят в гальванических и топливных элементах, при разряде аккумуляторов); – процессы превращения электрической энергии в химическую (электролиз, заряд аккумуляторов). Системы, в которых протекают эти реакции, называются электрохимическими. Любая электрохимическая система состоит из двух электродов (проводник 1-го  рода)  и  ионного  проводника  между  ними (проводник 2-го  рода).  В электрохимической системе возникает контакт проводящих фаз различной химической  природы  и  типа  проводимости,  которые  характеризуются  скачками потенциала.  Скачки  потенциала  наблюдаются  на  границе  металл – раствор электролита,  раствор – раствор  электролита (диффузионный  потенциал),  металл – металл (контактный потенциал). При  погружении  металла  в  водный  раствор  электролита  происходит взаимодействие поверхностных ионов металла с молекулами воды. В результате этого, гидратированные ионы металла переходят в раствор, оставляя в металле электроны: Me + mH2OMe(H2O)n+m + nē.

Электростатическое  взаимодействие  между  отрицательно  заряженной поверхностью металла и катионами раствора препятствует бесконечному переходу  ионов  в  одном  направлении.  В  итоге,  в  системе  металл – раствор электролита  устанавливается  подвижное  равновесие,  а  на  границе  раздела фаз  возникает  двойной  электрический  слой.  Количественно  электродное равновесие металла со своими ионами рассчитывается по уравнению Нернста: EEeMRn  FTln  neM/0eMn  eM/00=+Mena,           где  EMen+/Me0   –  равновесный электродный потенциал металла, В;21   E0Men+/Me0   –  стандартный  электродный  потенциал  металла  в  растворе соли с активностью ионов равной 1 моль/л. Величины стандартных электродных потенциалов металлов по отношению к  водородному  электроду,  принятому  за  эталон (E02H+ H2 = 0В), приведены в приложении    (табл. 2);   aMen+   –  активность ионов металла в растворе, моль/л;  n – за ря дность ионов;  R – у нив ерсальная газовая постоянная,  равная 8,31 Дж·моль–1·К–1;   Т – термодинамическая температура, К;  F – по ст оянная Фарадея, равная 96485 Кл/моль.  Один  фарадей  электричества  необходим  для  превращения  одного  моль вещества на электроде. Постоянную Фарадея можно рассчитать исходя из того, что 1 моль вещества несет 6,02·1023 элементарных зарядов (постоянная Авогадро), а один элементарный заряд равен 1,60·10–19Кл. Активность  ионов (ai)  связана  с  концентрацией  через  коэффициент  активности (γi), величина которого зависит от ионной силы раствора (Im): Im = ∑ i i2   ai = ciγi;  где  ic  –  концентрация иона, моль/л;   i n– зарядность иона.   Значения коэффициентов активности ионов при различной ионной силе раствора приведены в табл. 3 приложения. Подставляя  в  уравнение  Нернста (12) соответствующие  значения  констант при стандартных условиях, имеем: +++EEeM0,  0n59lg  neM/0e  MneM/00=+Mena.        Некоторые  металлы (Au, Pt) обладают  столь  прочной  кристаллической решеткой, что  катионы  из  нее  не  могут  освободиться.  Измеренный  равновесный потенциал для таких металлов не совпадает с табличным, поскольку на поверхности этих металлов могут адсорбироваться вещества из раствора электролита, которые образуют собственные электрохимические системы, находящиеся в равновесии с раствором. Электроды в таком случае называются инертными,  а  потенциал  определяется  равновесием  между  ионами (молекулами),  адсорбированными  на  электроде  и  молекулами (ионами)  раствора  электролита. Подобный механизм наблюдается в работе водородного (Pt, H2│2H+), хлорного (Pt, Cl2│2Cl–) электродов. Существуют системы, в которых и окисленная и восстановленная формы находятся в растворе: при этом происходит обмен электронами между инерт ным  электродом  и  ионами  раствора.  Примером  служит  редоксэлектроды (окислительно-восстановительные), Fe2+, Fe3+│Pt; Sn2+, Sn4+│Pt. 3. ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальваническим элементом (ГЭ) называется система, в которой энергия химической реакции преобразуется в электрическую энергию. Рассмотрим процессы, протекающие при работе гальванического элемента Даниэля – Якоби (медно-цинкового). Схема гальванического элемента: Zn│ZnSO4││CuSO4│Cu. Стандартный электродный потенциал цинка равен –0,76 В (см. приложение, табл. 2), а потенциал меди равен +0,34 В. При замыкании разнородных электродов: цинк, имея меньшее значение электродного потенциала, выступает в качестве анода (восстановитель). На нём протекает реакция окисления. Медный электрод, с большим по сравнению с цинком потенциалом, является катодом (окислителем). На нём восстанавливаются ионы меди из раствора соли: Zn – 2ē → Zn2+     – анодное окисление; Cu2+ + 2ē → Cu0   – катодное восстановление; Zn + Cu2+ → Zn2+ + Cu0  – токообразующая реакция. Электроны от цинка по внешней цепи перемещаются к медному электроду, где участвуют в процессе восстановления, движение ионов в растворе соли замыкает электрическую цепь. Для предотвращения смешивания растворов солей используют электролитический мостик или пористую перегородку (цепи «с переносом»). У поверхности соприкосновения растворов, вследствие неодинаковой подвижности ионов, возникает «диффузионный потенциал». Чтобы свести его влияние к минимуму, в качестве наполнителя в электролитическом мостике используют электролит, катионы и анионы которого, имеют близкие значения  подвижностей (KCl или NH4NO3).  В  некоторых  случаях  оба  электрода погружены в один и тот же раствор электролита (цепи «без переноса»). Диффузионный потенциал в этом случае полностью отсутствует. Работу  гальванического  элемента  можно  оценить  величиной  его  электродвижущей силы (Е). ЭДС равна максимальной разности потенциалов катода и анода: E = Eкатода – Eанода.            Различают гальванические элементы химические, у которых ЭДС возникает вследствие различной химической природы электродов, и концентрационные, составленные из двух, качественно одинаковых, полуэлементов, различающихся активностью потенциалобразующих ионов. В последних ЭДС возникает за счет выравнивания концентраций в приэлектродных пространствах. Примером концентрационного ГЭ может служить система, состоящая из двух  серебряных  электродов,  погруженных  в  растворы  собственных  солей  с различной активностью ионов серебра:

Ag│Ag+(c1)││Ag+(c2)│Ag, где c2 > c1.

Как видно, в концентрационном элементе химическая реакция не протекает, и стандартная ЭДС его равна нулю. Уравнение Нернста для расчета ЭДС концентрационного элемента имеет вид: .По определению, гальванический элемент является первичным источником тока и характеризуется ЭДС, напряжением, ёмкостью и энергией, которую он может отдать во внешнюю цепь за время своей работы. При работе напряжение гальванического элемента меньше его ЭДС из-за поляризации электродов и омических потерь в проводниках 1-го и 2-го рода:  U = E – ∆E – I(r1+r2),          где   E– ЭДС элемента, В;   ∆E – поляризация катода и анода, В (см. главу «Электролиз»);  I – с ил а тока, А;   1, rr2 – сопротивление проводников первого и второго рода, Ом.  По мере работы (разряда) элемента уменьшается концентрация реагентов и снижается ЭДС. Кроме того, возрастает поляризация элемента. Таким образом, при работе гальванического элемента напряжение его постепенно падает. Задачей  разработчиков  ГЭ  является  создание  таких  элементов,  у  которых напряжение в ходе его эксплуатации уменьшалось бы незначительно. Постоянное напряжение ГЭ, как и любого другого химического источника тока, вытекает из удобства использования его на практике. Ёмкость элемента – это количество электричества, которое источник тока отдаёт при разряде. Она определяется количеством реагентов и степенью их превращения. Если элемент разряжается при постоянном внешнем сопротивлении (R), то ёмкость рассчитывается по уравнению где  τ – время разряда, ч;   СR – ёмкость элемента, А·ч;  I – си ла тока, А;  U – н апряжение элемента, В. Энергия элемента (W) определяется: – если элемент разряжается при постоянном нешнем сопротивлении (R), то – если элемент разряжается при постоянной силе тока (I), то: Важной характеристикой элемента служит удельная энергия, т. е. рассчитанная на единицу активной массы. Более высокую удельную энергию можно получить с использованием элементов с большим значением ЭДС, малой поляризацией и высокими степенями превращения реагентов (Zn│MnO2, Mg│CuO и др.). Методы исследования, в основе которых лежат термодинамические                       соотношения  между  ЭДС  электрохимических  цепей  с  одной  стороны  и  физикохимическими параметрами растворов с другой, называются потенциометрическими. Их используют для определения водородного показателя раствора (рН), ионного произведения воды, константы гидролиза солей, константы диссоциации кислоты и основания, растворимости малорастворимых солей. Цепь составляют таким образом, чтобы один из электродов был с из-вестным значением потенциала, величина которого не изменяется в ходе исследования.  Такие  электроды  называют  электродами  сравнения.  Часто  в качестве  электродов  сравнения  используют  хлоридсеребряный (Ag, AgCl│KCl)  и  каломельный (Hg, Hg2Cl2│KCl)  электроды.  Они  отличаются хорошей воспроизводимостью результатов, надежны и просты в использовании.

