Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Вопрос 1 . Предмет,задачи и методы генетики
Генетика- наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (18221884) при скрещивании различных сортов гороха.
Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.
Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.
При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование
Вопрос 2 . Наследственность и изменчивость - фундаментальные свойства живого,их диалектическое единство.
Наследственность это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.
В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.
Изменчивость способность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи. Поскольку условия среды никогда не бывают одинаковыми даже для особей одного вида или сорта (породы), становится понятным, почему организмы, имеющие одинаковые генотипы, часто заметно отличаются друг от друга по фенотипу, т. е. по внешним признакам.
Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.
Наследственность и изменчивость тесно связаны с эволюцией. В процессе филогенеза органического мира эти два противоположных свойства находятся в неразрывном диалектическом единстве. Новые свойства организма появляются только благодаря изменчивости, но она лишь тогда может играть роль в эволюции, когда появившиеся изменения сохраняются в последующих поколениях, то есть наследуются.
Вопрос 3 .Типы наследования. Генотип. Фенотип.
У людей известны следующие основные типы наследования:
1) аутосомно-доминантное наследование;
2) аутосомно-рецессивное наследование;
3) доминантное сцепленное с Х-хромосомой наследование;
4) рецессивное сцепленное с Х-хромосомой наследование;
5) сцепленное с Y-хромосомой, или голандрическое, наследование;
6) частично сцепленное с полом наследование: аллели изучаемого гена находятся в гомологичных друг другу участках Х-хромосомы и Y-хромосомы;
7) цитоплазматическое наследование: изучаемые гены находятся в ДНК митохондрий;
8) аутосомное наследование, зависимое от пола: аутосомные гены по-разному проявляются в фенотипе у женщин и мужчин;
9) аутосомное наследование, ограниченное полом: изучаемый признак формируется только у особей одного пола.
уществуют следующие критерии основных типов ядерного наследования.
А) Аутосомно-рецессивное наследование:
1) признак встречается относительно редко, не в каждом поколении;
2) если признак имеется у обоих родителей, то этот признак имеют все их дети;
3) признак встречается и у детей, родители которых не имеют изучаемого признака;
4) мужчины и женщины с изучаемым признаком встречаются с приблизительно одинаковой частотой.
Б) Аутосомно-доминантное наследование:
1) признак встречается часто, в каждом поколении;
2) признак встречается у детей, у которых хотя бы один из родителей имеет изучаемый признак;
3) мужчины и женщины с изучаемым признаком встречаются с приблизительно одинаковой частотой.
В) Сцепленное с Y-хромосомой, или голандрическое, наследование:
1) признак встречается часто, в каждом поколении;
2) признак встречается только у мужчин;
3) признак передается по мужской линии: от отца к сыну и т.д.
Г) Рецессивное сцепленное с Х-хромосомой наследование:
1) признак встречается относительно редко, не в каждом поколении;
2) признак встречается преимущественно у мужчин, причем у их отцов признак обычно отсутствует, но имеется у дедов (прадедов) по материнской линии;
3) у женщин признак встречается только тогда, когда он имеется и у их отца.
Д) Доминантное сцепленное с Х-хромосомой наследование:
1) признак встречается часто, в каждом поколении;
2) признак встречается у детей, у которых хотя бы один из родителей имеет изучаемый признак;
3) признак встречается и у мужчин, и у женщин, но женщин с таким признаком приблизительно в два раза больше, чем мужчин;
4) если изучаемый признак имеет мужчина, то все его дочери будут иметь этот признак, а у всех его сыновей этот признак будет отсутствовать.
Генотип это совокупность всех генов организма, являющихся его наследственной основой.
Фенотип совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Вопрос 4. Закономерности наследования при моногибридном скрещивании.
Моногибридное скрещивание. Некоторые закономерности наследования были впервые установлены Г. Менделем. Он достиг успеха в своих экспериментах благодаря использованию гибридологического метода скрещивания организмов, различающихся по каким-либо признакам, и анализа всех последующих поколений с целью установления закономерностей наследования этих признаков. Гибридологический метод и до настоящего времени остается одним из основных в генетических исследованиях.
Г. Мендель усовершенствовал данный метод, и в отличие от своих предшественников, анализировал наследование ограниченного количества признаков (одного, двух, трех). При этом он выбирал признак с альтернативным (контрастирующим) проявлением его у скрещиваемых организмов. Так, он скрещивал сорта гороха с окрашенными и белыми цветками, гладкими и морщинистыми семенами и т. п. Кроме того, Мендель проверял перед скрещиванием, насколько устойчиво наследуются выбранные им признаки в ряду поколений при самоопылении. В процессе эксперимента им проводился также точный количественный учет всех гибридных растений во всех поколениях.
Моногибридное скрещивание. I закон Г. Менделя.
Моногибридным называется такое скрещивание, при котором родительские пары различаются по одному признаку. В своих опытах Мендель использовал горох: отцовское растение с красными цветками, а материнское с белыми или наоборот.
Полученные в результате скрещивания гибриды первого поколения F1 обладали только красными цветками. Следовательно, признак второго родителя (белые цветы) не проявился. Преобладание у гибридов первого поколения признака одного из родителей (красные цветки) Мендель назвал доминированием, а сам этот признак доминантным («преобладающим»). «Подавляемый» признак (белые цветки) получил название рецессивного.
Феномен преобладания одного из признаков у всех гибридов первого поколения Мендель определил как закон единообразия гибридов первого поколения (I закон Менделя). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу
Вопрос 5. Ди- и полигибридное срещивание. Независимое комбинирование неаллельных генов и его цитологические основы.
Скрещивания, в которых родительские формы различаются по одной паре признаков, называют моногибридными, по двум дигибридными, а по многим парам признаков полигибридными.
На основании результатов опытов Мендель сформулировал положение, которое гласит, что гены, определяющие различные признаки, наследуются независимо друг от друга. И, хотя позднее было пока что этот вывод справедлив только для генов, находящихся в разных хромосомах, закономерность, выявленная Менделем, получила название «закона независимого комбинирования».
Закон независимого наследования (третий закон Менделя) при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).
Цитологической основой этого закона есть мейоз. В мейозе негомологични хромосомы расходятся независимо и могут комбинироваться в любых объединениях.
Примеры
Человек
Ген, обуславливающий рыжие волосы, обуславливает более светлую окраску кожи и появление веснушек.
Фенилкетонурия (ФКУ), болезнь, вызывающая задержку умственного развития, выпадение волос и пигментацию кожи, может быть вызвана мутацией в гене, кодирующем фермент фенилаланин-4-гидроксилаза, который в норме катализирует превращение аминокислоты фенилаланина в тирозин.
Рецессивная мутация в гене, кодирующем синтез глобиновой части в гемоглобине (замена одной аминокислоты), вызывающая серповидную форму эритроцитов, изменения в сердечно-сосудистой, нервной, пищеварительной и выделительной системах.
Арахнодактилия, вызываемая доминантной мутацией, проявляется одновременно в изменениях пальцев рук и ног, вывихах хрусталика глаза и врождённых пороках сердца.
Галактоземия, вызываемая рецессивной мутацией гена, кодирующего фермент галактозо-1-фосфатуридилтрансфераза, приводит к слабоумию, циррозу печени и слепоте.
Иные живые существа:
Белые голубоглазые коты имеют склонность к глухоте.
Летальная мутация, вызывающая нарушения в развитии хрящей у крыс, приводит к смерти за счет большого количества патологий в разных системах организма.
У овса окраска чешуйки и длина ости семени регулируются одним геном.
