Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Лабораторный практикум по курсу «Сопротивление материалов» для студентов всех специальностей и форм обучения /Сост. Розов Ю.Г., Рачинский В.В., Сусорова Е.А.
УТВЕРЖДЕНО на заседании кафедры
«Основы конструирования»
протокол №4 от 27.12.06г.
В сопротивлении материалов тесно сочетаются теория и эксперимент. Все отравные положения и гипотезы сопротивления материалов основаны на опытных данных. Для построения теории расчетов на прочность, жесткость и устойчивость нужно знать механические свойства материалов. Необходимо также экспериментально проверять расчеты, основные положения, гипотезы, выводы и формулы сопротивления материалов. Настоящие методические указания призваны научить студентов решать вышеперечисленные задачи.
Работа состоит из двух частей: первая содержит лабораторные работы по испытанию различных материалов и определению их физико-механических характеристик; вторая - лабораторные работы по испытанию простейших элементов конструкций, определению напряжений и деформаций, а также по проверке основных теоретических выводов курса сопротивления материалов.
Каждая лабораторная работа содержит краткие теоретические сведения, методику и последовательность проведения опытов, а также контрольные вопросы и задания для самопроверки.
Все лабораторные работы разработаны применительно к оборудованию, которым располагает лабораторная база кафедры основ конструирования.
Указания содержат наиболее полный перечень лабораторных работ, необходимый для успешного усвоения курса сопротивления материалов. В зависимости от количества часов, отводимых на лабораторные работы по учебному плану, для каждой специальности можно проводить то или иное количество работ, последовательность которых должна быть связана с излагаемым материалом.
Проведение испытаний в лаборатории дает возможность лучше усвоить основные теоретические положения курса сопротивления материалов. Навыки, полученные в ходе проведения лабораторных работ, будут полезны специалистам в различных областях техники, так как испытание материалов является неотъемлемой частью производственных процессов.
Лабораторная работа № 1.
1.1 ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК СТАЛИ ПРИ РАСТЯЖЕНИИ
Цель работы: изучить сопротивление малоуглеродистой стали растяжению до разрушения; получить диаграмму растяжения; определить основные характеристики прочности и пластичности материала образца; определить понятие "модуль упругости, Е" как физическую величину; определить марку стали.
Оборудование и инструменты: испытательная машина Р-5; образец (рис.1.1); штангенциркуль.
Рис.1.1
Теоретические предпосылки. Определение прочностных и пластических характеристик материала при растяжении позволяет судить о прочности материала при статических нагрузках, выбирать материал для проектируемой конструкции и расчитывать детали машин, элементы конструкций и сооружений на прочность.
Основные параметры определяют по диаграмме растяжения Р - Δl (рис.1.2., в отчете, необходимо проставить характерные точки и необходимые величины), получаемой обычно с помощью записывающего устройства. На этапе нагружения до некоторой силы Рпц - предел пропорциональности - точка А, наблюдается прямо пропорциональная зависимость между удлинением Δl образца и вызвавшей его силой Р (закон Гука). После разгрузки первоначальная длина образца восстанавливается, т.е. деформация упругая. При дальнейшем нагружении начинается некоторое отклонение от прямой, а после разгрузки деформация исчезает не полностью, т.е. появляется остаточная деформация. Сила Ру (точка В) вызывает в образце остаточную деформацию 0.001...0,005 %. По достижению нагрузкой некоторого значения Рт предела текучести - точка С, деформация начинает расти быстрее нагрузки, а для некоторых материалов (мягкая сталь) образец удлиняется (течет) без увеличения нагрузки, а иногда при уменьшении ее. На диаграмме появляется так называемая "площадка текучести". После разгрузки имеется значительная остаточная деформация. У многих материалов явно выраженной "площадки текучести" на диаграмме нет, поэтому применяют термин «предел текучести условный σ0,2», представляющий собой напряжение, при котором относительное удлинение достигает 0,2% измеряемой длины образца. Дальнейшая деформация образца сопровождается увеличением нагрузки. Объясняется это упрочнением материала. Если с образца полностью снять нагрузку РF (на диаграмме - точка F), то упругая деформация Δlу исчезнет, а Δlост останется, то есть перо самописца прочертит прямую линию FR, а с увеличением нагрузки переместится дальше по участку FD.
Свойства материала изменяются: пределы пропорциональности и текучести увеличиваются, площадка текучести исчезает, пластические свойства ухудшаются, а твердость повышается. Дальнейшее увеличение нагрузки приводит к появлению шейки, нагрузка на образец достигает своего максимального значения Рв (точка D). Как только на образце начала образовываться шейка, нагрузка уменьшается (участок DК) и дальнейшее деформирование образца происходит за счет удлинения в зоне шейки. К моменту разрыва рабочая часть образца 1о удлинится на Δlобщ. После разрыва упругая часть общей деформации исчезнет, останется деформация Δlост. Отношение приращения расчетной длины образца к его первоначальной длине называется относительным остаточным удлинением:
В месте образования шейки сечение образцов резко уменьшится. Отношение уменьшения площади поперечного сечения в месте разрыва ΔА = Аo - Аш к начальной площади поперечного сечения образца:
называется относительным остаточным сужением. По величинам ψ и δ оценивают пластические свойства материала при испытании на растяжение.
Для многих материалов наблюдается пропорциональная зависимость между деформацией и напряжением в определенных пределах нагружения, выражаемая законом Гука, [МПа]:
,
где σ - нормальное напряжение; ε - относительная предельная деформация; Е - коэффициент пропорциональности, или модуль нормальной упругости, [МПа].
Тогда или .
Данные зависимости справедливы только в зоне упругих деформаций материала, т.е. при напряжениях, не превышающих предел пропорциональности σпц.
Если воспользоваться диаграммой напряжений при растяжении малоуглеродистой стали (см. рис 1.3), то видно, что модуль нормальной упругости стали, равный отношению нормального растягивающею напряжения к относительной продольной деформации при упругих деформациях (ε ≤ εпц), можно определить из треугольника ОА1А2, [МПа]:
Е===tgα1,
.
где α1 - угол наклона начального (прямолинейного) участка диаграммы напряжений к оси абсцисс.
По аналогии очевидна справедливость выражения, [МПа]:
Е=(l0/А0)tgα104,
где lo - длина рабочей части образца, [м]; - площадь поперечного сечения образца до испытания, [м2]; α - угол наклона начального (прямолинейного) участка диаграммы растяжения к оси абсцисс.