36. Измерение электродных потенциалов. Стандартный водородный электрод и водородная шкала потенциалов.Вычисление  электродных потенциаловЭлектродный потенциал не может быть получен эмпирически. Потенциал гальванической ячейки вытекает из «пары» электродов. Таким образом, невозможно определить величину для каждого электрода в паре, используя эмпирически полученный потенциал гальванической ячейки. Для этого установлен стандартный водородный электрод, для которого этот потенциал точно определён и равен 0,00 В, и любой электрод, для которого электронный потенциал ещё неизвестен, может быть соотнесён со стандартным водородным электродом с образованием гальванической ячейки — и в этом случае потенциал гальванической ячейки даёт потенциал неизвестного электрода.Так как электродные потенциалы традиционно определяют как восстановительные потенциалы, знак окисляющегося металлического электрода должен быть изменён на противоположный при подсчёте общего потенциала ячейки. Также нужно иметь в виду, что потенциалы не зависят от количества передаваемых электронов в полуреакциях (даже если оно различно), так как они рассчитаны на 1 моль переданных электронов. Отсюда при расчёте какого-либо электродного потенциала на основании двух других следует проявлять внимательность. Например: Fe3+ + 3e → Fe(тв) −0.036 В

Fe2+ + 2e → Fe(тв) −0.44 В

Для получения третьего уравнения:Fe3+ + e → Fe2+ (+0.77 В)следует умножить потенциал первого уравнения на 3, перевернуть второе уравнение(поменять знак) и умножить его потенциал на 2. Сложение этих двух потенциалов даст стандартный потенциал третьего уравнения.Водородный электрод        платиновая пластинка, электролитически покрытая платиновой чернью, погружённая в раствор кислоты с определённой концентрацией ионов водорода Н+ и омываемая током газообразного водорода. Потенциал В. э. возникает за счёт обратимо протекающей реакции         

   Между водородом, адсорбированным платиновой чернью, и ионами водорода в растворе устанавливается равновесие. Потенциал электрода Е определяется уравнением Нернста:

         

        В. э. применяют как электрод сравнения

        

        Рисунок к ст. Водородный электрод.

37. Сущность электролиза. Анодное окисление и катодное восстановление.  Электролиз - основной метод промышленного производства алюминия, хлора и  едкого натра, важнейший способ получения фтора, щелочных и щелочноземельных металлов, эффективный метод рафинирования металлов. В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т.п., так называемые вторичные процессы          Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу - анод, после чего погружают их в электролизер с раствором или расплавом электролита      В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т.п., так называемые вторичные процессыАнодное окисление и катодное восстановление.В электролизере, схема которого показана на рис. 1, на положительномэлектроде — аноде ионы отдают электроны, т. е. протекает реакцияэлектрохимического окисления; на отрицательном электроде — катоде происходит

присоединение электронов, т. е. протекает реакция восстановления.

                             

                  Рис. 1.  Схема электролизера:                   

         1 — корпус; 2 — анод; 3 — катод; 4 — диафрагма          Эти процессы разработаны для очистки сточных вод от растворенных примесей

(цианидов, роданидов, аминов, спиртов. альдегидов, нитросоединений,азокрасителей, сульфидов, меркаптанов и др.). В процессах электрохимическогоокисления вещества, находящиеся в сточных водах, полностью распадаются с образованием СОз, МНз и воды или образуются более простые и нетоксичные вещества, которые можно удалять другими методами.В качестве анодов используют различные электролитически нерастворимыематериалы: графит, магнетит, диоксиды свинца, марганца и рутения, которые наносят на титановую основу. Катоды изготовляют из молибдена, сплава вольфрама с железом или никелем, из графита, нержавеющей стали и других металлов, покрытых молибденом, вольфрамом или их сплавами. Процесс проводят в электролизерах с диафрагмой и без нее. Кроме основных процессов электроокисления и восстановления, одновременно могут протекать электрофлотация, электрофорез и электрокоагуляция. Сточные воды, содержащие цианиды, образуются на предприятиях машиностроения, приборостроения, черной и цветной металлургии, химической промышленности и др. В состав вод кроме простых цианидов (KCN, NaCN) входят комплексные цианиды цинка, меди, железа и других металлов, концентрация которых колеблется от 10 до 600 мг/л. Обычно рН таких стоков колеблется в пределах 8—12. Анодное окисление цианидов протекает по реакциям                                 

Окисление может быть проведено и с образованием азота:                                 Для повышения электропроводности сточных вод и снижения рас-хода энергии к водам добавляют NaCl. При концентрации CN" 1 г/л добавляют 20—30 г/л NaCl. В этом процессе используют графитовый анод и стальной катод. Оптимальные условия окисления: анодная плотность тока 3—4 А/дм2, меж-злектродно" пространство 3 см, скорость воды 30 дм3/ч, рН 8—9. Степень очистки приближается к 100%.

Разрушение цианидов происходит в результате электрохимического окисления на аноде и окисления хлором, выделяющимся на аноде в результате разложения NaCl.

38.Электролитическое получение металлов. Электролиз расплавов. Аккумуляторы.

Различают электролиз расплавов и растворов электролитов.
Электролиз расплавов электролитов.

 Электролиз расплава соли с использованием инертных электродов показан на следующей схеме: 
Анод 
При высоких температурах расплав соли диссоциирует на ионы: 
Прохождение электрического тока через расплав обусловлено тремя одновременно протекающими процессами:
направленное движение катионов Мg2+ к катоду, а анионов Cl- - к аноду;
восстановление, происходящее на катоде:

окисление, происходящее на аноде:

Суммарное уравнение электролиза после уравнивания числа отдаваемых и присоединенных электронов принимает вид:

Схематически весь процесс можно представить следующим образом:

 Катод (-) Анод ( + )
Mg2+ 2Cl-
 Mg2+ + 2e- = Mg 2Cl- - 2e- = Cl2 

АККУМУЛЯТОРЫ электрические (от лат. accumulator- собиратель, накопитель), хим. источники тока многократного действия. При заряде от внеш. источника электрич. тока в аккумуляторе накапливается энергия, к-рая при разряде вследствие хим. р-ции непосредственно превращ. снова в электрическую и выделяется во внеш. цепь. По принципу работы и осн. элементам конструкции аккумуляторы не отличаются от гальванических элементов,но электродные р-ции, а также суммарная токообразующая р-ция в аккумуляторах обратимы. Поэтому после разряда аккумулятора может быть снова заряжен пропусканием тока в обратном направлении: на положит. электроде при этом образуется окислитель, на отрицательном-восстановитель. Наиб. распространены свинцовые аккумуляторы, часто наз. также кислотными. Их действие сновано на  р-ции: 
Электролит - р-р H
2SO4 с концентрацией 12-24% по массе в разряженном состоянии и 28-40% в заряженном. Напряжение разомкнутой цепи (НРЦ) 1,95-2,15 В. Чаще всего применяют электроды из пасты, содержащей смесь Рb3Ои РbО с H2SO4 (активная масса); эту пасту намазывают на профилированную сетку-токоотвод из сплава Рb с 2-12% Sb. Электроды формируют, пропуская через р-р электролита зарядный ток в определенном режиме; при этом на одном электроде образуется РbО2, на другом-Рb. Затем электроды отмывают и сушат в условиях, исключающих возможность окисления Рb. Аккумуляторы, собранные из таких электродов, после заливки у потребителя р-ром H2SO4 готовы к эксплуатации без подзаряда (остальные виды аккумуляторов требуют дополнит. заряда). Применяют также панцирные электроды, в к-рых активная масса заключена в перфорированную пластмассовую или тканевую трубку.Первый свинцовый аккумулятор был создан Г. Планте в 1859. Сейчас более половины мирового произ-ва Рb расходуется на изготовление свинцовых аккумуляторов с единичной емкостью 2-5000 А * ч и уд. энергией 25-40 Вт * ч/кг. Осн. достоинства таких аккумуляторов: относит. дешевизна, пологие разрядная и зарядная кривые, возможность работать в разл. режимах разряда; недостаток - невысокий ресурс работы (число допустимых циклов заряд-разряд для стартерных аккумуляторов 100-300, для тяговых с панцирными электродами 800-1500). В конце заряда на электродах свинцового аккумулятора наблюдается заметное выделение газов, к-рые часто увлекают за собой туман из капель H2SO4. В связи с этим большое внимание уделяется созданию герметизированных свинцовых акуумуляторов. Щелочные никель-кадмиевые (НКА) и никельжелезные (НЖА) аккумуляторы по распространению занимают второе место после свинцовых. НЖА используют в осн. для изготовления тяговых аккумуляторных батарей большой емкости (до 1200 А * ч). Они дешевле НКА, но характеризуются повыш. саморазрядом из-за коррозии железа в щелочном р-ре; кроме того, у них более низкие значения отдачи по току и по энергии. В НКА не наблюдается коррозии Cd и связанного с ней газовыделения, что обусловливает большую длительность сохранения заряженного состояния и возможность полной герметизации аккумулятора. Герметичные НКА выпускают емкостью от 0,01 до 160 А * ч. Их широко используют как источники электрич. энергии в приборах бытовой техники, ср-вах связи и т.п.Серебряно-цинковые аккумуляторы со щелочным электролитом имеют высокую уд. энергию (до 130 Вт*ч/кг) и способны разряжаться большими токами, но из-за высокой стоимости серебра нашли применение только в специальных отраслях, напр. в космической технике. При заряде возможно также образование AgO. Поэтому на зарядных и разрядных кривых наблюдаются ступени, соответствующие р-циям с участием Ag2O и AgO. НРЦ 1,60-1,85 В, ресурс не превышает 100-200 циклов.Попытки замены Ag др. материалами привели к созданию никель-цинковых аккумуляторах, в к-рых используют спеченный или прессованный окисноникелевый электрод от НКА и цинковый электрод от серебряно-цинковых аккумуляторов. Токообразующая р-ция: 
НРЦ 1,74-1,78 В, уд. энергия ок. 60 Вт*ч/кг, ресурс ок. 300 циклов. Разрабатываемые варианты этих аккумуляторах предназначены в осн. для электромобилей, но широкому использованию их мешает недостаточный пока ресурс работы.Выделяющийся при заряде Н
2 накапливается под давлением. Поэтому блок с электродами помещают в стальной цилиндр, выдерживающий давления до 10 МПа. НРЦ 1,32-1,36 В, уд. энергия 50-60 Вт*ч/кг, ресурс неск. тысяч циклов. Из-за дороговизны произ-ва такие аккумуляторы применяют пока только в космич. технике.Среди перспективных конструкций аккумуляторов с неводными электролитами Наиб. интерес представляют серно-натриевые с твердым керамич. электролитом из алюминатов натрия, обладающим проводимостью по ионам Na+ . Рабочая т-ра такого аккумулятора 300-350°С. Токообразующая р-ция: 