Генокопии (лат. genocopia) это сходные фенотипы, сформировавшиеся под влиянием разных неаллельных генов. То есть это одинаковые изменения фенотипа, обусловленные аллелями разных генов, а также имеющие место в результате различных генных взаимодействий или нарушений различных этапов одного биохимического процесса с прекращением синтеза. Проявляется как эффект определенных мутаций, копирующих действие генов или их взаимодействие.
Вопрос 6. Менделирующие признаки у человека. Условия необходимые для проявления законов Менделя.
Признаки, наследование которых подчиняется закономерностям, установленным Г. Менделем, называются менделирующими
Доминантные Карие глаза Темные волосы Косой разрез глаз Нос с горбинкой Широкая щель между резцами Зубы большие, выступают вперед Ямочки на щеках Белый локон волос Наличие веснушки Мочка уха свободная Губы полные Лучшее владение правой рукой Кровь резус-положительная Способность свертывать язык трубочкой Патологические Хондродистрофия (карликовость) Полидактилия (6 и больше пальцев) Брахидактилия(короткопалость) Синдактилия (сращение пальцев) Нормальное свертывание крови Полипоз толстой кишки Нормальное восприятие цвета Наличие пигментов в коже, волосах Нормальное усвоение фенилаланина Нормальное усвоение лактозы Нормальное усвоение фруктозы Елиптоцитоз (елипсовидная форма эритроцитов) |
Рецесивные Голубые глаза Светлые волосы Прямой разрез глаз Прямой нос Узкая щель или отсутствие его Обычная форма и размещения зубов Отсутствие ямочек Равномерная пигментация волос Отсутствие веснушки Мочка уха приросшая Губы тонкие Лучшее владение левой рукой Кровь резус-отрицательная Неспособность свертывать язык трубочкой Нормальное развитие скелета Нормальное количество пальцев Нормальное строение пальцев Нормальное строение пальцев Гемофилия Отсутствие полипоза Дальтонизм (цветная слепота) Альбинизм (отсутствие пигментов) Фенилкетонурия Галактоземия Фруктозурия Нормальная форма эритроцитов |
Все менделирующие признаки дискретные и контролируются одним геном (моногенне наследования). Различают следующие типы наследования менделюючих признаков: аутосомно-доминантный, аутосомно-рецесивный, Х-сцеплений (доминантный и рецесивный), Y-сцепленный. При аутосомном наследовании ген исследуемого признака расположенный в аутосоме (неполовой хромосоме), при сцепленном из полом наследовании в половых хромосомах (Х, Y).
Условия:
• гомозиготность исходных форм;
• альтернативное проявление признаков в каждой паре;
• равная вероятность образования у гибрида гамет с разными аллелями;
• одинаковая жизнеспособность разных гамет;
• случайный характер сочетания гамет при оплодотворении;
• одинаковая жизнеспособность зигот с разными комбинациями генов;
• достаточная для получения достоверных результатов численность особей во втором поколении;
• независимость проявления признаков от внешних условий и от остальных генов генотипа в целом.
Вопрос 7. Цитоплазматическая наследственность.
Цитоплазматическая наследственность - внеядерная наследственность, которая осуществляется с помощью молекул ДНК, расположенных в пластидах и митохондриях. Генетическое влияние цитоплазмы проявляется, как следствие взаимодействия плазмона с ядерными генами. Признак, определяемый цитоплазмой, передается только по материнской линии.
Хромосомная теория наследственности установила ведущую роль ядра и находящихся в нем хромосом в явлениях наследственности. Но в то же время уже в первые годы формирования генетики как науки были известны факты, показывающие, что наследования некоторых признаков связано с нехромосомными компонентами клетки и не подчиняется менделеевским закономерностям, основанным на распределении хромосом во время мейоза.
В 1908 1909 гг. К. Корренс и одновременно независимо от него Э. Баур описали пестролистность у растений ночной красавицы и львиного зева, которая наследуется через цитоплазму. В последующие годы подобные наблюдения были сделаны на других объектах. Все они правильно истолковывались как примеры цитоплазматической наследственности, но тем не менее их долгое время рассматривали просто как отдельные отклонения от законов Г. Менделя.
Дальнейшее изучение явлений наследственности привело к необходимости установить не только механизм передачи генов хромосом от одного поколения организмов другому, но и то, как эти гены контролируют процессы клеточного метаболизма и развитие определенных признаков и свойств. Поэтому клетку стали рассматривать как единую целостную систему, определяющую передачу и воспроизведение признаков в потомстве в результате взаимодействия компонентов ядра (генов хромосом) и цитоплазмы, что можно показать на примере приобретения ею способности к фотосинтезу. Фотосинтез связан с цитоплазматическими структурами клетки пластидами и находящимся в них пигментом хлорофиллом. Образование и функции пластид обусловливаются наследственными факторами и действием внешних условий (главным образом света, без которого хлорофилл в пластидах не образуется). Мутации в некоторых локусах хромосом могут частично или полностью нарушать процесс образования пластид и содержащегося в них хлорофилла. Эти так называемые хлорофильные мутации наследуются, строго подчиняясь закономерностям Г. Менделя. Но аномальные (белые) пластиды могут образовываться в клетках нормальный набор генов, и при хорошем освещении. Этот признак не наследуется по правилам Г. Менделя. При делении клетки, содержащей указанные аномальные пластиды, образуются дочерние клетки с такими же пластидами, но при скрещивании этот признак передается только по материнской линии, и, следовательно, он связан не с хромосомами, а с цитоплазмой. Таким образом, важнейшее свойство клетки ее способность к фотосинтезу определяется взаимодействием генов хромосом, структурных элементов цитоплазмы и условий внешней среды.
Генетическому материалу хромосомного набора (геному) соответствует плазмон, включающий весь генетический материал цитоплазмы. Подобно генам хромосом. В структурных элементах цитоплазмы пластидах, кинетосомах, митохондриях, центросомах и основном ее веществе находятся материальные носители нехромосомной наследственности плазмогены. Они могут определять развитие некоторых признаков клетки, способны удваивать их воспроизвести, при делении материнской клетки они распределяются между дочерними клетками.
Возможно, что цитоплазматическая наследственность обусловлена также долгоживущих молекул и-РНК или с избирательной трнскрипцией молекул и-РНК только с генов материнскойхромосомы
Наиболее полно изучены две формы цитоплазматической наследственности: пластидная и цитоплазматическая мужская стерильность.
Вопрос 8. Множественный аллелизм. Наследование групп крови по системе АB0 и резус-фактора.
Множественный аллелизм это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.
В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.
Группы крови - это генетически наследуемые признаки, не изменяющиеся в течение жизни при естественных условиях. Группа крови представляет собой определенное сочетание поверхностных антигенов эритроцитов (агглютиногенов) системы АВО. Определение групповой принадлежности широко используется в клинической практике при переливании крови и ее компонентов, в гинекологии и акушерстве при планировании и ведении беременности. Система групп крови AB0 является основной системой, определяющей совместимость и несовместимость переливаемой крови, т.к. составляющие ее антигены наиболее иммуногенны. Особенностью системы АВ0 является то, что в плазме у неиммунных людей имеются естественные антитела к отсутствующему на эритроцитах антигену. Систему группы крови АВ0 составляют два групповых эритроцитарных агглютиногена (А и В) и два соответствующих антитела - агглютинины плазмы альфа(анти-А) и бета(анти-В). Различные сочетания антигенов и антител образуют 4 группы крови:
Группа 0(I) - на эритроцитах отсутствуют групповые агглютиногены , в плазме присутствуют агглютинины альфа и бета.