Формула справедлива в случае построения машинной диаграммы в координатах Р Δl, [кг] [мм].
Рис. 1.2
Организация работы и техника безопасности.
Эксперимент на машине Р-5 проводится преподавателем, ведущим лабораторные занятия. Студенты самостоятельно проводят все измерения и обработку экспериментальных данных. При проведении эксперимента необходимо соблюдать технику безопасности, предусмотренную «Общей инструкцией по технике безопасности для лаборатории сопротивления материалов».
Порядок проведения работы.
Построение диаграммы растяжения малоуглеродистой стали
1. Измерить диаметр do и длину 1о рабочей части образца в мм (рис.1.1а).
2. Произвести наблюдение за испытанием образца до разрыва и записать значение нагрузки, которую выдерживает образец, Рв, кг.
3. Обработать записанную машиной диаграмму растяжения: найти начало координат диаграммы. Для этого необходимо ось абсцисс (ось удлинения Δl) совместить с нулевой линией диаграммы (рис. 1.2) Затем продолжить прямолинейный участок (участок пропорциональной зависимости между удлинением и нагрузкой) диаграммы до пересечения с осью абсцисс (точка О). Из точки О провести ось ординат (ось нагрузки Р).
4. Отметить на диаграмме ее характерные точки: А,В,С,D,K.
5. Спроектировать эти точки на вертикальную и горизонтальную оси и измерить отрезки в мм. На оси ординат: OA1, OB1, OC1, OD1, OK1; на оси абсцисс: OA2, OB2, OC2, OD2, OK2. Провести прямую КК3, параллельную участку АО, и измерить отрезок ОК3.
6. Измерить штангенциркулем конечную длину рабочей части разрушенного образца lк в мм. Для этого сложить обе половинки образца и измерить расстояние между метками (рис. 1.1,б)
7. Определить абсолютное остаточное удлинение образца, мм: Δlост = lк - lо
8. Определить масштабы диаграммы по осям нагрузок и удлинения, кг/мм:
μp= Pmax /OD1 , μl =Δlост /OK3.
9. Определить значения нагрузок и деформаций, соответствующих характерным точкам диаграммы:
Рпц = ОА1μp ; Ру = ОВ1 μp ; Рт = ОС1μp ; Рв = OD1μp ; Рк = ОК1μp ;
Δlпц = ОА2 μl ; Δlу = ОВ2 μl; Δlт = ОС2 μl ; Δlв = OD2 μl ; Δlк = OK2 μl .
10. Измерить диаметр шейки dш, мм, в месте разрыва образца.
11. Вычислить механические характеристики пластичности и прочности материала испытываемого образца:
- относительное остаточное удлинение: ;
- относительное сужение площади поперечного сечения: , где площадь поперечного сечения образца до испытания: ;
- площадь поперечного сечения образца после разрыва в месте образования шейки: ;
- предел пропорциональности, [МПа] : ;
- предел упругости, [МПа] : σу = Ру/ Ао;
- предел текучести, [МПа]:
- предел прочности (временное сопротивление разрыву), [МПа]: ;
- напряжение, соответствующее моменту разрыва, [МПа]: ;
12. Определить относительные деформации, соответствующие характерным точкам диаграммы:
; у= Δlу/l0 ,
; ,
13. Построить диаграмму растяжения в координатах σ-ε в произвольном масштабе. Диаграмма σ-ε (рис1.3) имеет тот же вид, что и диаграмма растяжения Р - Δl, но характеризует уже не свойства образца, а свойства материала.
14. Пользуясь приложением, сделать заключение - определить марку стали.
Рис. 1.3
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3. Эскизы образца до и после испытания.
4. Расчет механических характеристик материала.
5. Диаграмму напряжений σ-ε с указанием положения четырех характерных точек, соответствующих значениям напряжений σпц, σу, σт, σв, σк и их значений в МПа.
Контрольные вопросы.
1. Какова цель работы?
2. Какие параметры характеризуют прочность материала?
3. Какие образцы применяют при испытании?
4. Какие параметры характеризуют пластичность материала?
5. Назовите характерные точки на диаграмме.
6. Что характеризует удельная работа деформации образца?
7. Какие деформации испытывает образец в процессе нагружения до разрушения?
8. В чем заключается разница между пластичным и хрупким материалом по характеру деформации?
Марка стали |
σв |
σт |
Относительное удлинение σ% при 1о=10a |
Примечание |
Не мен ее |
МПа |
При использовании Сталей по ГОСТ 360-60 Следует учесть Примерное соответствие Марок : Ст3- сталь20 Ст.4- сталь25 Ст.5- сталь35 Ст.6- сталь45 |
||
10 |
340 |
210 |
31 |
|
20 |
420 |
250 |
25 |
|
25 |
460 |
280 |
23 |
|
30 |
500 |
300 |
21 |
|
35 |
540 |
320 |
20 |
|
40 |
580 |
340 |
19 |
|
45 |
610 |
360 |
16 |
|
50 |
640 |
360 |
14 |
|
55 |
660 |
390 |
13 |
|
60 |
690 |
410 |
12 |
1.2.ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ МАЛОУГЛЕРОДИСТОЙ СТАЛИ ПРИ РАСТЯЖЕНИИ
Методика проведения работы.
В данной работе используются результаты лабораторной работы части 1.1., а именно, построенные диаграммы растяжения и напряжений малоуглеродистой стали.
Порядок проведения работы.
.
Содержание отчета.
В Отчет о проделанной работе включить:
1. Название и цель работы;
2. Краткие теоретические сведения (по желанию);
3. Результаты измерений и расчетов, выполненных согласно требованиям п. "Порядок выполнения работы";
4. Вывод по работе.
Контрольные вопросы.
1. Какова цель работы?
2. По какой формуле вычисляется модуль нормальной упругости?
3. Каким законом описывается пропорциональная зависимость между деформацией и напряжением?
4. В каких пределах нагружения при растяжении малоуглеродистой стали прямопропорциональная зависимость между деформацией и напряжением?
Лабораторная работа № 2.
2.1. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДЕРЕВА И ЧУГУНА ПРИ СЖАТИИ
Цель работы: изучить сопротивление чугуна сжатию до разрушения, определить предел прочности чугуна; изучить сопротивление дерева сжатию вдоль и поперек волокон, определить предел прочности и коэффициент анизотропии.
Оборудование и инструменты: испытательная машина УМ - 5, гидравлический пресс РИИТ-ЗО, образцы чугуна, дерева, штангенциркуль.