НРЦ 2,08 В. Осн. трудность при разработке: создание технологии изготовления тонких, но достаточно стойких деталей из твердого электролита. Разрабатывают также высокотемпературные сульфид-железо-литиевые аккумуляторы; в них вместо твердого электролита применяют расплав солей, окислителями служат FeS или FeS2. По своим характеристикам эти аккумуляторы близки к серно-натриевым. Если требуется более высокое напряжение, чем у отдельного аккумулятора, применяют аккумуляторные батареи, состоящие из последовательно включенных аккумуляторов, имеющих общий корпус, выводы и маркировку. Батареи широко применяют в транспортных ср-вах для запуска двигателей, освещения и др. Тяговые батареи используют для силовых установок электрокаров, стационарные большой емкости-для электропитания телефонных сетей, в кач-ве аварийных источников электроэнергии на случай перебоев в электросети (напр., в операционных). Малогабаритные герметичные батареи применяют для питания переносных радиоприемников и др. устройств. Большое внимание уделяется разработке батарей для электромобилей. Мировое произ-во одних лишь стартерных батарей из свинцовых аккумуляторов превышает 100 млн. штук в год. В отличие от гальванич. элементов аккумуляторы требуют ухода при эксплуатации: их необходимо заряжать, периодически доливать электролит и поддерживать постоянной его концентрацию, проводить тренировочные и контрольные зарядно-разрядные циклы и т.п. Разрабатывают т. наз. малообслуживаемые и необслуживаемые аккумуляторы, уход за которыми упрощен.

39. Основные виды коррозии. Классификация коррозионных процессов. Электрохимическая коррозия металлов.

Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика,дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.

Классификация коррозионных процессов.

Все многообразие коррозионных процессов принято классифицировать по признаку их механизма, условий протекания и характеру получаемого разрушения.

По механизму протекания различают химическую и электрохимическую коррозию.

По условиям протекания процессов, которые весьма разнообразны, различают следующие виды коррозии (основные виды):

-Газовую коррозию - коррозию металлических материалов в атмосфере раскаленных газов;

-Атмосферную коррозию - коррозию металлических материалов в атмосфере влагосодержащих газов;

-Жидкостная коррозия - коррозию металлов в жидкостях (электролитах и не электролитах);

-Подземную коррозию - коррозию в почвах и грунтах;

-Структурную коррозию - коррозию металлических материалов в связи с неоднородностью их структуры;

-Биокоррозию - коррозию под влиянием микроорганизмов;

-Коррозию блуждающим и внешним током.

     По характеру коррозионного разрушения различают:

-Общую коррозию (сплошную);

-Местную коррозию (коррозию отдельных участков металлических поверхностей).

     Общая коррозия бывает равномерной ( протекает с одинаковой скоростью на всей поверхности металла), например, коррозия углеродистой стали в H2SO;

неравномерной протекающей с неодинаковой скоростью на различных участках поверхности металла (например, коррозия углеродистой стали в морской воде);

избирательной (разрушается лишь одна структурная составляющая сплава, например, ферритная структурная составляющая чугуна).

Местная коррозия, бывает: пятнами (коррозия латуни в  морской воде), язвами (коррозия стали в грунте), точечной (коррозия нержавеющей стали в морской воде), межкристаллитной (коррозия нержавеющей стали  в кислых средах), ножевой (коррозия сварных швов).электрохимическая коррозия является наиболее распространенным типом коррозии металлов. По электрохимическому механизму корродируют металлы в контакте с растворами электролитов (морская вода, растворы кислот, щелочей, солей) . В обычных атмосферных условиях и в земле металлы корродируют также по электрохимическому механизму , т.к. на их поверхности имеются капли влаги с растворенными компонентами воздуха и земли. Электрохимическая коррозия является гетерогенным и многостадийным процессом. Ее причиной является термодинамическая неустойчивость металлов в данной коррозионной среде.

40.Защита металлов от коррозии.

Коррозии подвергается почти 1/3 вводимого в эксплуатацию металла. Часть его переплавляется и снгова возвращается в промышленность. Но всё-таки 10% от общей массы - теряется безвозвратно.
Разрушение отдельных металлических деталей из металла может привлечь за собой разрушение целых маши и механизмов, создаваться аварийные ситуации.Радикальным методом 
защиты от коррозии является поиск коррозионно-стойких материалов для агрессивной среды. Полностью заменить металлы на неметаллические предметы - невозможно.
Защита от коррозииизоляция металлов от агрессивной среды. Защитить металл от разрушения можно путём создания на его поверхности защитной плёнки - покрытия.Пути создания защитных плёнок различны. Например, корродирующий металл покрывают слоем другого металла, который не разрушается при тех же условиях. В качестве покрыий используются неметаллические покрытия, органические материалы - плёнки высокополимерных веществ, лаки, олифа, а также композиции из высокополимерных и неорганических красящих веществ.
Особое значение имеют плёнки из оксидов металлов, получаемые при действии кислорода или подходящих окислителей (азотная кислота HNO
3, дихромат калия K2Cr2O7 и др.) на поверхность металлов. Часто такие оксидныеи плёнкки образуются на поверхности металлов даже просто при соприкосновении с воздухом, что делает химически-активные металлы (алюминий, циннк) коррозионностойкими.
Подобную роль играют защитные нитридные покрытия, образующиеся при действии азота или аммиака на поверхность некоторых металлов. Искусственное оксидирование, азотирование, фосфатирование - хорошая защита металлов от коррозии.
Чистка стальных предметов

Устранить ржавчину механическим способом практически невозможно. Поэтому часто применяют растворы, содержащие сильнодействующие химические реактивы - кислоты, основания и т.д. Вместе с устраненнием ржавчины достигается эффект предохранения поверхности от внешних возздействий. 
Несильно загрязнённые и поржавевшие предметы на несколько часов замичивают в бензине, а затем грязь и ржавчину удаляют салфеткой, смоченной бензином или металлической щёткой при глубокой ржавчине.
Стальные предметы хорошо чистятся пастой, состав которой следующий: машинное масло - 650г, парафин - 150г, очень мелкая пемза - 200г иля тяжёлый бензин - 270г, абразивный порощок - 450г, алюминиевый порошок - 40г.
Чистка цветных металлов В фарфоровом сосуде растапливают 100г парафина, 200г олеина, 200г овечьего жира. В полученную смесь добавляют 500г порошка мела и размешивают до полной гомогенизации.Чистка серебра В фарфоровой или эмалированной сосуде в 100мл тёплой воды последовательно растворяют 300г белого мыла, 150г щавелевой кислоты, 150г карбамида кальция.

41.ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.

Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий - серебристо-белый.

Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.

Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К).

Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2 длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.

Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости - количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ - Дж/(кг∙К).

Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками - электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность - в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением - увеличивается.

Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

42. Сплавы – системы, состоящие из двух или нескольких металлов или металлов и неметаллов, обладающие характерными для металлического состояния свойствами.

Сплавы являются основой технического могущества страны, т. к. по некоторым свойствам значительно превосходят чистые металлы – обладают большей прочностью, коррозионной стойкостью и твердостью, лучшими литейными свойствами, магнетизмом, электросопротивлением, сверхпроводимостью и т. д. Основа сплавообразования – металлическая связь и способность металлов перестраивать свои кристаллические решетки. Распределение электронов и изменение их энергии – факторы, определяющие кристаллическое строение и все свойства металлов и сплавов.

Основой   современной   техники   являются   металлы   и    металлические

сплавы. Разнообразные требования к металлическим    материалам    возрастают

по мере развития новых отраслей техники.

     В наше время успешно и все более широко используется атомная энергия в

мирных целях, предъявляя высокие требования к  новым  материалам  с  особыми

свойствами;  реактивная   техника,   теоретические   основы   которой   были

разработаны нашими учеными многие десятки лет назад, могла стать  на  службу

советского  народа  только  после  того,  как  были   созданы   и   внедрены

специальные  жаропрочные  сплавы.     Прогрессивно   развивающиеся   отрасли

промышленности — химическая, нефтяная, машиностроение, транспорт и другие  — основываются на  широком  применении  высокопрочных  железных,  никелевых  и других сплавов.

43. Нахождение металлов в природе

Многие металлы широко распространены в природе. Так, содержание некоторых металлов в земной коре следующее:

алюминия — 8,2%

железа — 4,1%

кальция — 4,1%

натрия — 2,3%

магния — 2,3%

калия - 2,1 %

титана — 0,56%

Большое количество натрия и магния содержится в морской воде: — 1,05%, — 0,12%.

В природе металлы встречаются в различном виде:

— в самородном состоянии: серебро , золото , платина , медь , иногда ртуть

— в виде оксидов: магнетит Fe3O4, гематит Fe2О3 и др.

— в виде смешанных оксидов: каолин Аl2O3 • 2SiO2 • 2Н2О, алунит (Na,K)2O • АlО3 • 2SiO2 и др.

— различных солей:

сульфидов: галенит PbS, киноварь НgS,

хлоридов: сильвин КС1, галитNaCl, сильвинит КСl• NаСl, карналлит КСl • МgСl2 • 6Н2О, сульфатов: барит ВаSO4, ангидрид Са8О4 фосфатов: апатит Са3(РО4)2, карбонатов: мел, мрамор СаСО3, магнезит МgСО3.

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий — в качестве примеси в цинковые руды, ниобий и тантал — в оловянные.

Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.

Распростронение металов

Соединения элементов главной подгруппы II группы, за исключением бериллия и радия, широко распространены в природе. Кальций и магний относятся к числу наиболее распространенных элементов (кальция в земной коре содержится 3,4 %, а магния 2,0 %). Однако благодаря большой химической активности элементы щелочноземельной группы никогда не встречаются в свободном состоянии, а всегда в виде соединений.

Карбонаты кальция и магния в виде известняка и мела (СаСО3), а также доломита (СаСО3∙МgСО3) образуют целые горные кряжи. Хотя и не в таких огромных массах, как только что названный двойной карбонат, поместами также в виде могцных залежей встречается простой карбонат магния МgСО3, магнезит, называемый также горьким шпатом, или тальковым шпатом. В Европе он находится главным образом в Штойермарко и на острове Эвбее, а из внеевропейских стран — в Калифорнии, Канаде и в китайской части Мав.чжурии. Местами встречается в больших количествах мрамор, состоящий почти из совершенно чистого карбоната кальция. Меньшее распространение имеют карбонаты тяжелых щелочноземельных металлов: стронцианит SrСO3 и витерит ВаСО3.

Мощные залежи образует гипс СаSO4∙2H2O (называемый также селенитом). Разновидностью его является алебастр. Безводный сульфат кальция СаSO4 — ангидрит — наряду с кизеритом МgSO4∙H2О является почти постоянным спутником каменной соли. Но н помимо этого, нередко встречаются слоистые залежи ангидрита. Из дцух сульфатов стронция и бария — целестина (SrSO4) и тяжелого шпата (ВаSO4) — особо широко распространен последний.

Из силикатов магния следует указать оливин (Мg,Fе)2[SiO4], энстатит Мg2[Si2О6], а также содержащие воду силикаты — серпентин, асбест, тальк и морскую пенку. Чрезвычайный многообразием отличаются двойные силикаты магния и особенно кальция. К числу соединений кальция относятся следующие минералы: фосфорит, апатит 3Са3(РO4)2∙Са(F,С1)2 и плавиковый шпат (флюорит СаF2). Кроме того, следует еще упомянуть встречающуюся в небольших количествах, но довольно распространенную шпинель МgО∙Аl2О3, некоторые разновидности которой ценятся как драгоценные камни.

В качестве продуктов выветривания минералов соединения кальция и магния всегда содержатся в почве, а также в большинстве природных вод, «жесткость» которых и обусловливается содержанием этих солей. В органической природе кальций и магний встречаются почти всюду: магний входит в качестве составной части в зеленое красящее вещество листьев (хлорофилл); кальций же в виде фосфата образует твердое вещество костей, а в виде апатита — еще более твердую часть зубной эмали. Яичная скорлупа, раковины и кораллы также состоят из карбоната кальция.

Соли магния и кальция содержатся в довольно заметных количествах в морской воде. Последняя (кроме приблизительно 2,9 % хлоридов щелочных металлов) содержит в среднем около 0,3 % МgСl2, 0,04 % МgВr2, 0,18 % МgSO4 и 0,16 % СаSO4. Вода некоторых «горькосоленых» минеральных источников содержит значительные количества сульфата магния.

Бериллий встречается в природе в виде некоторых минералов, не имеющих особенного распространения. Чаще всего из пих встречается берилл Ве3Al2[Si6O18], крупные месторождения которого известны в Бразилии, Северной Америке, Африке, Индии, Англии, Норвегии, Испании и на Урале.

Некоторые содержащие бериллий минералы иногда встречаются в виде очень красивых экземпляров и считаются поэтому драгоценными камнями. Так, смарагд и аквамарин — разновидности берилла, а александрит — разновидность хризоберилла. Эвклаз и фенакит тоже считаются драгоценными камнями.

Радий в совершенно ничтожных количествах содержится в рудах урана, из которого он образуется путем радиоактивно го распада. Отношение радия к урану в этих рудах практически постоянно и равняется 1:3 000 000. Главный минерал, содержащий уран, — урановая смоляная руда — содержит в среднем 0,14 г радия на 1 т (1000 кг). Еще ничтожнее содержание радия в других урановых рудах, например в аутупите, карнотите и в других подобных минералах

44.

Основные способы получения металлов. Металлы получают из руд, т.е. исходного сырья, в котором содержится экономически приемлемое количество металла. По мере истощения руд уменьшается экономически приемлемое содержание в них металла и повышается его стоимость.

Предварительно руда обрабатывается для увеличения концентрации металла путем отделения пустой породы и разделения остатка на различные фракции. Последующие операции заключаются в получении соединения металла, из которого удобно выделить металл тем или иным способом. Так как большинство металлов в природе находится в окисленном состоянии, то извлечение их основано на восстановлении из тех или иных соединений в растворах при невысокой температуре) или расплавах (при повышенных температурах).

Восстановление проводят химическими или электрохимическими способами. Химическое восстановление заключается во взаимодействии соединений металлов с углем, водородом или металлами-восстановителями. Например, при взаимодействии оксидов же-еза со специально обработанным углем (коксом) образуется чугун. J помощью водорода получают вольфрам, молибден, кобальт и ругие металлы, например, по реакции:

WO3 + ЗН2 = W + ЗН2О

Многие металлы производят взаимодействием соединений ме-ллов с другими металлами, например:

BeF2 + Mg = Be + MgF2 Таким способом получают кадмий, олово, хром, серебро, титан И другие металлы. Кроме магния восстановителями обычно служат Цинк и алюминий. Электролизом из растворов осаждают медь, ни-Ксль, серебро, хром, кадмий, индий, олово и другие металлы. Элек-1ролизом из расплавов осаждаются сильные восстановители, такие, Как щелочные металлы, магний и алюминий.

Получение чистых металлов. Свойства металлов зависят от содержания в них примесей. Например, титан долгое время не находил применения из-за хрупкости, обусловленной наличием примесей. После освоения методов очистки области применения титана резко расширились. Содержание лишь 0,03 % (масс, ноли) мышьяка приводит к снижению электрической проводимости меди на 14%. Особенно большое значение имеет чистота материалов в электронной и вычислительной технике и ядерной энергетике.

