Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Пояснительная записка к курсовому проекту по курсу “Технология аппараткры САУ”. Стр. 11
VitaS. .03-404\
.
(c)VitaS\Московский Государственный Авиационный Институт
(Технический Университет)
Пояснительная записка
к курсовому проекту по курсу
"Технология аппаратуры САУ".
Дифференциальный усилитель.
Выполнил студент
группы
Консультант: / /
Принял преподаватель: / /
Москва, 1995 год.
Содержание:
Задание
на разработку гибридной интегральной микросхемы (ГИС) частного применения.
Дифференциальный усилитель.
Дифференциальный усилитель предназначен для усиления сигналов постоянного тока или в качестве усилителя сигналов низкой частоты.
Схема электрическая принципиальная:
Смотрите на следующей странице (рисунок 1).
Рисунок 1 : Схема электрическая принципиальная
Технические требования:
Микросхема должна соответствовать общим техническим требованиям и удовлетворять следующим условиям:
Исходные данные для проектирования:
Позиционное обозначение: |
Наименование: |
Количество: |
Примечание: |
R1,R3,R5 |
резистор 4КОм10% |
Р=3,4мВт |
|
R2 |
резистор 1,8КОм10% |
Р2=5,8мВт |
|
R4 |
резистор 1,7КОм10% |
Р4=2,2мВт |
|
R6 |
резистор 5,7ком10% |
Р6=2,6мВт |
|
VT1,VT4 |
транзистор КТ318В |
Р=8мВт |
|
VT2 |
транзистор КТ369А |
Р=14мВт |
|
VT3 |
транзистор КТ354Б |
Р=7мВт |
Напряжение источника питания: 6,3 В10%.
Сопротивление нагрузки не менее: 20 КОм.
1. Анализ технического задания.
Гибридные ИМС (ГИС) это интегральные схемы, в которых применяются плёночные пассивные элементы и навесные элементы (резисторы, конденсаторы, диоды, оптроны, транзисторы), называемые компонентами ГИС. Электрические связи между элементами и компонентами осуществляются с помощью плёночного или проволочного монтажа. Реализация функциональных элементов в виде ГИС экономически целесообразна при выпуске малыми сериями специализированных вычислительных устройств и другой аппаратуры.
Высоких требований к точности элементов в ТЗ нет.
Условия эксплуатации изделия нормальные.
2. Выбор материалов, расчёт элементов, выбор навесных компонентов.
В качестве материала подложки выберем ситалл СТ50-1.
Транзисторы выберем как навесные компоненты.
VT1,VT4-КТ318В,
VT2-КТ369А,
VT3-КТ354Б.
По мощностным параметрам транзисторы удовлетворяют ТЗ. По габаритным размерам они также подходят для использования в ГИС.
Рассчитаем плёночные резисторы.
Определим оптимальное сопротивлениеквадрата резистивной плёнки из соотношения:
опт=[(Ri)/(1/Ri)]^1/2.
опт=3210(Ом/).
По полученному значению выбираем в качестве материала резистивной плёнки кермет К-20С. Его параметры: опт=3000 ОМ/, Р0=2 Вт/см^2, r=0.5*10^-4 1/С.
В соответствии с соотношением
0rt=r(Тmax-20C)
0rt=0.00325, а допустимая погрешность коэффициента формы для наиболее точного резистора из
0кф= 0r- 0- 0rt- 0rст- 0rк
равно 0кф=2.175. Значит материал кермет К-20С подходит.
Оценим форму резисторов по значению Кф из
Кфi=Ri/опт.
Кф1,3,5=1.333, Кф2=0.6, Кф6=1.9, Кф4=0.567.
Поскольку все резисторы имеют прямоугольную форму, нет ограничений по площади подложки и точность не высока, выбираем метод свободной маски. По таблице определяем технологические ограничения на масочный метод: b=l=0.01мм, bтехн=0.1мм, lтехн=0.3мм, аmin=0.3мм, bmin=0.1мм.
Рассчитаем каждый из резисторов.
Расчётную ширину определяем из bрасчmax(bтехн, bточн,bр),
b+l/Кф Р
bточн------------, bр=(--------)^2.
0кф Р0*Кф
За ширину резистора-b принимают ближайшее значение к bрасч, округлённое до целого числа, кратного шагу координатной сетки.
bр1,3,5=0.375мм, bтехн=0.1мм, bточн=0.8мм, значит b1,3,5=0.8мм.
Расчётная длина резистора lрасч=b*Кф. За длину резистора принимают ближайшее к lрасч, кратное шагу координатной сетки значение.
Полная длина напыляемого слоя резистора lполн=l+2*lк. Таким образом lрасч=1.066мм, а lполн=1.466, значит l1,3,5=1.5мм.
Рассчитаем площадь, занимаемую резистором S=lполн*b. S1,3,5=1.2мм^2.