Теоретические предпосылки
1. Сжатие чугунного образца. Испытание на сжатие основное, иногда единственно возможное, при определении механических характеристик хрупких материалов: чугуна, фарфора, камня, бетона и др. Эти материалы разрушаются при сжатии, выдерживая при этом значительно большие напряжения, чем при растяжении, Это свойство широко применяется при конструировании из этих материалов деталей, испытывающих сжимающее напряжение.
При действии сжимающей нагрузки на чугунный образец наблюдается нелинейная зависимость между силой и деформацией. Но так как диаграмма Р-Δh представляет собой линию малой кривизны (рис.2.1, а), то в практических расчетах считают, что материал подчиняется закону Гука. Отношение максимальной нагрузки к первоначальной площади поперечного сечения образца называют пределом прочности чугуна при сжатии:
σВ = РВ/ А
При сжатии чугунного образца происходит ряд явлений, существенно отличающих испытание на сжатие от испытания на растяжение. При уменьшении высоты сжимаемого образца и перемещении частиц в радиальном направлении между торцами образца и плитами машины возникают силы трения, направленные в сторону, противоположную направлению поперечной деформации, то есть радиально от периферии к центру. Эти силы трения нарушают одноосный характер деформации образца. Так как действие касательных напряжений, вызнанных силами трения на контактных плоскостях, проявляется по высоте сжимаемого образца неравномерно (максимум на контактной плоскости, нуль на половине высоты сжимаемого цилиндра), напряженное состояние материала при сжатии будет неравномерным. Внешне это проявляется в том, что цилиндрическая форма образца переходит в бочкообразную (рис.2.1, б). Опыты показывают, что разрушение происходит путем взаимного скольжения двух частей образца I и II по плоскостям, наклоненным к оси образца примерно на угол α= 40о…50о, т.е. под действием максимальных касательных напряжений.
а) б)
Рис.2.1.
2. Сжатие дерева вдоль волокон. Диаграмма Р - Δ1 сжатия образца вдоль волокон (рис.2.2, а) внешне похожа на диаграмму сжатия чугуна. Между усилием Р и деформацией Δ1 отмечается нелинейная зависимость. При достижении предельной нагрузки Рвв.в образец начинает разрушаться и нагрузка падает. Обычно разрушение происходит с образованием поперечных складок, смятием торцов и образованием продольных трещин. Отношение максимальной нагрузки Рвв.в к первоначальной площади поперечного сечения образна называют пределом прочности дерева на сжатие вдоль волокон: σвв.в = Рвв.в./А0.
3. Сжатие дерева поперек волокон. При сжатии образца поперек волокон диаграмма Р - Δ1 имеет совершенно другой характер (рис. 2.2, б). Сначала линия диаграммы идет по наклонной прямой до нагрузки Рпц, соответствующей пределу пропорциональности. Затем вычерчивается слабо изогнутая кривая, почти параллельная оси абсцисс. Образец быстро деформируется без заметного увеличения нагрузки, но разрушения не происходит, так как древесина начинает спрессовываться. Уловить момент потери несущей способности невозможно. Поэтому за разрушающую нагрузку Рвп.в условно принимают то значение нагрузки, при которой остаточная деформация равна одной трети первоначальной высоты кубика. Предел прочности при сжатии дерева поперек волокон:
а) б)
Рис. 2.2
4. Коэффициент анизотропии, характеризующий различие механических свойств дерева вдоль и поперек волокон, представляет собой отношение предела прочности при сжатии вдоль волокон к пределу прочности при сжатии поперек волокон:
Порядок проведения работы.
1. Измерить размеры образцов: диаметр d, [мм], высоту h, [мм] чугунного образца. Поперечные размеры a и b, [мм], опорной поверхности деревянных образцов. Зарисовать эскизы образцов до испытания.
2. Произвести наблюдение за испытанием образцов до разрушения и зафиксировать разрушающую нагрузку Рв, [кг]. Если испытание образцов производится на гидравлическом прессе, то в момент разрушения фиксируется наибольшее давление по манометру рmax, [кг/см2]. Разрушающую нагрузку определяют по формуле:
,
где - площадь поршня гидроцилиндра гидравлического пресса. Для пресса РИИТ-30 диаметр поршня , (обратите внимание на размерности величин).
3. Вычислить площадь поперечного сечения образцов, [см2]:
чугунного ;
деревянных .
4. Определить предел прочности при сжатии, [МПа]:
чугуна ;
дерева вдоль и поперек волокон .
5. Определить коэффициент анизотропии дерева: .
6. Результаты расчетов и измерений записать в таблицу.
7. Зарисовать эскизы образцов после испытания, отметив характерные особенности их разрушения (в графе таблицы «Характер разрушения»).
Материал образца |
a, d |
b, h |
A0,см2 |
РB, кг |
σв, МПа |
Характер разрушения |
Чугун |
||||||
Дерево(вдоль волокон) |
||||||
Дерево (поперек волокон) |
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3. Эскизы образцов до испытания и после разрушения.
4. Коэффициент анизотропии.
5. Таблицу опытных данных.
6. Выводы по работе.
Контрольные вопросы.
1. Какова цель работы?
2. Какие механические характеристики можно определить при испытании чугуна на сжатие?
3. Чем объясняется бочкообразная форма образца чугуна? Почему разрушение чугунного образца происходит по наклонным площадкам?
4 Чему равен предел прочности чугуна при сжатии?
5. Что такое коэффициент анизотропии?
6. Как разрушаются деревянные образцы при сжатии вдоль и поперек волокон?
7. Чем различаются диаграммы сжатия дерева вдоль и поперек волокон?
8. В каком направлении дерево прочнее при сжатии?
2.2. ИСПЫТАНИЕ НА СРЕЗ СТАЛЬНОГО ОБРАЗЦА
Цель работы - ознакомиться с методом испытания на срез и определить предел прочности материала.
Оборудование, приспособления и инструменты: универсальная машина УМ-5; гидравлический пресс РИИТ-30; приспособление для испытания на срез; стальной образец; штангенциркуль.
Теоретические предпосылки. При испытании образцов на срез предполагают, что в поперечном сечении возникают только касательные напряжения, которые равномерно распределяются по всей площади среза. Таким образом, сопротивление срезу оценивается условной характеристикой
,
т.е. отношением перерезывающей силы к площади среза. Условность этой характеристики в том, что деформация среза не является единственной. Здесь одновременно имеют место деформации изгиба и смятия, что подтверждается формой образца после разрушения.