В зависимости от суммарной атомной доли примесей (от 10'1 до 10~10%) различают 10 классов чистоты веществ. Если те или иные примеси особенно нежелательны для данной области применения материала, то оговаривают допустимое содержание этих примесей. Например, атомная доля бора, гафния и кадмия в материалах атомной энергетики не должна превышать 10"4 — 10"6%. Стоимость материалов возрастает по мере повышения их степени очистки.

Все методы очистки металлов можно разделить на химические

Физико-химические. Химические методы очистки заключаются во взаимодействии металлов с теми или иными реагентами, образующими с основными металлами или примесями осадки или газообразные продукты. Из-за контакта металла с реагентами и материалами аппаратуры не удается достичь высокой степени чистоты металла. Более высокую степень очистки дают транспортные химические реакции в которых металл с реагентом образует газообразные продукты, передаваемые в другую зону, где они разлагаются на чистый металл и исходный реагент.

Физико-химические методы включают в себя электрохимические, дистилляционные, кристаллизационные и др.

При электрохимическом способе (рафинировании) очищаемый металл служит анодом, чистый металл осаждается на катоде электролизера, примеси переходят либо в раствор электролита, либо в виде осадка накапливаются в шламе (см. гл. 9). Дистилляционные методы заключаются в испарении жидкого (например, ртути) или расплавленного металла с последующей конденсацией паров. Отделение примесей обусловлено разной температурой испарения основного металла и примеси.

Кристаллизационные методы основаны на различном содержании примесей в твердом и расплавленном металлах. Они включают зонную плавку, кристаллизационное вытягивание из расплава и др. Особенно широко применяют зонную плавку, заключающуюся в том, что вдоль слитка (стержня) медленно перемещается зона нагрева и соответственно зона расплавленного металла. Некоторые примеси концен­трируются в расплаве и собираются в конце слитка, другие — в начале слитка. После многократных прогонок отрезают начальную и концевую части слитка, остается очищенная средняя часть металла

ПОЛУЧЕНИЕ МЕТАЛЛОВ ВЫСОКОЙ ЧИСТОТЫ

В связи с развитием в настоящее время новых отраслей техники и технологии требования к чистоте используемых материалов (металлов) постоянно повышаются. Перед современной металлургией остро стоит проблема разработки и освоения методик тонкой очистки металлов от примесей. С этой целью достаточно широко используют методы электролитического рафинирования металлов (см. гл.8 “Электрохимические процессы”) и некоторые другие.

Перегонка и переплавка в вакууме основаны на различной летучести металлов. При определенной температуре примесь отделяют от менее летучего металла или, наоборот, отгоняют более летучий металл от менее летучих примесей. Таким образом, металлы (Nb, Ta, Mo, W, Re и др.) очищают, от растворенных в них газов (кислорода, водорода, азота и др.).

В методе термической диссоциации (пиролиз) летучих соединений используют способность некоторых соединений металлов (галидов, карбонилов и др.) разлагаться при высоких температурах. Так, ряд металлов (Ti, Zr и др.) образуют с иодом при сравнительно низких температурах летучие соединения - иодиды, которые легко отделяют от примесей. При более высокой температуре пары иодидов на W- или Ta- проволоке разлагаются на чистый металл и иод:

ZrI2 = Zr + 2I

Данный метод очистки металлов иногда называют методом транспортных реакций. Кроме иода в нем используют и другие реагенты, в частности, оксид углерода (II), при помощи которого в процессе очистки от примесей никеля, железа, кобальта, хрома и других металлов получают соответствующие карбонилы, которые, после отделения от примесей разлагают на чистый металл и CO:

[Ni(CO)4] = Ni + 4CO

Для получения чистых металлов в ряде случаев применяют метод диспропорционирования суть которого сводится к процессам внутримолекулярного окисления - восстановления или диспропорционирования солей некоторых металлов с образованием металлов:

2AuCl3 = Au + 3Cl2

2TiCl2 = TiCl4 + Ti

Зонная плавка основана на различной растворимости примесей в твердом и расплавленном металле. Процесс заключается в том, что через высокотемпературную зону очень медленно передвигают стержень из очищаемого металла. Образующаяся при этом узкая зона расплавленного металла, в которой концентрируются примеси, перемещается в конец стержня со скоростью 2-3 см/час. Описанную операцию многократно повторяют. Конец стержня механически отделяют. Данным методом получают металлы, в которых остается один атом примеси на 10 атомов очищаемого металла.

Металлы, находящиеся в чистом состоянии, отличаются по своим физическим свойствам от неочищенных. Например, полупроводниковые свойства у германия проявляются лишь в образцах с содержанием примесей 10 . Чистый хром отличается от неочищенного высокой пластичностью, электро-, теплопроводностью. Изменяются и другие характеристики металлов.

45.

МАГНИЙ (Magnesium) Mg, хим. элемент II гр. периодич. системы, ат. н. 12, ат. м. 24,305; относится к щелочноземельным элементам. Прир. магний состоит из трех стабильных изотопов 24Mg (78,60%), 25Mg (10,11%) и 26Mg (11,29%).Конфигурация внеш. электронной оболочки 3s2; степень окисления +2, очень редко +1. Содержание магния в земной коре 2,35% по массе. Встречается в природе только в виде соединений. Известно более 100 минералов, содержащих магний; большинство из них - силикаты и алюмосиликаты. Магний - серебристо-белый металл. Магний - сравнительно мягкий, пластичный и ковкий металл. При обычных условиях пов-сть магния защищена прочной пленкой магния оксида MgO, только при нагр. на воздухе до ~ 600 °С происходит разрушение этой пленки и металл сгорает ослепительно белым пламенем с образованием MgO и нитрида Mg3N2. С холодной водой магний не реагирует, из кипящей воды вытесняет Н2 и образует магния гидроксид Mg(OH)2. Аналогично реагирует с р-рами солей аммония.

Бериллий (Be) - имеет атомный номер 4 и атомный вес 9.0122. Он находится во втором периоде периодической системы и возглавляет главную подгруппу 2 группы, в которую также входят магний, кальций, стронций, барий и радий. Электронная структура атома бериллия 1s 2s. На внешней оболочке он имеет два электрона, что является характерным для элементов этой группы. Электронная структура внешней оболочки иона каждого из этих элементов с зарядом +2 соответствует электронной структуре инертного газа с атомным номером на две единицы меньше номера рассматриваемого элемента. Бериллий вещество серо-стального цвета; при комнатной температуре металлический бериллий имеет плотно упакованную гексагональную решетку, подобную решетке магния. Атомный (металлический) радиус бериллия равен 1.13 А. Увеличение массы и заряда ядра при сохранении конфигурации электронных оболочек служит причиной резкого уменьшения атомного и ионного радиусов бериллия по сравнению с соседним литием. После отрыва валентных электронов атом бериллия образует ион типа благородных газов, и несет, подобно литию, всего одну электронную оболочку, но характеризуется значительно меньшими размерами и компактностью. Истинный ионный радиус бериллия - 0,34 А является наименьшим среди металлов. Потенциалы ионизации у бериллия равны (соответственно для первого, второго, третьего и четвертого электронов) I1-9,28; I2-18,12; I3-153,1; I4-216,6 эВ. На кривой потенциалов ионизации бериллий занимает одно из верхних мест. Последнее соответствует его малому радиусу и характеризует бериллий как элемент не особенно охотно отдающий свои электроны, что в первую очередь определяет степень химической активности элемента. Этот же фактор имеет решающее значение в образование того или иного типа химической связи при соединение бериллия с другими элементами. С точки зрения электроотрицательности бериллий наряду с алюминием может рассматриваться как типичный переходный элемент между электроположительными атомами металлов, легко отдающих свои электроны, и типичными комплексообразователями, имеющими тенденцию к образованию ковалентной связи. В нейтральных растворах гидрокcилы бериллия дисcоциируют по схеме:

Be2+ + OH- <=> Be(OH)2 <=> H2BeO2 <=> 2H+ + [BeO2]2-

46.

Алюминий представляет собой серебристо–белый, довольно твердый металл с плотностью 2,7, плавящийся при 660° и кипящий при 2350°С. Он характеризуется большой тягучестью и высокой электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов.

Значительно более обширно применение алюминия в виде различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Особенно важен так называемый дуралюминий (приблизительный состав: 94% Аl, 4% Cu, по 0,5% Mg, Mn, Fe и Si). Он ценен тем, что при равной прочности изделия из него почти в три раза легче стальных. Не говоря уже об авиационной промышленности, для которой легкость материала особенно важна, облегчение металлических конструкций имеет громадное значение для ряда областей техники.

Это становится особенно наглядным, если принять во внимание, что, например, в груженом товарном вагоне около трети всего веса приходится на материалы, из которых изготовлен сам вагон, а в пассажирских вагонах на их собственный вес падает до 95% всей нагрузки. Очевидно, что даже частичная замена стали дуралюминием дает громадный техно–экономический эффект. В связи с этим, а также ввиду наличия в природе практически неисчерпаемых запасов алюминия, его иногда называют «металлом будущего». Возможность широкой частичной замены им основного металла современной техники – железа – ограничивается главным образом сравнительно высокой стоимостью алюминия.Алюминий легкорастворим в сильных щелочах по реакции, например:

2Аl + 2NaOH + 2Н2 О = 2NaAlO2 + ЗН2

В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.Легкость растворения алюминия в сильныхшелочах обусловлена снятием с него защитной окисной пленки по схеме: Аl2 О3 + 2ОН– = 2АlO2 – +Н2 О.