Аналогичным образом рассчитываем размеры резистора R6.
b6=0.7мм, lполн=1.75мм, S=1.225мм^2.
Для резисторов, имеющих Кф1, сначала определяют длину, а затем ширину. Расчётное значение длины выбирают из условий
l+b*Кф Р*Кф
lрасчmax(lтехн,lточн,lр), lточн------------, lр=(--------)^1/2.
0кф Р0
lточн2=0.736мм, lр2=0.417мм, значит l2=0.75мм.
bрасч=l/Кф, bрасч2=1.25мм, S=0.9375мм^2.
Аналогично рассчитываем R4/
lточн=0.72мм, lр=0.25мм, l4=0.75мм.
b4=1.35мм, S=1.0125мм^2.
Резисторы спроектированы удовлетворительно, т.к.:
) удельная мощность рассеивания не превышает допустимую
Р01=Р/SР0;
) погрешность коэффициента формы не превышает допустимую
0кф1=l/lполн+b/b0кф;
) суммарная погрешность не превышает допуск
0r1=0+0кф+0rt+0rст+0rк0r.
3. Выбор подложки.
В качестве материала подложки мы уже выбрали ситалл.
Площадь подложки вычисляют из соотношения
Sr+Sc+Sk+Sн
Sподл=------------------, где
Кs
Кs-коэффициент использования платы (0.4....0.6);
Sr-суммарная площадь, занимаемая резисторами;
Sc-общая площадь, занимаемая конденсаторами;
Sk-общая площадь, занимаемая контактными площадками;
Sн-общая площадь, занимаемая навесными элементами.
Sподл=86.99мм^2.
Выбирем подложку 810мм. Толщина-0.5мм.
4. Последовательность технологических операций.
Площадки и проводники формируются методом свободной маски.
Защитный слой наносится методом фотолитографии.
5. Выбор корпуса ГИС.
Для ГИС частного применения в основном используется корпусная защита, предусматриваемая техническими условиями на разработку. Выберем корпус, изготавливаемый из пластмассы. Его выводы закрепляются и герметизируются в процессе литья и прессования.
Размеры корпуса (габаритные) 19.5мм14.5мм, количество выводов, из них нам потребуется 10.
6. Оценка надёжности ГИС.
Под надёжностью ИМС понимают свойство микросхем выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующим заданным режимам и условиям использования, хранения и транспортирования.
Расчёт надёжности ГИС на этапе их разработки основан на определении интенсивности отказов-(t) и вероятности безотказной работы-Р(t) за требуемый промежуток времени.
. Рассчитаем по формуле:
i=i*Ki*0i,
где 0i-зависимость от электрического режима и внешних условий,
i=f(T,Kн)-коэффициент, учитывающий влияние окружающей температуры и электрической нагрузки,
Кi=K1-коэффициент, учитывающий воздействие механических нагрузок.
Воздействие влажности и атмосферного давления не учитываем, т.к. микросхема герметично корпусирована.
Для расчётов рекомендуются следующие среднестатистические значения интенсивностей отказов:
Коэффициенты i берём из таблиц, приведённых в справочных материалах.
Коэффициенты нагрузки определяются из соотношений:
КHI=II/IIдоп,
Кнт=max
Кнu=Ui/Uiдоп,
где I-ток коллектора соответствующего транзистора,
U-напряжение коллектор-эммитер соответствующего транзистора,
Iдоп, Uдоп-допустимые значения токов и напряжений;
КнR=Рi/Рiдоп,
где Рi-рассеиваемая на транзисторе мощность,
Рiдоп-допустимая мощность рассеивания.
Для различных условий экплуатации значения коэффициента в зависимости от нагрузок разные, выберем самолётные-К1=1.65.
После расчётов имеем:
Кнт1=0.0225 т1=0.4 |
Кнт2=0.0018 т2=0.4 |
Кнт3=0.045 т3=0.4 |
Кнт4=0.11 т4=0.4 |
КнR1=0.23 R1=0.8 |
КнR2=0.062 R2=0.7 |
КнR3=0.56 R3=1.1 |
КнR4=0.37 R4=0.95 |
КнR5=0.95 R5=1.5 |
КнR6=1 R6=1.6 |
т1234=6.6*10^-9 |
R1=1.32*10^-9 |
R2=1.55*10^-9 |
R3=1.815*10^-9 |
R4=1.57*10^-9 |
R5=2.48*10^-9 |
R6=2.64*10^-9 |
0соед=1.09*10^-7 |
0пр=4.46*10^-7 |
Величина интенсивности отказов ГИС- определяется как сумма всех рассчитанных интенсивностей. Расчётное значение вероятности безотказной работы за время составляет
Р(t)=е^-t
и равна 0.995 (за 8000 часов).
Список литературы.