Предел прочности при срезе имеет практическую ценность только в том случае, если нагружение образца будет близко к условиям работы детали на срез в реальных конструкциях.
Постановка опыта. Испытание на срез проводят по схеме двойного среза (рис. 2.3, а), так как на практике часто встречаются детали (болты, заклепки, штифты), работающие на срез одновременно по двум плоскостям. Испытания проводятся с помощью специального приспособления (рис. 5.1, б).
В верхнюю 1 и нижнюю 2 части приспособления запрессованы стальные закаленные втулки 3, чтобы избежать смятия его элементов. Для испытания применяют образцы стали цилиндрической формы диаметром от 6 до 10 мм.
Порядок проведения работы.
1. Измерить диаметр образца.
2. Образец вставить в приспособление.
3. Приспособление установить на опоры машины УМ-5 (или гидропресса).
4. Нагрузить образец до разрушения, зафиксировать максимальную нагрузку Рmax. Если испытание производиться на гидравлическом прессе, то для определения значения РВ используют методику, изложенную в лабораторной работе части 2.1.
а) б)
Рис. 2.3
5. Вычислить площадь среза:
6. Вычислить предел прочности стали при срезе:
7. Зарисовать части разрушенного образца.
Содержание отчета
1. Наименование работы
2. Цель работы.
3. Краткие теоретические сведения (по желанию).
4. Эскиз образца до и после разрушения.
5. Расчет предела прочности стали при срезе.
6. Выводы.
Контрольные вопросы.
1. Укажите цель работы.
2. Какую характеристику материала определяют при испытаниях на срез?
3. Какие деформации сопровождают разрушение образца при срезе?
4. Почему испытания проводят по схеме двойного среза?
5. Укажите на образце площадки среза и смятия.
Лабораторная работа № 3.
3.1. ИСПЫТАНИЕ НА КРУЧЕНИЕ СТАЛЬНОГО И ЧУГУННОГО ОБРАЗЦОВ
Цель работы: изучить процесс разрушения стали и чугуна при кручении и определить их механические характеристики.
Оборудование и инструменты: испытательная машина КМ-50; образец стали и чугуна - 2 шт; штангенциркуль.
Теоретические предпосылки. Кручение осуществляется двумя равными и противоположно направленными крутящими моментами, которые прикладываются к концам образца в плоскостях, нормальных к его продольной оси.
Максимальные касательные напряжения при кручении действуют в плоскостях, перпендикулярных к оси образца, нормальные - под углом 45º. К ней. После разрушения от среза стали и отрыва чугуна получаются характерные формы излома (рис.3.1), по которым можно однозначно определить характер разрушения. Это объясняется тем, что чугун слабо сопротивляется растяжению, и разрушение материала происходит по винтовой поверхности, наклоненной под углом 45о к образующей (рис. 3.1, б). Разрушение стали при кручении происходит от среза по поперечному сечению (рис.3.1, а).
а) б)
Рис 3.1
В области упругой деформации касательные напряжения для цилиндрического образца определяют по формуле:
.
Формула дает хорошие результаты по упругой деформации и не пригодна при пластическом течении материала. Предел прочности после больших пластических деформаций определяется по формуле, учитывающей поправку на пластическую деформацию: .
Деформация при кручении определяется углом закручивания, который в пределах упругих деформаций связан с нагрузкой, т.е. с крутящим моментом, линейной зависимостью ,
где Мкр - крутящий момент; l- длина вала; G - модуль упругости материала при сдвиге (модуль упругости второго рода); JP - полярный момент инерции площади поперечного сечения вала, d - диаметр вала,
.
Указанная пропорциональность между нагрузкой и деформацией наблюдается в начальной стадии кручения образца, затем, так же как при растяжении или сжатии, пропорциональность нарушается и наступает быстрое увеличение утла закручивания при незначительном увеличении крутящего момента.
На рис. 3.2.а показана диаграмма кручения для малоуглеродистой стали, а на рис. 3.2.б - диаграмма для чугунного образца приблизительно тех же размеров (чугун не подчиняется закону пропорциональности).
Модуль G связан с модулем упругости первого рода Е следующим соотношением G = E/2(1+μ) , где μ - коэффициент Пуассона.
а) б)
Рис.3.2
Порядок проведения работы.
1. Сделать эскиз образца с указанием размеров его рабочей части.
2. Вычислить полярный момент сопротивления поперечного сечения образца:
3. Произвести наблюдения за процессом испытания стального и чугунного образцов, записать крутящие моменты и утлы закручивания, соответствующие моменту разрушения образцов.
4. Вычислить пределы прочности при кручении:
для стали ,
для чугуна .
5. Сделать зарисовку частей испытанных образцов с указанием характерных особенностей разрушения.
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки ( по желанию).
3. Эскиз образца до испытания и зарисовки частей испытанных образцов.
4. Таблицу опытных данных, расчеты момента сопротивления и пределов прочности.
5. Пояснение характера разрушения стали и чугуна.
6. Выводы по работе.
Материал образца |
d, мм |
Wp3, м3 |
МB , Кг·м |
φB , град |
τв , МПа |
Характер разрушения |
Сталь |
||||||
Чугун |
Контрольные вопросы:
1. Какие напряжения возникают в сечениях, расположенных перпендикулярно к оси образца и наклонных под углом 45º?
2. Как по характеру разрушения образца определить, какой вид напряжений наиболее опасен для данного материала?
3. Как определяется и от чего зависит деформация при кручении?
4. Что характеризует произведение GJP ?
Цель работы: Экспериментально определить жесткость пружины; сравнить результаты расчета пружины на прочность по точным и приближенным формулам.
Оборудование и инструменты: Испытательная машина МИП-100-2; цилиндрическая винтовая пружина; штангенциркуль; индикатор часового типа 0-10 мм.
Теоретические предпосылки:
Расчет цилиндрических пружин (рис.7.1), сжатых или растянутых силой Р, проводится по формулам
,
, где ,
где τmax - касательное напряжения, D - диаметр пружины, d - диаметр прутка (см. рис. 3.3)
Осадка пружины (λ) под действием силы Р определяется по формуле
.
Иначе λ = P/C, где ,
где G модуль сдвига материала пружины, [МПа], n число витков пружины.