Тита́н (Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан— лёгкий металл серебристо-белого цвета. Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе. Практическое значение Ti и Zr особенно велико для металлургии. Присадка титана придает стали твердость и эластичность, а присадка циркония сильно повышает ее твердость и вязкость. За последнее время стало быстро развиваться использование титана в самолетостроении, а циркония – при сооружении ядерных реакторов. Соединения обоих элементов находят применение в различных отраслях промышленности. Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[10]. Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−. При нагревании на воздухе до 1200 °C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны. TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана. Восстановлением TiCl4 водородом, алюминием, кремнием, другими сильными восстановителями, получентрихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами.Ti взаимодействует с Br2 и I2. С азотом N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с углеродом образуется карбид титана TiCx (x=0,49-1,00). При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,3 — 2). При нагревании эти гидриды разлагаются с выделением H2. Титан образует сплавы со многими металлами.

47. Особенности свойств , нахождение в природе и использование хрома ,молибдена, вольфрама.

Молибден (с греческого "подобный свинца") - химический элемент. Сказывается как Мо, в периодической таблице элементов его атомный номер 42, ат.м. 95,94. t пл = 2620  С; t_кип = 4600 С. Серебристо-серый тугоплавкий металл. Плотность 10200 кг / м 3. Окисляется на воздухе. Встречается в виде минерала молибденита. М. - мало распространенный элемент. Вариации концентраций в породах различного состава незначительны - (0,4-3,5) % 10-4% по массе. Основные минералы М. - молибденит, молибдит и повелеть.

Основная область его применения - металлургия (85-90%), где он входит в состав легированных сталей и сплавов. Легированные стали и сплавы используются для станкостроения, нефтегазовой, химической и электротехнической промышленности и транспортного машиностроения, а также для производства броневых плит и бронебойных снарядов. Кроме того, молибден используется в электротехнике, радиотехнике, термотехници, химической и нефтеперерабатывающей промышленности и как микроэлемент удобрений. Важный конструкционный материал электровакуумной, ракетной, авиационной техники, ядерной энергетики.

Молибден получают из молибденовых, вольфрам-молибденовых, медно-молибденовых и уран-молибденовых руд.

Хром — элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром (CAS-номер: 7440-47-3) — твёрдый металл голубовато-белого цвета.

Хром является довольно распространённым элементом (0,02 масс. долей, %). Основные соединения хрома — хромистый железняк (хромит) FeO·Cr2O3. Вторым по значимости минералом является крокоит PbCrOФизические свойства

В свободном виде — голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).Хром имеет твердость по шкале Мооса 5.[4] Очень чистый хром достаточно хорошо поддаётся механической обработке.

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

ВОЛЬФРАМ – (Wolframium), W – химический элемент 6 (VIb) группы периодической системы Д.И.Менделеева, атомный номер 74, атомная масса 183,85.

Вольфрам – довольно редкий элемент, его кларк (процентное содержание в земной коре) составляет 1,3·10–4% (57-е место среди химических элементов).Вольфрам встречается, главным образом, в виде вольфраматов железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Более половины (58%) всего потребляемого металла используется в производстве карбида вольфрама, почти четверть (23%) – в виде различных сплавов и сталей. На изготовление вольфрамового «проката» (нитей для ламп накаливания, электрических контактов и т.д.) приходится 8% произведенного вольфрама, а оставшиеся 9% используются при получении пигментов и катализаторов.

Металлический вольфрам имеет светло-серый цвет. После углерода у него самая высокая температура плавления среди всех простых веществ. Ее значение определено в пределах 3387–3422° С. У вольфрама – превосходные механические качества при высоких температурах и наименьший коэффициент расширения среди всех металлов. Температура кипения 5400–5700° С. Вольфрам – один из наиболее тяжелых металлов с плотностью 19250 кг/м3. Электропроводность вольфрама при 0° C – величина порядка 28% от электропроводности серебра, являющегося наиболее электропроводящим металлом. Чистый вольфрам довольно легко поддается обработке, однако обычно он содержит примеси углерода и кислорода, что и придает металлу известную всем твердость. Вольфрам обладает очень высоким модулем растяжения и сжатия, очень высоким сопротивлением температурной ползучести, высокой тепло- и электропроводностью, высоким коэффициентом электронной эмиссии, который может быть еще улучшен сплавлением вольфрама с некоторыми оксидами металлов.

Вольфрам химически стоек. Соляная, серная, азотная, фтороводородная кислоты, царская водка, водный раствор гидрооксида натрия, аммиак (до 700° С), ртуть и пары ртути, воздух и кислород (до 400° С), вода, водород, азот, угарный газ (до 800° С), хлороводород (до 600° С) на вольфрам не действуют.

48. Особенности свойств , нахождение в природе и использование железа ,кобальта.

Железо - Элемент XVIII группы четвертого периода периодической системы Менделеева, металл Степень окисления +2,+3, иногда +6.Один из наиболее распространенных элементов в природе. Особенно важен для живых организмов: является основным катализатором дыхательных процессов. Железо входит в состав гемоглобина крови (477 мг/л), участвует в процессе переноса кислорода от легких к тканям. Железо встречается в природе в основном в виде руд.

Основные руды железа:  — магнетит (магнитный железняк) FезО4 (содержит до 72% железа), основные месторождения находятся на Урале.

— гематит (красный железняк) Fe2О3 (содержит до 65% железа), основное месторождение — Криворожское.

— лимонит (бурый железняк) Fe2О3 • nH2O (содержит до 60% Ре), крупные месторождения в Крыму и на Урале.

— пирит (железный колчедан) FeS2 (содержит около 46% железа), — сидерит (шпатовый железняк) FeСО3 (содержит до 35% Железа).

Физические свойства: Чистое железо — серебристо-белый металл, быстро тускнеющий (ржавеющий) на влажном воздухе или в воде, содержащей кислород. Железо пластично, легко подвергается ковке и прокатке, температура плавления 1539°С. Обладает сильными магнитными свойствами (ферромагнетик), хорошей тепло- и электропроводностью.

Химические свойства: Железо — активный металл.

 1. На воздухе образуется защитная оксидная пленка, препятствующая ржавению металла. 3Fe + 2O2 = Fe2O3 • FeO (Феррит железа)  2. Во влажном воздухе железо окисляется и покрывается ржавчиной, которая частично состоит из гидратированного оксида железа (III). 4Fe + 3О2 + 6Н2О = 4Fe(ОН)3  3. Взаимодействует с хлором, углеродом и другими неметаллами при нагревании: 2Fe + 3Cl2 = 2FeCl3  4.Железо вытесняет из растворов солей металлы, находящиеся в электрохимическом ряду напряжений правее железа: Fe + CuSO4 = FeSO4 + Cu   5. Растворяется в разбавленных серной и соляной кислотах c выделением водорода:Fe + 2Cl = FeCl2 + H2

Основная масса железа используется не в чистом виде, а виде сплавов с углеродом (чугуна и стали) и другими элементами. Основная масса железа вырабатывается в доменных печах. Процесс, протекающий в доменной печи при получении сплавов железа, основан на восстановлении оксидов железа при нагревании.

Кобальт (лат. Cobaltum), Со, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе элемент представлен одним устойчивым изотопом 59Со; из полученных искусственно радиоактивных изотопов важнейший 60Со.

Распространение в природе. Содержание К. в литосфере 1,8·10-3% по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации К. накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10-2%. С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, К. образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов .

Физические и химические свойства. При обычной температуре и до 417°C кристаллическая решётка К. гексагональная плотноупакованная (с периодами а = 2,5017  , с = 4,614  ), выше этой температуры решётка К. кубическая гранецентрированная (а = 3,5370  ). Атомный радиус 1,25  , ионные радиусы Co2+0,78  ?и Co3+0,64  . Плотность 8,9 г/см3 (при 20°C): tnл 1493? Со, tкип 3100°C. Теплоёмкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°C); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·?С)при 0-100 °C. Удельное электросопротивление 5,68·10-8 ом·м, или 5,68·10-6 ом·см (при 0°C). К. ферромагнитен, причём сохраняет ферромагнетизм от низких температур до точки Кюри, Q= 1121 °C (см. Ферромагнетизм). Механические свойства К. зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м2 (или 50 кгс/мм2)для кованого и отожжённого К.; 242- 260 Мн/м2 для литого; 700 Мн/м2 для проволоки. Твёрдость по Бринеллю 2,8 Гн/м2 (или 280 кгс/мм2) для наклёпанного металла, 3,0 Гн/м2 для осажденного электролизом; 1,2-1,3 Гн/м2 для отожжённого.