Группа А(II) - эритроциты содержат только агглютиноген А, в плазме присутствует агглютинин бета;
Группа В(III) - эритроциты содержат только агглютиноген В, в плазме содержится агглютинин альфа;
Группа АВ(IV) - на эритроцитах присутствуют антигены А и В, плазма агглютининов не содержит.
Определение групп крови проводят путем идентификации специфических антигенов и антител (двойной метод, или перекрестная реакция).
Наследование групп крови системы АВ0 (по П. Н. Косякову)
Резус-положительный фенотип крови может быть представлен двумя генотипами: гомозиготным DD и гетерозиготным Dd. Резус-отрицательный тип крови всегда гомозиготен (dd). В такой же взаимозависимости находятся факторы Сс и Ее.
Факторы С, D и Е кодоминантны и не подавляют друг друга, так же как и факторы с, d и е. Наследование пар факторов системы резус происходит по тем же законам, что и антигенов системы АВ0. Если родители гомозиготны по фактору D (DD и DD) или d, то у них могут родиться дети только этого типа крови.
Вопрос 9. Полигенное наследование у человека.
Существует много признаков, по которым особей не удается разделить на два хорошо разграниченных типа; наследование таких признаков обусловлено не одной парой генов. Рост, телосложение, одаренность и цвет кожи у человека, молочная продуктивность у коров, яйценоскость у кур, величина плодов у растений и многие другие признаки зависят от взаимодействия многих пар генов. Когда две или большее число независимых пар генов влияют на один и тот же признак сходным образом, так что их действие суммируется, говорят о полигенном наследовании данного признака, а такого рода гены называют множественными факторами
При полигенном наследовании первое поколение (F1) бывает промежуточным между родительскими формами и весьма однотипным; напротив, второе поколение (F2) очень изменчиво и состоит из индивидуумов, распределяющихся по всему диапазону между исходными родительскими типами. Наследование цвета кожи у человека относительно простой случай полигенной наследственности, так как здесь участвуют всего лишь две пары генов, обладающих выраженным действием.
Полигенное наследование, также известное как "множественное" или мультифакторное, относится к наследованию характеристик фенотипа, за которые отвечают два или более гена, или взаимодействие последних с окружающей средой, или и то, и другое. В отличие от моногенных признаков, полигенные характеристики не следуют букве законов Менделя. Вместо этого, их фенотипические признаки обычно варьируют с равномерным уклоном, изображаемым при помощи кривой нормального распределения .
Примером полигенных признаков может служить цвет человеческой кожи. За определение естественного цвета кожи индивида отвечают многие гены, так что изменение лишь одного из них едва ли приведет к существенным переменам в цвете. Многие наследственные заболевания имеют полигенную природу; к таковым относятся аутизм, рак, диабет и другие. Большинство фенотипических характеристик являются результатом взаимодействия множества генов.
Примеры заболеваний мультифакторной этиологии:
Врожденные пороки
· Расщепление нёба.
· Дисплазия тазобедренного сустава
· Врождённые пороки сердца
· Дефект нервной трубки
· Пилоростеноз (сужение превратника желудка)
· Деформации стопы
Болезни, развивающиеся у взрослых
· Сахарный диабет
· Рак
· Эпилепсия
· Глаукома
· Артериальная гипертензия
· Ишемическая болезнь сердца
· Биполярное аффективное расстройство
· Шизофрения
Считается, что заболевания мультифакторной природы составляют большинство от генетических нарушений человека
?Вопрос 10. Взаимодецствие аллельных генов.
Полное доминирование взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью.
Неполное доминирование доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака.
Сверхдоминирование более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной.
Кодоминирование проявление у гибридов нового признака, обусловленного взаимодействием двух разных аллелей одного гена. Фенотип гетерозигот не является чем-то промежуточным между фенотипами разных гомозигот.
Вопрос 11. Взаимодействие неаллельных генов.
Комплементарность явление, при котором 2 неаллельных гена. Находясь в генотипе, одновременно приводят к формированию нового признака. Если присутствует один из пары проявляется он.
Примером служат группы крови у человека.
Комплементарность может быть доминантная и рецессивная.
Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву слух будет ослаблен. Комплементарность взаимодействие неаллельных генов, ко-торые обусловливают развитие нового признака, отсутствующего у родителей.
Эпистаз такое взаимодействие генов, когда ген одной аллельной пары маскируется действием другой аллельной пары. Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени.
Механизм: если В выключится, он замаскирует действие С
В эпистатический ген
С гипостатический ген
Подавляющий ген называется геном-супрессором, а подавляемый --гипостатическим геном. По-видимому, действие гена-супрессора на подавляемый ген сходно с принципом доминантность - рецессивность. Но существенное различие заключается в том, что эти гены не являются аллельными, т.е. расположены в негомологичных хромосомах или занимают различные локусы в гомологичных. Различают доминантный рецессивный эпистаз. При доминантном эпистазе доминантный аллель гена-супрессора подавляет проявление доминантного аллеля другого гипостатического гена. При рецессивном эпистазе, или криптомерии, рецессивный аллель
большинство) отличаются изменяющейся Э. У кроликов и некоторых других животных известен рецессивный ген гималайской («горностаевой») окраски, обусловливающей своеобразную пятнистость меха (на белом или светлом фоне кончики лап, ушей, морды и хвоста имеют чёрную окраску). Однако такая окраска развивается только при выращивании молодняка гималайской породы при умеренных температурах. При повышенной температуре весь мех у особей того же гималайского генотипа оказывается белым, а при пониженной чёрным. Этот пример указывает на то, что на Э. влияют факторы внешней среды, в данном случае температуры.
Полимерия. Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие возникает полигенная система т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.
При сахарном диабете наблюдается умственная отсталость.
Рост, уровень интеллекта - определяются полигенными системами
Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 24 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.
В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.
Модифицирующее действие. Гены модификаторы сами по себе не определяют какой- то признак, но могут усиливать или ослаблять действие основных генов, вызывая таким образом изменение фенотипа. В качестве примера обычно приводится наследование пегости у собак и лошадей. Числового расщепления никогда не даётся, так как характер наследования больше напоминает полигенное наследование количественных признаков.
1919 год Бриджес ввел термин ген-модификатор. Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены.
Брахидактилия может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект.
Вопрос 12. Основные положения хромосомной теории наследственности.
1. Гены находятся в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления равно гаплоидному набору хромосом, постоянному для каждого вида организмов {In + 1 для гетерогаметного вида).
2. Каждый ген занимает в хромосоме строго определённое место (локус).
Гены в хромосомах расположены линейно.
3- Сцепление генов может нарушаться в peзультате кроссинговера (перекреста хромосом), в
процессе которого между гомологичными хромо¬сомами происходит обмен одним или несколькими аллельными генами.
4. Расстояние между генами в хромосоме пропорционально частоте кроссинговера между ними.
Вопрос 13. Наследственный аппарат клетки. Динамика структуры хромосом в клеточном цикле. Механизм упаковки ДНК в метафазную хоромосому.
Наследственный аппарат клетки. Наследственным аппаратом любых клеток, в том числе и клеток организма человека, является ДНК. ДНК локализуется в ядре клетки, где она образует структуры, называемые хромосомами. ДНК хромосом содержит в зашифрованном виде наследственную информацию. Именно ДНК передает наследственную информацию от родительской клетки к дочерней. Запись информации возможна только при наличии кода, состоящего из отдельных «символов». Такими «символами» в молекуле ДНК являются нуклеотиды. В гигантской молекуле ДНК, состоящей из нескольких тысяч последовательно расположенных нуклеотидов, закодирована, «зашифрована» запись структур ряда молекул белка. Длинная нитевидная молекула ДНК состоит из ряда следующих друг за другом участков. Каждый из них содержит информацию о структуре какого-либо одного белка.