Величина С, равная нагрузке, вызывающей осадку λ=1см. называется жесткостью пружины. Приведенные формулы справедливы для цилиндрических пружин с малым шагом витков, - если угол навивки α =10о - 15º. (рис.7.1) Очевидно
,
где S - шаг пружины (расстояние между центрами соседних витков пружины).
Рис. 3.3
Порядок проведения работы.
1. С помощью штангенциркуля найти размеры пружины D, d, L и S (рис.3.3). Определить число витков как n=L/S, найти угол α.
2. Установить пружину между тарелками машины МИП-100-2, нагрузить вручную усилием Р=5 кг. Установить индикатор, проследив, чтобы показание стрелки находилось в пределах 0.5- 1.2 мм, снять «нулевой» отсчет.
3. Увеличивая нагрузку равными ступенями Р=5 кг. До 5×6=30кг, измерять осадку λ=A1 A0. Данные измерений заносить в таблицу.
i |
Pi |
A1 |
λ=A1 A0 |
Δλ1 |
0 |
5 |
λ1 = λ0 |
||
1 |
10 |
λ2 = λ1 |
||
2 |
15 |
λ3 = λ2 |
||
3 |
20 |
|||
4 |
25 |
|||
5 |
30 |
|||
0 |
Σ Δλi |
Δλy=1/3 ΣΔλy |
4. Построить график зависимости λ = λ (Р) (так называемую характеристику пружины), выбрав масштаб таким образом, чтобы угол наклона прямой к оси абсцисс был близок к 45º.
5. По данным опыта найти жесткость пружины С как Cоп=ΔP/Δ λср, [Н/м].
6. Определить модуль упругости материала G, [МПа]: , cравнить полученное значение G с табличным.
7. Определить погрешность, %.
8. Определить максимальные касательные напряжения в сечениях пружины, приняв Р= 500 Н.
Содержание отчета.
1. Название и цель работы.
2. Перечень приборов к инструментов.
3. Эскиз пружины с размерами α , n.
4. Таблица.
5. График λ = λ (Р).
6. Вычисление Con.
7. Вычисление Gon и сравнение с G табличным.
8 Подсчет τ max.
Контрольные вопросы.
1 Что называют шагом пружины?
2. Как измерить шаг пружины?
3. Как измерить диаметр пружины?
4. Что называется жесткостью пружины?
5. Как производится расчет пружины на прочность''
6. Как измеряется осадка пружины?
7. Что называется характеристикой пружины?
3.3. КОСОЙ ИЗГИБ
Цель работы - определить величину и направление прогиба свободного конца консоли при косом изгибе; сравнить опытное значение прогиба с теоретическим.
Инструменты и приспособления: Стальная консоль прямоугольного сечения, штангенциркуль, металлическая линейка длиной 1000 мм. (500 мм), два индикатора часового типа 0-10 мм, набор гирь 0.5 кг и 1 кг.
Теоретические предпосылки. Если плоскость действия внешних сил (υOz) при изгибе призматической балки (рис. 3.4) не лежит не в одной из ее главных плоскостей инерции (уOz, хOz), то направление прогибов , вообще говоря, не совпадает с плоскостью действия сил (υOz). Поэтому этот вид деформации называется косым изгибом. Для определения прогибов балки и напряжений в ее поперечных сечениях в этом случае пользуются принципом независимости действия сил.
Очевидно, что в случае изгиба консольной балки прямоугольного поперечного сечения силой, приложенной к свободному концу (рис. 3.4) наибольшее нормальное напряжение в сечении Z = 0, прогибы fx и fy полный прогиб f и его направление могут быть определены по формулам:
max σ = + = +
fy ==; fx ==; f=
tgα= = · tgφ=· tgφ
Рис. 3.4.
Установка для проведения опыта представляет собой закрепленную на массивной тумбе стальную консольную балку 1 прямоугольного поперечного сечения, снабженную цилиндрическим утолщением 2 в месте заделки (рис. 3.4.). Это позволяет поворачивать плоскость симметрии балки yOz на любой угол φ по отношению к вертикали (к линии действия силы Р). Отсчет угла φ производится по шкале 3. Индикаторы 4, 5 закрепленные на штативах, служат для измерения вертикальной fυ и горизонтальной fw составляющих перемещения f свободного конца балки. Нагружение балки производят при помощи подвески 6 и набора гирь 7.
Порядок проведения работы.
1. Измерить и записать необходимые размеры l, b, h, φ.
2. Вычислить геометрические характеристики сечения балки: Iy, Iх, Wy, Wx.
3. Загрузить подвеску начальным грузом, равным 1 кг. (Предварительная загрузка устраняет зазоры в креплениях и обеспечивает более стабильную работу измерительных приборов).
4. Выставить показания индикаторов на нули.
5. Постепенно добавляя гири, ступенчато увеличивать нагрузку с шагом ∆Р=1кг(10Н).
6. После каждого увеличения нагрузки снимать показания индикаторов и результаты заносить в таблицу.
7. Определить величины вертикальных fверт. и горизонтальных fгориз. прогибов:
fiверт.=Ui1 Ui-11 ; fiгориз.=Ui2 Ui-12
где Ui1 ,(Ui2) - показания индикатора 1 (2) после і-го опыта.
8. Определить cредние величины прогибов fверт и fгориз..
9. Найти полный прогиб:
опытную величину fоп=
теоретическую величину fт=
9. Определить погрешность: ∆=·100%
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3. Эскиз установки с необходимыми размерами.
4. Вычисление геометрических характеристик сечения балки: Jx, Jy, Wx, Wy.
5. Вычисление fy, fx
6. Таблица измерений.
7. Сравнение fоп. и fт (∆%).
Контрольные вопросы.
1. Какой вид деформации называется косым изгибом?
2. При каких условиях применим принцип независимости действия сил?
3. Во сколько раз перемещение fх. больше fу, если
а) отношение размеров сечения h/b = 3, а угол φ = 45о(рис.3.4)?
б) отношение h/b = 10, угол φ = 6о.
4. При каких условиях направление прогиба балки f всегда лежит в плоскости действия силы Р?
5. Почему рекомендуется первый отсчет по индикаторам производить при небольшой нагрузке, а не при нагруженной балке?
6. В каких пределах изменяется полный прогиб f при изменении угла φ от 0 до 90 гр?
7. Укажите положение нейтральной линии на чертеже.
8. Уравнение нейтральной линии.
9. Условие прочности при косом изгибе.