К. применяется главным образом в виде сплавов; таковы кобальтовые сплавы, а также сплавы на основе др. металлов, где К. служит легирующим элементом. Сплавы К. используют в качестве жаропрочных и жаростойких материалов, при изготовлении постоянных магнитов, режущего инструмента и др. Порошкообразный К., а также Co3O4 служат катализаторами. Фторид CoF3 применяется как сильный фторирующий агент, тенарова синь и особенно силикат К. и калия (см. Смальта) - как краски в керамической и стекольной промышленности. Соли К. применяют в сельском хозяйстве как микроудобрения, а также для подкормки животных.

49.

Никель (лат.Niссolum, обозначается символом Ni) — химический элемент с атомным номером 28 и атомной массой 58,69. Является элементом побочной подгруппы восьмой группы периодической системы Д. И. Менделеева. Вместе с железом и кобальтом никель образует в четвертом периоде в этой группе триаду близких по свойствам переходных металлов. Вследствие схожести этих элементов и резкого отличия их от элементов двух других триад данной группы их обычно выделяют в семейство железа. Металлический никель — это пластичный ковкий переходный металл серебристо-белого цвета с желтоватым оттенком, отличается высокой твердостью, способностью к полировке, кроме того, никель притягивается магнитом. При обычных температурах на воздухе металл покрывается тонкой защитной пленкой оксида NiO. Характеризуется высокой коррозионной стойкостью вследствие своей малой химической активности.

Нахождение в природе

Самая распространенная в научных кругах и наиболее достоверная гипотеза строения Земли утверждает, что структура ядра нашей планеты подобна составу железных метеоритов, то есть — это железоникелевый сплав — более 90 % железа, 8,5 % никеля и всего 0,6 % кобальта. Таким образом, земное ядро заключает в себе практически весь двадцать восьмой элемент на планете — около 17•1019 тонн (общее количество Ni оценивается в 17,4•1019 тонн). Исходя из этой гипотезы, можно утверждать, что Земля примерно на 3 % состоит из никеля, а среди составляющих планету элементов никель занимает пятое место — после железа, кислорода, кремния и магния. Однако в тонкую поверхностную кору Земли проникли лишь немногие из его атомов — в среднем один из ста тысяч (содержание никеля в земной коре по сведениям разных источников составляет от 1•10–3 до 8•10–3 % по массе). Часть «прорвавшихся» атомов образовала вместе с медью и серой скопления сернистых минералов — сульфидные медно-никелевые руды. Другие атомы никеля до самой поверхности Земли двигались в окружении железа, магния и хрома, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния никель входит в виде изоморфной примеси. При дальнейшем движении спутники никеля окислились, и часть их ушла прочь в виде гидроокисей. Обогащенные никелем невзрачные землистые остатки ныне называются окисленными никелевыми рудами.

Содержание никеля в ультраосновных породах примерно в сотни раз выше, чем в кислых (1,2 кг/т и 8 г/т соответственно). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % Ni. Онизоморфнозамещаетжелезо и магний.

Медь - это химический элемент с порядковым номером 29, расположенный в I группе (побочной подгруппе) и 4-м периоде периодической системы элементов Д. И. Менделеева. Латинское название меди cuprum и соответствующий ему символ Сu происходят от названия острова Кипр. Именно с этого острова в Средиземном море вывозили медь древние римляне и греки.

Что представляет собой металлическая медь? Это тяжелый розово-красный металл, мягкий и ковкий, плавится при температуре 1084,5°С, очень хорошо проводит электрический ток и теплоту: электрическая проводимость меди в 1,7 раза выше, чем алюминия, в 6 раз выше, чем железа, и лишь немного уступает электрической проводимости серебра.

Электронная формула атома меди имеет следующий вид: 1s 22s 22p 63s 23p63d104s 1.

Нахождение в природе.

Соединения меди (I) часто встречаются в природных веществах, В минерале куприте содержится оксид Cu20, в медном блеске (халькозине)-сульфид Cu2S.

Среди других природных соединений меди отметим халькопирит (медный колчедан) CuFeS2, ковелин CuS, малахит СuСО3 Сu(ОН)2.

Исходным сырьем для промышленного получения меди главным образом сульфидные руды.

При этом считается рентабельным перерабатывать породы, содержащие более 1% металла. Процессполучениямедиизсульфидныхрудотносят к пирометаллургическим

50.

Благородными металлами издавна называют, золото, серебро и платину. К ним  относят еще пять более редких металлов – рутений, родий палладий, осмий, иридий (все это платиноиды – восьмая группа Периодической системы Менделеева).Отличаясь химической стойкостью, все эти металлы встречаются в природе почти исключительно в чистом  - самородном виде, и, в отличии от остальных металлов, почти не вступают в химические реакции и не образуют соединений с другими элементами, мало поддаются коррозии. Для них характерна высокая пластичность (можно прокатывать листы толщиной до 0,0001мм), благодаря которой золото    точно передает и сохраняет приданную ему форму. Платиноиды кроме того отличаются тугоплавкостью и высокой твердостью. Серебро обладает сверхвысокой электропроводностью и теплопроводностью, а платиноиды, наоборот, имеют сверхнизкую электропроводность и теплопроводность. Указанные свойства определяют области применения этих металлов

Валютныеметаллы

Сохраняет функции валютных металлов, главным образом, золото (см. Деньги). Серебро ранее активно использовалось в качестве денег, но затем, после чрезмерного насыщения рынка, оно фактически утратило эту функцию.

Применение в химическом машиностроении и лабораторной технике

Стойкие металлы идут на изготовление деталей, работающих в агрессивных средах — технологические аппараты, реакторы, электрические нагреватели, высокотемпературные печи, аппаратуру для производства оптического стекла и стекловолокна, термопары, эталоны сопротивления и др.

Используются в чистом виде, как биметалл и в сплавах (см. Платиновые сплавы). Химические реакторы и их части делают целиком из благородных металлов или только покрывают фольгой из благородных металлов. Покрытые платиной аппараты применяют при изготовлении чистых химических препаратов и в пищевой промышленности.

В электронике

В электронной технике из золота, легированного германием, индием, галлием, кремнием, оловом, селеном, делают контакты в полупроводниковых диодах и транзисторах. Золотом и серебром напыляют поверхность волноводов (скин-эффект).

51. Строение и классификация органических соединений.  Классификация органических соединений по строению «углеродного скелета»: ациклические (алканы, алкены, алкины, алкадиены), карбоциклические (циклоалканы и арены) и гетероциклические. Классификация органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры. Номенклатура тривиальная, рациональная и ИЮПАК. Рациональная номенклатура как предшественник номенклатуры ИЮПАК. Принципы образования названий органических соединений по ИЮПАК: замещения, родоначальной структуры, старшинства характеристических групп (алфавитный порядок).Структурная изомерия и ее виды: изомерия «углеродного скелета», изомерия положения (кратной связи и функциональной группы), межклассовая изомерия. Пространственная изомерия и ее виды: геометрическая и оптическая. Биологическое значение оптической изомерии. Отражение особенностей строения молекул геометрических и оптических изомеров в их названиях. Демонстрации. Образцы представителей различных классов органических соединений и шаростержневые или объемные модели их молекул. Таблицы «Название алканов и алкильных заместителей» и «Основные классы органических соединений». Шаростержневые модели органических соединений различных классов. Модели молекул изомеров разных видов изомерии.

52.УГЛЕВОДЫ .— класс органических соединений, имеющих характер Сахаров или близких к сахарам по строению и химическим свойствам. Наряду с белками и жирами углеводы играют важнейшую роль в обмене веществ и энергии в организме человека и животных. У. входят в состав растительных, животных и бактериальных организмов и составляют абсолютное большинство органических природных соединений. Все органические питательные вещества в конечном счете возникают из У., образуемых растениями в процессе (фотосинтеза из углекислого газа и воды. Примерный подсчет показывает, что ежегодно в процессе фотосинтеза на Земле образуется ок. 4-Ю11 тонн У. Являясь основным компонентом пищи человека и большинства животных, У. поставляют большую  часть   энергии,  необходимой   для их жизнедеятельности. В организме взрослого человека более половины энергии образуется за счет У.У. играют важную роль как основной строительный материал растений, скелета насекомых, ракообразных и других организмов. Они входят в состав клеточных стенок, основного вещества соединительной ткани и т. п. Кроме того, У. в составе сложных биополимеров, таких, напр., как гликопротеиды (белки, несущие на себе углеводный чдовесок»), могут являться носителями биологич. информации, определяя иммунологии, специфичность этих соединений. Так, принадлежность крови к той или иной группе диктуется исключительно структурой и последовательностью У., входящих в состав так наз. групповых веществ крови. Установлена решающая роль У., входящих в состав веществ на поверхности клеток, в различных взаимодействиях клеток друг с другом. Такие явления, как «узнавание» друг друга клетками одного типа, дифференциация и рост клеток, секреция биополимеров (белков, нуклеиновых к-т и т. д.) из клеток, обусловлены специфич. ролью У. поверхности клеток. Есть данные, что У. поверхности клеток играют важную роль в возникновении злокачественных опухолей и в процессах взаимодействия вирусов с клеткой. В организме человека и животных нек-рые сложные У., такие, напр., как гиалуро-новая к-та, выполняют специфич. функцию «смазочных» веществ и служат жидкой средой, в к-рой происходит движение клеток и к-рой смазываются трущиеся поверхности, напр, суставные поверхности. Нек-рые У. обладают специфич. биологич. активностью, напр, аскорбиновая к-та (витамин С), витамин Bis, гепарин, предотвращающий свертывание крови.