В ЗАВИСИМОСТИ от СТАДИИ КЛЕТОЧНОГО (МИТОТИЧЕСКОГО) ЦИКЛА ХРОМОСОМЫ МЕНЯЮТ СВОЮ СТРУКТУРУ в СООТВЕТСТВИИ с ИЗМЕНЕНИЕМ ФУНКЦИОНАЛЬНЫХ ПРИОРИТЕТОВ; ВЫДЕЛЯЮТ ДВА “КРАЙНИХ” СТРУКТУРНЫХ ВАРИАНТА ХРОМОСОМ ИНТЕРФАЗНЫЙ и МЕТАФАЗНЫЙ;
ИНТЕРФАЗНЫЙ СТРУКТУРНЫЙ ВАРИАНТ ХРОМОСОМ ХАРАКТЕРИЗУЕТСЯ ОПРЕДЕЛЕННЫМ РАЗНООБРАЗИЕМ от УЧАСТКА к УЧАСТКУ ХРОМОСОМЫ ЭУХРОМАТИН и ГЕТЕРОХРОМАТИН;
эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
Упаковка днк:
Существуют две наиболее известные модели, объясняющие механизм упаковки хроматина. Согласно одной из них, наиболее известной в зарубежной литературе, нить ДНК претерпевает пять уровней компактизацни от 2 нм (ее собственный диаметр) до 1400 нм (высококонденсированная метафазная хромосома). Низшим уровнем иерархической организации хромосом считается нуклеосомный. Нуклеосома состоит из кора (сердцевины, стержня) и намотанной на негоДНК(146 п.н„ 1,8 витка). Кор представляет собой гистоновый октамер Н2А, Н2В, НЗ, Н4 (по две молекулы каждого). Хроматин на этой стадии имеет вид «бусин» (глобул диаметром 11 нм), нанизанных на «нить» (молекулярную ДНК). Такая структура обеспечивает компактизацию примерно в 67 раз. Вторая ступенькомпактизации - формирование хроматиновой фибриллы диаметром 30 нм. В этом процессе участвует гистон HI, который связывается с ДНК между нуклеосомными корами и сворачивает нуклеосомную фибриллу в спираль, наполобие соленоида, с шагом в 6-8 нуклеосом. Уровень компактизации на этом этапе достигает примерно 40.
Третий этап петельно-доменный наиболее сложный. Соленоидная фибрилла складывается, образуя петли различной длины. Общий уровень компак-тизации возрастает до 1000, но, очевидно, может различаться в различных районах хромосомы. Диаметр такой структуры в среднем составляет 300 нм., по-видимому, она наиболее типична для интерфазной хромосомы.
На четвертом этапе компактизации 300 нм-фибриллы дополнительно сворачиваются, образуя хроматиды диаметром примерно 600-700 нм.
Последняя, пятая, ступень компактизации (в 7000 раз) характерна для метафазной хромосомы; ее диаметр равен 1400 нм.
Вопрос 14. Морфологическиая и функциональная характеристика хромосом. Гетер- и эухрамотин.
Хромосомы это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.
Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.
Метафазная хромосома состоит из двух продольных субъединиц хроматид [электронная микроскопия выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].
Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,510 микрон.
Химической основой строения хромосом являются нуклеопротеиды комплексы нуклеиновых кислот с основными белками гистонами и протаминами.
Индивидуальные хромосомы различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.
Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
Классификация и функции хроматина: различают гетеро- и эухроматин.
а) гетерохроматин:
• факультативный - образуется при Спирализации одной из двух гомологичных хромосом. Типичным примером служит Тельце полового хроматина, образуемого одной из двух Х-хромосом соматических Клеток женских особей человека и млекопитающих. Функциональная роль Факультативного гетерохроматина заключается в компенсации снижении дозы определенного Гена.
• структурный ~ отличается Высокоспирализованным состоянием, которое сохраняется на протяжении всего мит. Цикла. Он занимает постоянные участки в гомологичных хромосомах - это фрагменты Околоцентромерных, теломерных участков хромосом, Не содержит структурных генов (нетранскрибируемый); Его роль не ясна, но по видимому он выполняет опорную Функцию.
б) эухроматин - имеет менее компактную организацию, деспирализуется в Конце митоза, образует слабоокрашенные нитчатые структуры содержит структурные транскрибируемые Гены: в каждой хромосоме свой порядок расположения эухроматина и гетерохроматина. Что Используется для идентификации отдельных хромосом в цитогенетике.
Вопрос 15. Сцепление генов. Кроссиноговер.
Сцепление генов, совместная передача двух или более генов от родителей потомкам. Объясняется тем, что эти гены лежат в одной хромосоме, то есть принадлежат одной группе сцепления и поэтому не могут случайно перекомбинироваться в мейозе, как это бывает при наследовании генов, лежащих в разных хромосомах. С. г. было открыто в 1906 английскими генетиками У. Бэтсоном и Р. Пеннетом, обнаружившими в опытах по скрещиванию растений у некоторых генов тенденцию передаваться совместно и тем самым нарушать закон независимого комбинирования признаков (см. Менделя законы, Менделизм). Правильное объяснение этому дали Т. Морган и сотрудники, обнаружившие аналогичное явление при изучении наследования признаков у дрозофилы.
Мерой С. г. служит частота образования гетерозиготой по этим генам кроссоверных гамет или спор, в которых гены находятся не в исходных, а в новых сочетаниях благодаря обмену частями несущих их гомологичных хромосом путём кроссинговера
Сила С. г. может быть различной у разных полов (обычно она больше у гетерогаметного пола, см. Половые хромосомы) или даже С. г. может быть полным (отсутствие кроссинговера) у одного из полов (например, у самцов дрозофилы или у самок тутового шелкопряда). Кроме того, сила С. г. может варьировать в зависимости от возраста родителей, температуры, наличия хромосомных перестроек и др. факторов, а также от присутствия особых мутантных генов, специфически влияющих на силу С. г.
Кроссинговер перекрест, взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей хроматид; приводит к новым комбинациям аллелей разных генов. Важнейший механизм, обеспечивающий комбинативную изменчивость в популяциях и тем самым дающий материал для естественного отбора. Протекает в мейотически, реже в митотически делящихся клетках. Может приводить к перекомбинации больших участков хромосомы с несколькими генами или частей одного гена (внутригенный кроссинговер), обеих нитей молекулы ДНК или только одной. Частота кроссинговера между генами отражает расстояние между ними в хромосоме. Иными словами, в паре гомологичных хромосом между несестринскими хроматидами происходит обмен гомологичными участками. Поскольку в паре хромосом одна хромосома происходит от матери, а другая от отца, процесс кроссинговера ведет к внутрихромосомным рекомбинациям наследственности. Молекулярный механизм кроссинговера окончательно не выяснен.
Вопрос 16. Карты хромосом:генетические,цитологические,физические
Генетические карты хромосом это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.
Впервые в 1913 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом [1]. Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.
Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом.
Физическая карта графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов.