Лабораторная работа № 4
4.1. ОПРЕДЕЛЕНИЕ ПРОГИБОВ И УГЛОВ ПОВОРОТА СЕЧЕНИЙ БАЛКИ НА ШАРНИРНЫХ ОПОРАХ
Цель работы: Проверить формулы для определения прогибов и углов поворота сечений балки по методу Верещагина.
Оборудование и инструменты: Установка СМ-5, штатив, индикатор часового типа 0-10 мм, набор гирь 0.5-1 кг, штангенциркуль, измерительная линейка.
Теоретические предпосылки. Определение перемещений в системах, состоящих из прямолинейных элементов постоянной жесткости, можно значительно упростить путем применения приема вычисления интеграла Мора, называемого способом перемножения эпюр или методом Верещагина. Данный метод заключается в следующем.
Строится грузовая эпюра изгибающих моментов от всех внешних нагрузок, действующих на балку. В точке, прогиб которой определяется, прикладывается единичная сила Р=1 и строится единичная эпюра изгибающих моментов, возникающих в результате ее действия. Для определения прогиба сечения балки применяется формула Верещагина:
∆=,
где ωр- площадь грузовой эпюры изгибающих моментов;
с - ордината единичной эпюры, соответствующая центру тяжести грузовой эпюры;
Е - модуль Юнга материала балки (модуль упругости І рода);
Іос- осевой момент инерции поперечного сечения балки.
Методика определения угла поворота сечения балки аналогичная описанной, за исключением того, что в сечении угол поворота которого определяется, прикладывается единичный момент = 1.
Применим метод Верещагина для определения прогиба и угла поворота сечения балки, рассматриваемой в данной работе. А именно, определим прогиб точки С и угол поворота D (см. рис. 4.1).
После построения грузовой М и единичных i эпюр (от действия соответственно единичной силы = 1, приложенной в точке С, и единичного момента = 1, приложенного в точке D), используем формулу (4.1.).
Для определения прогиба точки С она примет вид:
Δс= = (с1·ωр1+с2 ωр2) = (а2+). (4.1)
Для определения угла поворота сечения D формула выразится:
ΘD== (c1·ωр1+с2 ωр2)= (а2+). (4.2)
Таким образом после подстановки в формуле (4.1) и (4.2) значений Е, Р и размеров балки, мы получим величины прогиба Δс и угла поворота ΘD.
Рис. 4.1
Установка для проведения опыта (рис. 4.2) представляет собой стальную балку 1 прямоугольного поперечного сечения, расположенную на двух опорах. Для нагружения балки в любой точке служит передвижная подвеска 2, на которую кладутся гири. При этом замеры прогибов балки в нужной точке производится индикатором 3, закрепленном на передвижном штативе 4. Для определения углов поворота крайних сечений балки в этих точках предусмотрена возможность измерения поворота сечения с помощью индикатора 5 по схеме, изображенной на рис. 4.3. В результате угол поворота сечения определится из выражения:
tgΘ Θ = ΔDгор / hD (4.3)
где ΔDгор.- показания индикатора 5, мм; hD= 150 мм.
Рис. 4.3
Порядок проведения работы.
1. Измерить необходимые размеры балки: b, h, l, а, b, с.
2. Установить в точке В подвеску с начальным грузом Ро = 0,5 кг. Показания индикаторов, при этом, выставить на нули.
3. Постепенно добавляя гири, ступенчато увеличивать нагрузку с шагом ΔР=1кг(=10Н).
4. После каждого увеличения нагрузки снимать показания индикаторов и результаты заносить в таблицу.
5. Определить величины прогибов ∆сі и ∆Di:
Δci=ui(3) ui-1(3), ΔDiгор = ui(5) ui-1(5),
где ui(3) , ui(5)- показания индикаторов 3 и 5 после і - того опыта.
6. Определить средние величины ∆с и Dгор.:
с=, Dгор=,
где n - число опытов.
7. Записать опытные величины прогиба сечения и угла поворота сечения D:
Δсоп=с, ΘDon=
8. Используя формулы (4.1) и (4.2) определить теоретические значения Δст и ΘDт при Р = 10Н и сравнить их с опытными.
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3. Результаты измерений и вычислений, выполненных согласно раздела 5.
4. Итоговая таблица.
5. Выводы по работе.
Контрольные вопросы.
1. Какие способы определения прогибов при изгибе балки Вы знаете?
2. Каковы пределы применимости формул для определения прогибов и углов поворота сечений при изгибе?
3. Запишите формулу Верещагина.
4 Объясните отличие применения метода Верещагина при определении прогиба, с одной стороны, и угла поворота сечения балки, с другой.
№ опыта |
Рi, кг |
ΔРi, кг |
ui(3), мм |
Δсi, мм |
ui(5), мм |
ΔDiгор, мм |
0 |
0,5 |
0 |
0 |
0 |
0 |
0 |
1 |
1,5 |
1 |
||||
2 |
2,5 |
2 |
||||
3 |
3,5 |
3 |
||||
4.2. ОПРЕДЕЛЕНИЕ МОМЕНТА ЗАЩЕМЛЕНИЯ В СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ БАЛКЕ.
Цель работы: Определение реактивного момента, возникающего в заделке в статически неопределимой балке и сравнение опытных данных с теоретическими.
Приборы и инструменты: Установка СМ-5, индикатор часового типа, гири 1 кг, штангенциркуль.
Краткие теоретические предпосылки.
Балки, внутренние усилия в которых не могут быть найдены из одних только уравнений равновесия статики, называются статически неопределимыми. Наиболее общим методом раскрытия статической неопределимости стержневых систем является метод сил, который заключается в том, что заданная статически неопределимая система мысленно освобождается от дополнительных связей, а их действие заменяется силами и моментами. Система, освобожденная от дополнительных связей, становится статически определимой и носит название основной системы. Для каждой статически неопределимой системы можно выбрать несколько основных систем.
Рассмотрим однопролетную балку, защемленную одним концом (рис.4.4 а). Эта балка один раз статически неопределима, поскольку неизвестных четыре (VА, Vb, НА, MА), а независимых уравнений статики можно составить три (ΣХі=0, ΣYi=0, ΣМА=0).
На рис. 4.4б и 4.4в представлены две основных системы. Для решения задачи необходимо составить уравнение совместности деформации, выражающие ту мысль, для обеспечения эквивалентности заданной и основной системы перемещения точки В или А под действием заданной нагрузки Р и силы Х должно быт равны нулю:
Хііх + Δір=0.
