У вас вопросы?
У нас ответы:) SamZan.net

Нуклеиновые кислоты природные высокомолекулярные органические соединения обеспечивающие хранение и пе

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.12.2024

11) Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной(генетической) информации в живых организмах.

В природе существуют нуклеиновые кислоты двух типов, различающиеся по составу, строению и функциям. Одна из них содержит углеводный компонент дезоксирибозу и названадезоксирибонуклеиновой кислотой (ДНК).
Другая содержит рибозу и названа рибонуклеиновой кислотой (РНК).

ДНК — представляет собой двухцепочечный биологический полимер, мономерами которого являются нуклеотиды, содержащие одно из азотистых оснований, дезоксирибозу и остаток фосфорной кислоты. Полинуклеотидные цепи молекулы ДНК антипараллельны и соединены друг с другом водородными связями по принципу комплиментарности. Двойная спираль, открытая в 1953г. Уотсоном и Криком, содержит шаг размером 3,4 нм, включающем 10 пар комплементарно связанных оснований.

Функция у ДНК одна - хранение генетической информации

ДНК состоит из Нуклеотидов: пуриновых оснований аденина(А) и гуанина (Г) и пиримидиновых оснований цитозина(Ц) и тимина(Т)

Э. Чаргафф обнаружил, что количество пуринового основания аденина (А) равно количеству пиримидинового основания тимина (Т), т. е. А = Т. Сходным образом количество второго пурина — гуанина (Г) всегда равно количеству второго пиримидина—цитозина (Ц),т. е. Г = Ц. Таким образом, число пуриновых оснований в ДНК всегда равно числу пиримидиновых, количество аденина равно количеству тимина, а гуанина — количеству цитозина. Такая закономерность получила название правил Чаргаффа.

  Нуклеотиды - природные соединения, из которых, как из кирпичей, построенные цепочки нуклеиновых кислот. Также нуклеотиды входят  в состав важнейших коферментов (органические соединения небелковой природы - компоненты некоторых ферментов) и других биологически активных веществ, служат в клетках переносчиками энергии. 

Молекула каждого нуклеотида (мононуклеотид) состоит из трех химически различных частей.

1. Это пятиуглеродный сахар (пентоза):

-  рибоза (в этом случае нуклеотиды называются рибонуклеотиды и входят в состав рибонуклеиновых кислот, или РНК)

 - или дезоксирибоза (нуклеотиды называются дезоксирибонуклеотиды и входят в состав дезоксирибонуклеиновой кислоты, или ДНК). 

2. Пуриновая или пиримидиновая азотистая основа связана с углеродным атомом сахара, образует соединение, которое называется нуклеозид.

 

3. Один, два или три остатки фосфорной кислоты, присоединенные эфирными связями к углероду сахара, образуют молекулу нуклеотида (в молекулах ДНК или РНК один остаток фосфорной кислоты). 

Матричный синтез, репликация

Репликация ДНК – это процесс копирования дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.

Репликация ДНК начинается за 5-10 ч до митоза и длится 4-8 ч. Ее результатом является образование двух точных копий всей ДНК. Во время митоза каждой из дочерних хромосом достается по одной из этих копий. Между окончанием репликации и началом митоза проходит 1-2 ч. В течение этого времени в клетке происходят подготовительные процессы, которые в итоге перерастают в митоз.

Химические и физические превращения в ходе репликации ДНК.

1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.

2. Обе цепи ДНК реплицируются полностью — от одного конца до другого, а не частично, как при транскрипции РНК.

3. В отличие от РНК-полимеразы ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.

4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.

5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.

6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.

Скорость репликации составляет порядка 45 000 нуклеотидов в минуту

12) РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК. 

Виды РНК:

Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80–90 %), соединяясь с белками, формируют рибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках. 

Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденность генетического кода). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК. 

Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2 % от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т. е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими. 

АТФ

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержитсяаденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, избавляется от отходов, осуществляет активный транспорт веществ, биение жгутиков и ресничек и т. д.

Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями

МАКРОЭРГИЧЕСКИЕ СВЯЗИ — высокоэнергетические, отличающиеся большим запасом свободной энергии химические связи, имеющиеся в соединениях, которые входят в состав живых организмов. Расщепление М. с. сопровождается освобождением большого количества энергии — от 7000 до 15 000. кал на 1 грамм-молекулу вещества (при расщеплении обычных связей освобождается не более 2000—3000 кал на 1 грамм-молекулу вещества).

Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии:

Таким образом, АТФ — это главный универсальный поставщик энергии в клетках всех живых организмов.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.




1. ЯРОСЛАВСКИЙ ГОРОДСКОЙ ПОДРОСТКОВЫЙ ЦЕНТР МОЛОДОСТЬ ПРИКАЗ 04
2. это совокупность направлений форм методов и средств торговоэкономического научнотехнического сотрудни
3. тематическое ожидание в SNG
4. Философия техники
5. Авиабилетов страховых полисов ваучеров справки на вывоз наличной валюты при необходимости водитель
6. РОССИЙСКАЯ АКАДЕМИЯ ПРЕДПРИНИМАТЕЛЬСТВА ЭКОНОМИЧЕСКАЯ ТЕОРИЯ МИКРОЭКОНОМИКА Примерный перечень
7. Тема- Стилістика як лінгвістична наука і навчальна дисципліна
8. Издержки производства и пути их снижения1
9. Проблемы развития атомной энергетики
10. либо систему продаж необходимо чётко понимать куда мы идём и для чего мы это делаем
11. русской археологии
12. Европол, его назначение и структура управления
13. Эффективность модернизации судовой энергетической установки.html
14. досуг виды досуга6 Типы досугового общения подростков
15. .ru ~ подготовка к ЕГЭ и ГИА шпаргалки пособия новости советы Оглавление
16. Організація навчального та виховного процесу у ДВНЗ
17. Планирование как организационный и экономический механизм управления предприятием в условиях рыночной экономики
18. РЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Москва1998 Работа выполне
19. Тема 1. BBЕДЕНИЕ. Значение антропогенетики в современной жизни
20. ЦРРд-с 239 к обучению в школе