Цитологические карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на генетической карте организма, установленное на основе частоты перекреста участков хромосом (кроссинговера), на Ц. к. х. привязано к определённому, реально существующему участку хромосомы, что служит одним из основных доказательств хромосомной теории наследственности. Для построения Ц. к. х. используют данные анализа хромосомных перестроек (вставки, делеции и др.) и, сопоставляя изменения морфологических признаков хромосом при этих перестройках с изменениями генетических свойств организма, устанавливают место того или иного гена в хромосоме. Цитологическими методами легко определить отсутствие участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетическими показало, что физическое расстояние между генами в хромосомах не соответствует генетическому (видимо, частота кроссинговера неодинакова в разных участках хромосом), поэтому плотность распределения генов на цитологических и генетических картах хромосом различна. Так было установлено важное генетическое явление неравномерность частот перекреста по длине хромосомы. Линейное расположение генов и их последовательность, установленные генетическими методами, подтверждаются Ц. к. х. Современные методы цитологии и генетики позволяют построить Ц. к. х. многих организмов, в том числе человека.
Вопрос 17.Механизмы генотипического определения и дифференциации признаков пола в онтогенезе
Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1:1.
Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола (гетерогаметный пол) и одного вида гамет особями другого пола (гомогаметный пол). Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах. У гомогаметного пола, имеющего одинаковые половые хромосомы XX, все гаметы несут гаплоидный набор аутосом плюс Х-хромосому. У гетерогаметного пола в кариотипе кроме аутосом содержатся две разные или только одна половая хромосома (XY или ХО). Его представители образуют два вида гамет, различающиеся по гетеро-хромосомам: X и Y или X и 0.
У большинства видов развитие признаков пола осуществляется на основе наследственной программы, заключенной в генотип. Однако известны примеры, когда половая принадлежность организма целиком зависит от условий, в которых он развивается.
У высших организмов значение среды в определении признаков пола, как правило, невелико. Возможность переопределения пола обусловлена тем, что первичные закладки гонад у эмбрионов всех животных изначально бисексуальны. В процессе онтогенеза происходит выбор направления развития закладки в сторону признаков одного пола, включая дифференцировку половых желез, формирование половых путей и вторичных половых признаков. Первостепенная роль в развитии мужского или женского фенотипа принадлежит гормонам, образуемым гонадами.
Генотип особи заключает в себе информацию о возможности формирования признаков того или иного пола, которая реализуется лишь при определенных условиях индивидуального развития. Изменение этих условий может стать причиной переопределения признаков пола.
Вопрос 18 Наследование признаков,сцепленных с полом.
Наследование, сцепленное с полом наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах,- называется наследованием, ограниченным полом.
Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.
Примеры заболеваний человека, сцепленного с полом:
· Гемофилия A
· Гемофилия В
· Дальтонизм
· Лекарственная гемолитическая анемия, связанная с дефицитом глюкозо-6-фосфатдегидрогеназы (Г6ФД)
· Синдром Леша-Найхана
· X-связанный ихтиоз
Сцепленное наследование - это наследование признаков, расположенных в одной хромосоме.
Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом. Характер наследования признаков зависит от положения генов в хромосомах. Если гены располагаются в аутосомах, то признак наследуется одинаково, независимо от пола особи. По иному наследуются признаки, расположенные в половых хромосомах, т.к. Х-хромосома присутствует у обоих полов, то в ней располагаются жизненно важные гены. Х-хромосома встречается у особей только одного пола и несет очень ограниченное число генов, характерных только для соответствующего пола. Наличие или отсутствие ее может привести лишь к изменению развития половых признаков или несущественных признаков. Основные признаки, сосредоточенные в половой паре, организм наследует по Х-хромосоме. У гомогаметных особей (XX) хромосомы парные, поэтому могут нести признаки как доминантные, так и рецессивные, а у гетерогаметных особей (XY) хромосомы непарные, и важные гены несет только Х-хромосома. Признаки, расположенные в половых хромосомах, сцеплены с полом особи и проявляются по-разному у различных полов. В У-хромосоме содержится меньше генов, чем в Х-хромосоме, т.к. У-хромосома короче Х-хромосомы, поэтому некоторые гены, находящиеся в Х-хромосоме за редким исключением не имеют аллельных локусов на У-хромосоме. Таким образом, рецессивные гены в Х-хромосоме находятся в единственном числе. Если одна из X-хромосом содержит рецессивный ген, определяющий проявления аномального признака, то носителем признака является сука, а признак проявляется у кабелей. Рецессивный признак от матерей передается сыновьям и проявляется, а от отцов передается дочерям. Изучением наследования сцепленных генов занимался Т.Морган, который обнаружил, что такие гены не подчиняются закону независимого наследования. Сцепление генов в хромосомах может быть полным и неполным. Степень сцепления зависит от расстояния между генами и от вероятности кроссинговера между гомологичными хромосомами во время первого деления мейоза.
Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган). Гены, находящиеся в одной хромосоме, наследуются совместно. Сцепление генов может нарушаться в результате кроссинговера. Количество кроссверных особей всегда значительно меньше, чем количество основных особей.
Вопрос19. Ген -функциональная единица наследственности. Классификация и свойства гена
Ген (др.-греч. γένος род) структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.
Классификация
Структурные гены гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном
Функциональные гены - гены, которые контролируют и направляют деятельность структурных генов.
Свойства гена
дискретность несмешиваемость генов;
стабильность способность сохранять структуру;
лабильность способность многократно мутировать;
множественный аллелизм многие гены существуют в популяции во множестве молекулярных форм;
аллельность в генотипе диплоидных организмов только две формы гена;
специфичность каждый ген кодирует свой признак;
плейотропия множественный эффект гена;
экспрессивность степень выраженности гена в признаке;
пенетрантность частота проявления гена в фенотипе;
амплификация увеличение количества копий гена.
Вопрос20 генетическая инженерия ее задачи методы и перспективы
ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.
Методы генной инженерии:
- метод секвенирования определение нуклеотидной последовательности ДНК;
- метод обратной транскрипции ДНК;
- размножение отдельных фрагментов ДНК.
Современная биотехнология это новое научно-техническое направление, возникшее в 6070-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность
получения с помощью легко доступных, возобновляемых ресурсов тех веществ
и которые важны для жизни и благосостояния.
Генная, или генетическая инженерия (genetic engineering, genetic modification technology) это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне
Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК (recDNA) или рекРНК (recRNA) вне биологических систем (in vitro), а затем вводить их в клетки.
Возможность прямой (горизонтальной) передачи генетической информации от одного биологического вида другому была доказана в опытах Ф. Гриффита с пневмококками (1928).
Однако генная инженерия как технология рекДНК возникла в 1972 г., когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.
С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике.
С 1996 г. генетически модифицированные растения (genetic modified plants) начинают использоваться в сельском хозяйстве.
Задачи генной инженерии
Основные направления генетической модификации организмов:
придание устойчивости к ядохимикатам (например, к определенным гербицидам);
придание устойчивости к вредителям и болезням (например, Bt-модификация);
повышение продуктивности (например, быстрый рост трансгенного лосося);
придание особых качеств (например, изменение химического состава).
Методы генной инженерии
Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
Для получения исходных фрагментов ДНК разных организмов используется несколько способов:
Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).
Прямой химический синтез ДНК, например, для создания зондов.
Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).
Таким образом, генная инженерия в будущем, возможно, обеспечит создание организмов с новыми свойствами, например, бактерий, синтезирующих человеческие гормоны, микроорганизмов, обладающих повышенной продуктивностью для получения антибиотиков, а в гораздо более отдаленном будущем, может быть, поможет человечеству избавиться от наследственных болезней.
21 Формы изменчивости , их значение в онтогенезе и эколюции.
Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности -- генов, влекущие за собой изменения наследственных признаков. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.
Классификация мутаций. Мутации можно объединять, в группы -классифицировать по характеру проявления, по месту или, по уровню их возникновения.
Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью -- летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся -- мутировавший -- ген, мутации могут передаваться потомству. Такие мутации называют соматическими.Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом). Полиплоидия -- увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т.д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.
Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды получают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена. Гетероплоидия - изменение числа хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с снндромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом. У людей с синдромом Шерешевского --Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.
Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.
Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т.д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот так и у гетерозигот, вторые -- только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).
При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.
Свойства мутаций.
1. Мутации возникают внезапно, скачкообразно.
2. Мутации наследственны, то есть стойко передаются из поколения в поколение.
3. Мутации ненаправленные - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.
4. Одни и те же мутации могут возникать повторно.
5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.
Способность к мутированию -- одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак -- жирность молока -- слабо подвержен изменениям условий среды, а масть животного -- еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, то есть пределы модификационной изменчивости, называется нормой реакции. Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции -- жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и другое. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.Свойства модификаций:
1) ненаследуемость;
2) групповой характер изменений;
3) соотнесение изменений действию определенного фактора среды;
4) обусловленность пределов изменчивости генотипом.
Вопрос 20. Модификационная изменчивость. Норма реакции
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак -- жирность молока -- слабо подвержен изменениям условий среды, а масть животного -- еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, то есть пределы модификационной изменчивости, называется нормой реакции. Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции -- жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и другое. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.Свойства модификаций:
1) ненаследуемость;
2) групповой характер изменений;
3) соотнесение изменений действию определенного фактора среды;
4) обусловленность пределов изменчивости генотипом.
Предел проявления модификационной изменчивости организма при неизменном генотипе норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы интенсивность окраски большинства животных и многие другие качественные признаки.
Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.
Характеристика модификационной изменчивости
· обратимость изменения исчезают при смене специфических условий окружающей среды, спровоцировавших их
· групповой характер
· изменения в фенотипе не наследуются, наследуется норма реакции генотипа
· статистическая закономерность вариационных рядов
· затрагивает фенотип, при этом не затрагивая сам генотип.
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают:
1) при кроссинговере, во время профазы первого мейотического деления;
2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления;
3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления
4) при слиянии разных половых клеток.
Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.
В селекции важное значение имеет закон гомологических рядов наследственной изменчивости, сформулированный советским ученым Н. И. Вавиловым. Он гласит:
Внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих -- у грызунов, хищных, приматов; малорослые темнокожие люди - пигмеи встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия - у мыши и кошки, диабет - у крысы; врожденная глухота - у морской свинки, мыши, собаки; заячья губа - у мыши, собаки, свиньи и т. д. Эти наследственные дефекты -- убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.
Предел проявления модификационной изменчивости организма при неизменном генотипе норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки, узкие пределы интенсивность окраски большинства животных и многие другие качественные признаки.
Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.
Вопрос 23 Генотип. Фенотим Роль наследсвтенности и среды в развитии, обучении и воспитании человека
Генотип это наследственная основа организма, совокупность генов, локализованных в его хромосомах, это генетическая конституция, которую организм получает от своих родителей.
Фенотип совокупность всех свойств и признаков организма, сформировавшихся в процессе его индивидуального развития. Фенотип определяется взаимодействием организма с условиями среды, в которых протекает его развитие. В отличие от генотипа фенотип изменяется в течение всей жизни организма и зависит от генотипа и среды. Одинаковые генотипы (у однояйцевых близнецов), оказавшись в различных средах, могут давать различные фенотипы. С учетом всех факторов воздействия фенотип человека можно представить состоящим из нескольких элементов. К ним относятся:
- биологические задатки, кодируемые в генах;
- среда (социальная и природная);
- деятельность индивида;
- ум (сознание, мышление).
Исходя из сложной структуры фенотипа человека, можно сказать, что предметом евгеники, является только один первый из указанных элементов. Представители евгеники абсолютизируют именно его. В то же время социальные элементы фенотипа человека остаются вне их поля зрения. В этом состоит ограниченность позиции последователей данной теории.
Взаимодействие наследственности и среды в развитии человека играет важную роль на протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.
Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.
Вопрос24. Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, плейотропное действие генов, генокопии.
Фенотипическое проявление информации, заключенной в генотипе, характеризуется показателями пенетрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у которых доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля. Экспрессивность также является показателем, характеризующем фенотипическое проявление наследственной информации. Она характеризует степень выраженности признака и, с одной стороны, зависит от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследовании, а с другой стороны от факторов среды.
При прямой плейотропии все разнообразные дефекты, возникающие в различных тканях или органах, вызываются непосредственным действием одного и того же гена именно в этих разных местах. В случае относительной плейотропии существует одно первичное место действия мутантного гена, а все остальные наблюдаемые при ней симптомы возникают как следствие.
Никакие признаки не наследуются. Признаки развиваются на основе взаимодействия генотипа и среды. Наследуется только генотип, т.е. комплекс генов, который определяет норму биологической реакции организма, изменяющую проявление и выраженность признаков в разных условиях среды. Таким образом, организм реагирует на свойства внешней среды. Иногда один и тот же ген в зависимости от генотипа и от условий внешней среды по-разному проявляет признак или меняет полноту выраженности.
Экспрессивность-степень фенотипич. проявления одного и того же аллеля определённого гена у разных особей Образно ее можно сравнить со степенью тяжести болезни в клинической практике. Экспрессивность подчиняется законам распределения Гаусса (некоторые в малом или среднем количестве). В основе изменчивости экспрессивности лежат и генетические факторы, и факторы внешней среды. Экспрессивность очень важный показатель фенотипического проявления гена. Количественно ее степень определяют, используя статистический показатель.
Генетический признак может даже не проявляться в некоторых случаях. Если ген есть в генотипе, но он вовсе не проявляется он пенетрирован. (русский ученый Тимофеев-Рисовский 1927 год).
Пенетрантность количество особей (%), проявляющих в фенотипе данный ген, по отношению к количеству особей, у которых этот признак мог бы проявиться. Пенетрантность свойственна проявлению многих генов. Важен принцип «все или ничего» - либо проявляется, любо нет. Проявление гена у 100% особей с соответствующим генотипом называется полной П., в остальных случаях неполной П. Неполная П. свойственна проявлению многих генов человека, животных, растений и микроорганизмов. Например, некоторые наследственные болезни человека развиваются только у части лиц, в генотипе которых присутствует аномальный ген; у остальных же наследственное предрасположение к болезни остаётся нереализованным. Неполная П. гена обусловлена сложностью и многоступенчатостью процессов, протекающих от первичного действия генов на молекулярном уровне до формирования конечных признаков на уровне целостного организма. П. гена может варьировать в широких пределах в зависимости от генотипической среды. Путём селекции можно получать линии особей с заданным уровнем П. Средний уровень П. зависит также от условий среды.
Ген может действовать плейотропно (множественно), т.е. опосредовано влиять на течение разных реакций и развитие многих признаков. Гены могут оказывать влияние на другие признаки на разных стадиях онтогенеза. Если ген включается в позднем онтогенезе, то оказывается незначительное действие. Если на ранних стадиях изменения более значительны.
Плейотропия (от греч. Pleion более многочисленный, больший и tropos поворот, направление), множественное действие гена, способность одного наследственного фактора гена воздействовать одновременно на несколько разных признаков организма.