Рис.4.4
Определение перемещения σіх и Δір можно выполнить одним известным способом (универсальное уравнение, интеграл Мора, способ Верещагина)
Решение основной системы, представленной на рис. 4в, дает следующее значение момента защемления:
МА = Хі =.
После нахождения неизвестной реакции Хі система становится статически определимой и построение эпюр изгибающих моментов и поперечных сил может быть произведено обычным способом.
Опытная установка СМ-5, на которой выполняется работа (рис. 5) представляет собой стальную балку прямоугольного сечения 1, шарнирно опертую на двух опорах (рис. 4.5). Нагружение балки может быть произведено в любой точке сосредоточенными силами (грузами) посредством подвижного подвеса 2. На левой опоре балки шарнирно закреплены рычажок 3 и грузовой рычаг 4 с подвижными грузами 5, которые поворачиваются при повороте сечения балки на опоре. Рычажок 3 служит для измерения угла поворота сечения балки с помощью индикатора 6. Поворот сечения балки вызывается сосредоточенной нагрузкой-грузами, укладываемыми на подвес 2.
После нагружения балки и взятия отсчета по индикатору, необходимо создать реактивный момент, имитирующий защемление балки на левой опоре, что достигается путем перемещения подвижного груза 5 по рычагу 4 на некоторое расстояние (плечо) - lr. Величина плеча определяется условием возврата стрелки индикатора в начальное положение.
Порядок проведения работы:
1. Измерить длину и поперечное сечение балки.
2. Установить подвес 2 в заданной точке с координатой х = а.
3. Взять начальный отсчет по индикатору 6.
4. Нагрузить балку - положить на подвес груз в 1 кг.
5. Плавно переместить груз 5 влево (и тем самым создать защемление на левой опоре) на некоторую величину lr, соответствующую моменту возврата стрелки индикатора в начальное 6 положение;
Рис 4.5.
6. Пользуясь делениями на рычаге 4, определить величину lr, зафиксировать вес груза R.
7. Разгрузить балку.
8. Данные опыта записать в таблицу и произвести их обработку.
9. Вычислить величину реактивного момента МА = R lp (H·м).
10. Опыт повторить не менее 3-х раз и вычислить среднее значение МАср;
11. Выбрать основную систему статически неопределимой балки, соответствующую опытной установке и вычислить величину момента защемления МАт;
12. Произвести сравнение опытной и расчетной величин момента защемления балки
δ=·100%
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3.Результаты измерений и вычислений.
4. Итоговая таблица.
5. Выводы по работе.
Контрольные вопргосы.
1. Что такое статически неопределимая система?
2. Чему равна степень статической неопределимости?
3. В чем заключается метод сил?
4. В чем отличие заданной и основной систем?
5. Запишите канонические уравнения для n статически неопределимой системы.
4.3. ПОТЕРЯ УСТОЙЧИВОСТИ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С ОБРАЗОВАНИЕМ КОЛЬЦЕВОЙ СКЛАДКИ ПРИ ОСЕВОМ СЖАТИИ.
Цель работы: Ознакомиться с задачей об устойчивости цилиндрической оболочки, сжатой в осевом направлении; видами потери устойчивости сжатых оболочек; определить критическое значение сжимающего напряжения.
Инструменты и приспособления: Гидравлический пресс РИИТ-30, образец (цилиндрическая тонкостенная груба), штангенцирпкуль.
Теоретические предпосылки. Пример потери устойчивости прямолинейной формы равновесия центрально-сжатого стержня, не является единственным. Большой практический интерес представляют такие виды потери устойчивости, при которых изменяется не только форма сжатого тела, но и формы и размеры его поперечного сечения. Примером этого может служить потеря устойчивости центрально-сжатой цилиндрической тонкостенной оболочки с образованием кольцевой складки.
Тонкостенной цилиндрической (осиметричной) называется оболочка, имеющая форму тела вращения, толщина которой весьма мала по сравнению с радиусом кривизны ее поверхности.
Проанализируем условие образования кольцевой складки при потере устойчивости сжатой цилиндрической заготовки
Момент начала образования кольцевой складки соответствует моменту возникновения пластического изгиба в продольном сечении оболочки (рис.6). Таким образом, задача сводится к определению величины максимальных сжимающих напряжений, под действием которых возникает изгиб.
Согласно условия упругости равновесия очевидно, что моменты, действующие по принципам участка изгиба от сил, образованными напряжениями, уравновешиваются моментом М, величину которого можно определить по формуле, полученного в теории напряженного состояния:
Рис. 4.6
М=·Rz , (1)
где: Sz, Rz - толщина и срединный радиус оболочки, σт напряжение текучести материала оболочки, σсmax максимальное сжимающее напряжение,
Уравнение равновесия моментов относительно точки О (рис. 4.6) запишется в виде:
σсmaxSzRzRr - σсmaxSzRz Rr cosα = ·Rz ,
(σсmax)2Sz + σсmax4σт(1 cosα) Rr σт2Sz = 0 ,
σсmax = . (2)
При этом мы привели его к квадратному виду и решили.
Перепишем равенство (2), сделав замену Rr =lu/α,
σсmax = . (3)
Так как нам необходимо найти величину напряжения σсmaxв начальный момент пластического изгиба ( начало образования кольцевой складки), то принимаем угол поворота сечения участка свободного ига иба α - 0.
С учетом этого, используя правило Лопиталя, получим:
=0 |
|
lim |
|
α→0 |
|
σсmax = σт (4)
Таким образом, получим, что величина сжимающею напряжения, вызывающего потерю устойчивости с образованием кольцевой складки, по абсолютному значению может быть принята равной напряжению текучести материала оболочки.
Порядок проведения работы.
1. Измерить толщину стенки и средний радиус образца: Sz, Rz.
2. Поместить образец между опорными плитами гидропресса и подвергнуть сжатию, зафиксировав значение критической силы Рmax , вызывающей потерю устойчивости.
3. Расчитать опытное значение максимального (критического) сжимающего напряжения: σсmax= Рmax/А, где А =2Rzz площадь поперечного сечения образца.
4. Сравнить подученное значение сжимающего напряжения с напряжением текучести материала оболочки:
=·100%
Содержание отчета.
1. Название и цель работы.
2. Теоретические предпосылки (по желанию).
3. Результаты измерений и вычислений, выполненных согласно раздела 4.
4. Выводы по работе.
Контрольные вопросы.
1. Какова цель работы?