Состав органического топлива, его характеристики.Органическое топливо по происхождению подразделяют на природное (естественное) и искусственное, а по агрегатному состоянию при обычных условиях - на твердое, жидкое и газообразное. К примеру: жидким природным топливом является нефть, а искусственным - продукты ее переработки: мазут, дизельное топливо, бензин и т.д.Кроме того, топливо по назначению и способу использования подразделяется на энергетическое в технологическое. К энергетическим относятся те виды топлива, которые являются главным образом источником тепловой энергии. К технологическим относятся те виды топлива, которые являются не только источником тепловой энергии, но и используются как компонент технологического процесса. Состав топлива: Свойства топлива как горючего материала определяются его составом. Любое топливо состоит яз горючей и негорючей частей. Горючую часть образуют углерод (С), водород (Н) и сера горючая (летучая) SA. К негорючей части относятся кислород (0), азот (N); минеральные вещества (А) и влага (W). Перечисленные элементы С, Н, SA, 0, N образуют сложные химические соединения. Чтобы установись состав топлива, проводят технический и химический (элементарный) анализ топлива. Условное топливо, теплотворная способность топлива, (высшая и низшая).Теплотворную способность — количество тепла, выделяющееся при полном сгорании 1 кг твердого и жидкого или 1 нм3 газообразного топлива.  Всякое топливо содержит некоторое количество влаги, кроме того, водород, имеющийся в топливе, при сгорании образует воду. На испарение воды затрачивается часть тепла, что приводит к уменьшению теплотворной способности. Различают два вида теплотворной способности: высшую, с учетом тепла, расходуемого на испарение влаги, и низшую, за вычетом тепла, расходуемого на испарение влаги. При сжигании топлива в печах влага переходит в пар и вместе с дымом уходит в атмосферу. Поэтому при всех расчетах учитывают низшую теплотворную способность. Единица учёта органического топлива, применяемая для сопоставления эффективности различных видов топлива и суммарного учёта их. В качестве единицы условного топлива принимается 1 кг топлива с теплотой сгорания (См. Теплота сгорания) 7000 ккал/кг (29,3 Мдж/кг).

53. Понятие об органических полимерах. Особенности вн. строения и методы синтеза органических полимеров.

Органические полимеры - это разнообразные материалы, обычно получаемые из доступного и дешевого сырья; на их основе получают пластические массы (пластмассы) — сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств, а также синтетические волокна. К ним относятся: полимеризационные смолы, полиэтилен, полипропилен, полистирол, поливинилхлорид, капрон и т.д..

Осн. методы органического синтеза можно разбить на три группы:

  1.  конструктивные, ведущие к образованию новых связей , назначение которых - построение скелета будущей молекулы (например, реакция Гриньяра)
  2.  деструктивные, ведущие к разрыву определенных связей с целью удаления той или иной группировки из молекулы после того, как ее роль в синтезе сыграна (например, декарбоксилирование, периодатное окисление диолов);
  3.  методы трансформации функциональных групп. ( на заключительных стадиях синтеза для введения необходимых функциональных групп в целевое соединение)

Главная особенность строения полимерного соединения – это наличие цепных молекул, в которых последовательно связано большое число атомов. Для такого соединения характерны два типа связей – химические и межмолекулярные. В самой цепи атомы соединяются между собой прочными химическими связями длиной 0,1-0,15 нм, а между цепями на расстояниях 0,3-0,4 нм существуют значительно более слабые межмолекулярные связи.

54.Топливо и смазочные материалы. Стабильность топлива 

Топливо состоит из горючей части и негорючей. Горючая часть представляет собой совокупность органических соединений, в которую входят углеводород, водород, кислород, азот и сера. Негорючая часть (балласт) состоит из минеральных примесей, золы и влаги.

Нефть – основное сырье для получения топлива и смазочных масел.

Основное назначение смазочных материалов - уменьшение износа трущихся деталей и снижение затрат энергии на преодоление трения.

Основную массу смазочных масел получают путем перегонки

нефтяного мазута, однако, для современных машин требуются масла более высокого качества с заранее заданными эксплуатационными свойствами. Такие масла называются синтетическими или полусинтетическими, их получают путем синтезирования определенных групп углеводородов с введением ряда специализированных соединений.

55. Получение масел. Основная масса жидкого топлива и смазочного масла получается путем прямой перегонки нефти, или при перегонке химическим способом (крекинг-способ).

Прямая перегонка нефти представляет собой процесс разделения ее на отдельные фракции, отличающиеся между собой в первую очередь температурой кипения. Для этого нефть нагревают, а образующиеся пары отбирают и конденсируют по частям. В результате перегонки получают топливные дистилляты и остаток, называемый мазутом, который в дальнейшем может быть использован для химической переработки или получения смазочных масел.  Основную массу смазочных масел получают путем перегонки нефтяного мазута.

Присадками называют химические соединения, добавление которых в небольших количествах заметно улучшает эксплуатационные свойства нефтепродуктов. Промышленное производство присадок к топливам и маслам организовано на многих НПЗ.
Присадки к топливам. Присадки к тоиливам по их назначению классифицируют на следующие типы:

1) улучшающие процесс сгорания в двигателях;
2) сохраняющие свойства топлив   при   транспортировании   и   хранении;
3) препятствующие образованию кристаллов .ш.да в топливе;
4) повышающие смазочную способность топлив;
5) антистатические;
6) препятствующие   образованию отложений в топливной аппаратуре.

56. ТВЕРДЫЕ СМАЗОЧНЫЕ ВЕЩЕСТВА – твердые вещества, которые вводятся между скользящими поверхностями для уменьшения трения и износа и предотвращения заедания, холодной сварки и коррозионного истирания.

Характерная особенность твердых смазочных материалов состоит в том, что эти материалы находятся в агрегатном состоянии, исключающем, при соблюдении заданных условий эксплуатации, их вытекание из узла трения. Благодаря этому возможно смазывание негерметизированных узлов трения, отсутствует необходимость в непрерывном подводе смазочного материала, а следовательно, и в наличии предназначенных для этого систем и агрегатов.

Твердые смазочные материалы — кристаллические вещества, обладающие смазочными свойствами: графит, дисульфиды молибдена и вольфрама, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, фталоцианин, селениды и теллуриды вольфрама, титана и пр.

Смазочные масла и гидравлические жидкости также являются токсичными веществами.

При нарушении правил обращения с маслами они могут вызывать экзему, фолликулярные поражения кожи, дерматиты, пигментацию кожи и даже более тяжелые заболевания.

Этиленгликоль и его водные растворы — антифризы так же весьма токсичны. При попадании внутрь организма они поражают центральную нервную систему и почки.




1. востока на югозапад около 55 километров а средняя ширина около 2 километров
2. Для утверждения темы и плана курсовой работы студенту необходимо связаться с руководителем
3. Автоматизация учета материалов на складе с применением баз данных
4. реферату- Пригода бізнесу і його економічна основаРозділ- Підприємництво Пригода бізнесу і його економічна
5. Тема- ВЫБРАННЫЕ РАЗДЕЛЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В лабораторную работу 56 включены задания
6. социально ориентированной
7. статья- Античные Олимпийские игры Олимпийские игры Древней Греции представляли собой религиозный и спорти
8. Озвучивание Ваших програм
9. 50х роках У перші післявоєнні роки перед США стояли проблеми переведення економіки на мирні рейки та відвер
10. облегчения окклюзии обратной связи общего ldquo;конечногоrdquo; пути доминанты
11. РОССИЙСКАЯ АКАДЕМИЯ ПРЕДПРИНИМАТЕЛЬСТВА ЭКОНОМИЧЕСКАЯ ТЕОРИЯ МИКРОЭКОНОМИКА Примерный перечень
12.  Географическое положение
13. Введение6
14. Невменяемость. Критерии невменяемости. Ограниченная вменяемость
15. Нестор Махно про державу, народ і суспільство1
16. тема взглядов на мир убеждений представлений человека ~ это
17. Торговля людьми
18. Лабораторная работа 1 Классификация оценочных критериев на основе метода Кано Целью данного задания.
19. Функционирование мостов и коммутаторов на основе протокола канального уровня STP стека протоколов TCP-IP
20. Атомные многоцелевые подводные лодки