генов, расположенных в разных участках хромосомы или в разных хромосомах (т. н. мутантные аллели). Явление Г., установленное прежде всего на высших организмах, свидетельствует о сложном характере наследования многих признаков. Биохимическая природа Г. заключается в наличии в клетке несколько параллельных путей синтеза тех или иных её компонентов например, синтез тимидаловой кислоты в бактериальной клетке может осуществляться как из уридиловой, так и из цитидиловой кислот). Разные мутации, действие которых реализуется через один и тот же процесс или орган) могут с неодинаковой полнотой копировать друг друга по своему конечному эффекту; в свою очередь, их конечный эффект может имитироваться при действии различных внешних факторов (см. Фенокопия). Явления Г. фенокопии очень важны для понимания
механизмов реализации наследственных (при Г.) и ненаследственных (при фенокопиях) аномалий и болезней у человека.
Вопрос 25. Комбинативная изменчивость,ее значение в обеспечении генетического разнообразия.
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают:
1) при кроссинговере, во время профазы первого мейотического деления;
2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления;
3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления
4) при слиянии разных половых клеток.
Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.
Комбинативная изменчивость, проявляющаяся в генотипическом разнообразии особей, повышает выживаемость вида в изменяющихся условиях его существования.
Вопрос 26. Онтогенетическая изменчивость у человека (на примере синтеза гемоглобинов),ее механизмы.
ОНТОГЕНЕТИЧЕСКАЯ ИЗМЕНЧИВОСТЬ изменчивость, происходящая в процессе жизни организма и представляющая собой различие между молодым и взрослым организмами на разных этапах развития (напр., молодые растения часто имеют более простое строение листовой пластинки, которая в процессе роста растения усложняется).
Гемоглоби́н A, или ΗbA нормальный гемоглобин взрослого человека.
Гемоглоби́н F (HbF) фетальный, плодный тип гемоглобина человека.
Гемоглобин F начинает синтезироваться с 12-14 недели развития плода (с момента формирования плаценты), заменяя эмбриональный гемоглобин. Его первичная структура отличается от первичной структуры гемоглобина А в тридцати девяти позициях (последовательность β-цепей по сравнению с таковой у γ-цепей). Эти отличия лежат в основе отличий физико-химических свойств гемоглобина А от гемоглобина F. Фетальный гемоглобин является устойчивым к денатурирующему воздействию щёлочи. Это отличительное свойство легло в основу метода количественного определения фетального гемоглобина. Кроме того, фетальный гемоглобин в большей степени способен превращаться в метгемоглобин, имеет специфический спектр поглощения в ультрафиолетовой части спектра. К моменту рождения на долю фетального гемоглобина приходится 80-85 % от общего количества. Синтез фетального гемоглобина в течение первого года жизни замедляется, заменяясь гемоглобином взрослого типа. К трём годам его количество соответствует содержанию HbF у взрослого человека и составляет 1-1,5 %.
Вопрос 27. Мутационная изменчивость. Классификация мутаций.
Мутационная изменчивость изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы).
Основные положения мутационной теории в 19011903 годах разработал Гуго де Фриз:
· Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
· В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
· Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
· Вероятность обнаружения мутаций зависит от числа исследованных особей.
· Сходные мутации могут возникать повторно.
· Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, то есть совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.
Мутационная изменчивость проявляется в наследственных структурах, отличающихся разным уровнем организации. Мутации могут происходить на генном, хромосомном и геномном уровнях. В зависимости от этого изменяются и виды мутационной изменчивости.
Генные изменения затрагивают структуру ДНК, в результате чего она меняется на молекулярном уровне. Такие изменения в некоторых случаях никак не влияют на жизнеспособность белка, т.е. функции никак не меняются. Но в других случаях могут происходить дефектные образования, что уже прекращает способность белка выполнять свою функцию.
Мутации на хромосомном уровне уже несут более серьёзную угрозу, потому что они влияют на формирование хромосомных болезней. Результатом такой изменчивости являются изменения в структуре хромосом, а здесь уже задействовано сразу несколько генов. Из-за этого может изменяться обычный диплоидный набор, что в свою очередь может в целом повлиять и на ДНК.
Геномные мутации также как и хромосомные могут стать причиной формирования хромосомной болезни. Примеры мутационной изменчивости на этом уровне - анеуплоидия и полиплоидия. Это увеличение или уменьшение числа хромосом, которые для человека чаще всего оказываются летальными.
К геномным мутациям относится трисомия, означающая наличие трёх гомологических хромосомы в кариотипе (увеличение количества). Такой отклонение приводит к формированию синдрома Эдвардса и синдрома Дауна. Моносомия означает наличие только одной из двух гомологических хромосом (уменьшение количества), что практически исключает нормальное развитие эмбриона.
Причиной возникновения подобных явлений становятся нарушения на разных стадиях развития половых клеток. Происходит это в результате анафазного отставания - гомологические хромосомы при делении клетки движутся к полюсам, и одна из них может отставать. Также существует понятие "нерасхождение", когда хромосомы не смогли разделиться на стадии митоза или мейоза. Результатом этого становится проявление нарушений разной степени тяжести. Изучение данного явления поможет разгадать механизмы и, вероятно, даст возможность предсказывать и влиять на эти процессы.
Вопрос 28. Генные мутации,их классификация и механизмы.
Генные (точковые) мутации - это изменения числа и/или последовательности нуклеотидов в структуре ДНК (вставки, выпадения, перемещения, замещения нуклеотидов) в пределах отдельных генов, приводящие к изменению количества или качества соответствующих белковых п По характеру изменений в составе гена различают следующие типы мутаций:
Делеции утрата сегмента ДНК размером от одного нуклеотида до гена.
Дупликации удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов.
Инверсии поворот на 180° сегмента ДНК размером от двух нуклеотидов до фрагмента, включающего несколько генов.
Инсерции вставка фрагментов ДНК размером от одного нуклеотида до целого гена.
Трансверсии замена пуринового основания на пиримидиновое или наоборот в одном из кодонов.
Транзиции замена одного пуринового основания на другое пуриновое или одного пиримидинового на другое в структуре кодона.
Механизмы генных мутаций.
По последствиям генных мутаций их классифицируют на нейтральные, регу-ляторные и динамические, а также на миссенс- и нонсенс-мутации.
Нейтральная мутации (молчащая мутация) мутация не имеет фенотипи-ческого выражения (например, в результате вырожденности генетического кода).
Миссенс-мутация замена нуклеотида в кодирующей части гена приводит к замене аминокислоты в полипептиде.
Нонсенс-мутация замена нуклеотида в кодирующей части гена приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции.
Регуляторная мутация мутация в 5'- или З'-нетранслируемых областях гена, такая мутация нарушает экспрессию гена.
Динамические мутации мутации, обусловленные увеличением числа три-нуклеотидных повторов в функционально значимых частях гена. Такие мутации могут привести к торможению или блокаде транскрипции, приобретению белковыми молекулами свойств, нарушающих их нормальный метаболизм. родуктов.
Вопрос 29. Хромосомные мутации. Их классификации и механизмы.
Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. При них последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу, что пагубно сказывается на нормальном развитии организма.
Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.
Внутрихромосомные аберрации аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.
Делеция утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.
Инверсия встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.
Дупликация удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР, включая микроцефалию, задержку физического, психического и интеллектуального развития).
Межхромосомные аберрации обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций: реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).
Изохромосомные аберрации образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название центрическое соединение).
Вопрос 30. Полиплоидия и гетероплоидия,их механизмы. Явление нерасхождения хромосом как причины хромосомных болезней. Примеры.
Полиплоидия (от греч. polýploos многопутный, здесь многократный и éidos вид), кратное увеличение числа хромосом в клетках растений или животных. П. широко распространена в мире растений. Среди раздельнополых животных встречается редко, главным образом у аскарид и некоторых земноводных.