2. Что называется устойчивостью?
3. Что называется тонкостенной осиметричной оболочкой?
4. Чему равно критическое сжимающее напряжение?
4.4. ОПЫТНОЕ ИЗУЧЕНИЕ РЕЗОНАНСА ВАЛА
Цель работы: Опытное изучение резонанса вала и определение его критической частоты вращения (nкр).
Оборудование и инструменты: Установка ДМ-36, штангенциркуль 0-250 мм, масштабная линейка 0-500мм.
Теоретические предпосылки. Как известно критической называется частота вращения вала, равная частоте собственных поперечных его колебаний nкр. В этом случае величина прогиба вала растет неограниченно, т.е. имеет место явление резонанса или потери динамической устойчивости вала. Такие частоты вращения вала, при отсутствии или малых силах сопротивления, например, когда система работает в воздушной среде, приводит к резко ненормальной работе системы и их следует избегать на практике. Необходимо, как говорят, «отстроиться от резонанса» вала. Пусть О - центр тяжести диска, посаженного на вал длиной l (рис. 4.7) ОО1=е - небольшой эксцентриситет, всегда имеющий место, даже при самой точной сборке и балансировке вала. Тогда при вращении вала с их частотой он будет подвергаться изгибу центробежной силы Р равной:
РU=·2(l+y), (1)
где: Р - вес диска, у прогиб вала в сечении, где насажен диск, g ускорение силы тяжести, w- частота вращения вала или круговая частота вынужденных колебаний вала (рад/с).
Известно, что w= pn/30, (2)
где n частота вращения вала (об/мин).
Для прогиба у в месте приложения силы РU можно записать
у=dnРU=dn (l+y) w2 , (3)
где: dn - прогиб в точке приложения силы РU по направлению этой силы, вызванной статическим приложением единичной силы РU=1.
Решая полученное уравнение (3) относительно прогиба у получаем:
у= = . (4)
Здесь w0 собственная круговая частота поперечных колебаний вала (рад/с), m=РU /у масса диска.
w0 = , (5)
где: dст - статический прогиб вала под силой Р.
Из уравнения (4) видно, что при w=w0 у→, т.е. в этом случае динамическая устойчивость вала нарушается. w=w0 через nкр и имея в виду равенства (2) и (5) получаем
= . (6)
Откуда
nкр= (7)
Равенство (7) справедливо, если пренебречь массой вала по сравнению с массой диска, и если отсутствуют силы сопротивления вращению диска или ими можно пренебречъ.
Рис. 4.7
Рис. 4.8
Схема установки (рис. 4.8)
На вал 1 постоянного круглого сечения диаметром d и длиной l посажен диск 2. Вал установлен в подшипниках 4 и 5 и соединен с валом мотора 2 при помощи гибкой муфты 6. Частота вращения вала мотора, а следовательно и вала 1, может меняться при помощи реостата 7. Для предотвращения резкого «биения» вала при роторе на динамической устойчивости установлены ограничители 8 и 9. Частота вращения вала фиксируется тахометром 10. С точки зрения расчета, вал представляет собой балку на двух шарнирных опорах нагруженную силой Р, поэтому статический прогиб вала под силой Р будет
dст= (8)
Jx осевой момент инерции сечения вала,
Е модуль нормальной упругости материала вала ( Е = 2·105 Мпа)
Jx=. (9)
Если диск расположен по середине пролета вала, то а = b = 0,5 и учитывается собственный вес вала Q, то
dст= (10)
Порядок проведении работы.
1. Записываются данные для опыта и расчета: материал вала, модуль нормальной упругости: Е, [МПа], диаметр вала: d, [м], осевой момент инерции сечения вала: Jx=, вес диска Р , [Н]:
Р+0,3=
Р+0,6=
По формулам (8) и (10) или по (8) с учетом собственного веса вала, вычисляют прогиб dст вала под диском, dст [м], от грузов Р, Р+0,3 и Р+0,6.
По формуле (7) подсчитываются расчетные значения критической частоты вращения вала nкр, n1кр, n2кр.
2. Выключается мотор и при помощи рукоятки реостата, на панели приборов медленно увеличивают число оборотов мотора, фиксируемое тахометром. Вал, сначала работающий спокойно, по мере приближения к резонансной частоте вращения начинает вибрировать. Когда n→nкр амплитуда колебаний вала достигает максимума и на панели приборов зажигается зеленая лампочка «Резонанс». По тахометру необходимо заметить число оборотов nн при этом. Когда это произошло, следует быстро, небольшим рывком, увеличить число оборотов мотора одновременно нажимая на кнопку гашения лампочки «Резонанс». Если она погасла, это свидетельствует о прохождении «Резонанса». Вал начинает вращаться спокойно, «Резонанс» пройден, амплитуда его колебаний уменьшается.
3. Обратным медленным вращением рукоятки реостата следует постепенно уменьшать частоту вращения вала, вал вновь войдет в «Резонанс», но уже при уменьшении закритической частоты вращения. Следует заметить это число оборотов nв, когда загорится лампочка «Резонанс», кнопка управления которой также все время нажата рукой. И вновь рывком следует уменьшить число оборотов вала при прохождении «Резонанса».
4. Записать среднее число оборотов вала
nкр=nн + nв/2
при данной величине груза Рн его положении на валу.
5. Повторить действие согласно пп. 2-4 для грузов P + 8H и P + 6H
6. Сравнить опытные числа критических частот вращения вала с расчетными для заданной величины веса диска и его положения на валу, установив относительную погрешность в %
(nкр. теор. - nкр. опыт./ nкр. теор.)100%
7. Сделать выводы.
Содержание отчета
1. Наименование работы.
2. Цель работы.
3. Оборудование и инструменты.
4. Краткие теоретические сведения (по желанию).
5. Порядок проведения работы.
6.Данные расчета и опыта.
6. Погрешность и выводы.
Контрольные вопросы.
1. Что называется критической частотой вращения вала?
2. Почему возникает центробежная сила инерции при вращении вала?
3. Запишите формулу для определения круговой частоты собственных поперечных колебаний вала.
4. Какие факторы влияют на частоту собственных поперечных колебаний вала?
5. То же на частоту вынужденных колебаний вала?
6. Запишите формулу для критической частоты вращения вала nкр.
7. Каким образом можно «отстроиться» от резонанса вала?
8. Как в данной работе изменяется частота вращения вала мотора?
9. В каких единицах измеряется круговые частоты w0 и w колебания вала?