Кратное увеличение числа хромосом в клетках может возникать под действием высокой или низкой температуры, ионизирующих излучений, химических веществ, а также в результате изменения физиологического состояния клетки. Механизм действия этих факторов сводится к нарушению расхождения хромосом в митозе или мейозе и образованию клеток с кратно увеличенным числом хромосом по сравнению с исходной клеткой. Из химических агентов, вызывающих нарушение правильного расхождения хромосом, наиболее эффективен алкалоид колхицин, препятствующий образованию нитей веретена деления клетки.
Гетероплоидия (анеуплоидия) явление, при кбтором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Формы, имеющие дополнительные хромосомы, называются полисомиками. Форма 2п +1 трисомик, так как одна хромосома повторена трижды.
Гетероплоидные клетки могут появляться в результате нарушений мейоза или митоза. Например, нерасхождение пары хромосом (АН) в мейозе приводит к образованию. При участии таких гамет в оплодотворении появятся гетероплоидные формы 2п-А.
1. Причины хромосомных болезней Причиной хромосомных болезней является нарушение хромосомного набора в зиготе, из которой развился организм. Иногда течение мейоза может нарушиться, в результате чего отмечается нерасхождение хромосом при редукционном делении. При этом в одной из гамет могут оказаться обе гомологические хромосомы, а другая гамета лишается их обеих. Если речь идет о женских гаметах, то образуется яйцеклетка ХХ и 0, если о мужских - то ХY и 0. При оплодотворении аномальных яйцеклеток сперматозоидами с Х- и Y-хромосомами возможны зиготы с наборами:
ХХХ, ХХY, Х0, Y0 и др.
2. Некоторые патологические сочетания хромосом Неправильное расхождение хромосом лежит в основе обширной группы наследственных аномалий.
При сочетании ХХХ рождается девочка. У нее оказываются недоразвитыми половые железы, а в ряде случаев отмечается интеллектуальная неполноценность.
При сочетании ХХY рождается мальчик с синдромом Клайнфельтера; он также неполноценен в интеллектуальном и физическом отношении.
Сочетание Х0 наблюдается у некоторых женщин с синдромом Шерешевского-Тернера. Больные отличаются малым ростом, медленным половым созреванием, недоразвитием половых органов и бесплодием.
Что касается Y0, то эти зиготы настолько дефектны, что погибают на ранних этапах развития.
Встречаются женщины с четырьмя Х-хромосомами и мужчины с резко выраженным синдромом Клайнфельтера, обладающие, помимо определяющей мужской пол Y-хромосомы, еще тремя или даже четырьмя Х-хромосомами - ХХХY и ХХХХY. При избыточном числе Х-хромосом наблюдается ряд морфологических аномалий.
В последнее время обнаружены также мужчины с генотипом ХYY и ХХYY. Такое изменение числа половых хромосом сочетается с антиобщественным поведением.
У человека и млекопитающих в соматических клетках, содержащих две Х-хромосомы, одна их них, образующая участки хроматина, хорошо заметна при специальной обработке даже в интерклеточных ядрах. Эта клетка получила название Х-хроматина, или тельца Барра. Определение полового хроматина дает возможность предварительной хромосомной диагностики пола. Метод определения полового хроматина в слюне, со слизистой оболочки полости рта широко внедряется в медицинской практике.
Явление нерасхождения свойственно не только половым хромосомам, но и любой из 22 пар аутосом. Очевидно, что аутосомных аномалий, затрагивающих лишь одну из хромосом, может быть 22 с одной лишней хромосомой и 22 с одной недостающей хромосомой. При многих из этих аномалий, касающихся крупных хромосом, плод, по-видимому, погибает задолго до рождения. Другие аутосомные эмбриопатии приводят к появлению тяжелейших соматических и психических уродств.
3. Трисомия В 1959 г. было установлено, что при болезни Дауна, характеризующейся умственной отсталостью и комплексом конституциональных аномалий - маленькая голова, узкий разрез глаз, плоское лицо, маленький нос и полуоткрытый рот, в клетках больного оказывается 47 хромосом.
Болезнь Дауна обусловлена трисомиейпо очень маленькой хромосоме из 21-й пары. С этим синдромом рождается около 0,15 % детей. В этиологии синдрома Дауна большое значение имеет возраст матери. У матерей в возрасте старше 35 лет дети с болезнью Дауна рождаются в 100 раз чаще, чем у 19-летних.
Описаны трисомии по хромосомам, которые относятся к 16-18-й парам и характеризуются рядом аномалий - низким расположением ушей, очень маленькой нижней челюстью, выступающим затылком.
Еще более выраженные морфологические нарушения наблюдаются при трисомии по 13-15-й паре. У таких детей отмечаются отсутствие слуха, аномальное строение глазного яблока, волчья пасть, заячья губа и пр.
Причиной ряда эмбриопатий являются различные хромосомные аберрации, в частности транслокации. Встречается транслокация хромосомы 21 на хромосому 15. Такая хромосомная аберрация может стать причиной того, что в зиготе окажутся 3 хромосомы из 21-й пары, и тогда рождается ребенок с синдромом Дауна.
К тяжелым последствиям приводит утрата частей каких-либо хромосом. Например, при одной из форм хронического лейкоза обнаружено укорочение 21-й хромосомы. В данном случае мутация происходит, по-видимому, в соматической клетке. Потомство клетки, несущей дефект, постепенно вытесняет все нормальные лейкоциты, что и вызывает заболевание.
Вопрос 29. Спонтанные и индуцированные мутации. Мутагены. Принципы тестирования потенциальных мутагенов.
Мутация - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящие под влиянием внешней или внутренней с Мутации делятся на спонтанные и индуцированные.
Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды.
Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.
Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций удвоение ДНК, нарушения деления ДНК и генетическая перестройка.
Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений.
Мутагены
Существуют факторы, способные заметно увеличить частоту мутаций мутагенные факторы. К ним относятся:
• химические мутагены вещества, вызывающие мутации,
• физические мутагены ионизирующие излучения, в том числе повышение естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,
• биологические мутагены например, ретровирусы. реды. Процесс возникновения мутаций получил название мутагенеза.
Для тестирования всех веществ, с которыми на протяжении жизни человек может контактировать, потребовался бы непомерно большой объем работы, поэтому была признана необходимость первоочередной проверки на мутагенность лекарств, пищевых добавок, пестицидов, гербицидов, инсектицидов, косметических средств, наиболее широко распространенных загрязнителей воды и воздуха, а также производственных вредностей. Второй методологический принцип заключается в выборочности тестирования.
Это означает, что вещество анализируется на мутагенность при наличии двух обязательных условий: распространенности в среде обитания человека и наличии структурного сходства с известными мутагенами или канцерогенами. Отсутствие универсального теста, позволяющего одномоментно регистрировать индукцию изучаемым веществом (и его возможными метаболитами) различных категорий мутаций в половых и соматических клетках, служит основанием третьего принципа - комплексного использования специализированных тест-систем. Наконец, четвертый методологический принцип подразумевает ступенчатость тестирования веществ на мутагенную активность.
Этот принцип берет начало от одной из первых и наиболее известных схем, предложенной в 1973 г. Б, Бриджесом и предусматривавшей три последовательных этапа исследования.
1. На первом этапе мутагенные свойства вещества изучали простыми и быстро выполнимыми методами (с использованием микроорганизмов и дрозофилы в качестве тест-объектов) для определения его способности индуцировать генные мутации. Выявление такой способности предполагало запрет на применение данного вещества.
2. В случае особой медицинской или экономической значимости мутагена его тестировали на млекопитающих in vivo. Аналогичное исследование проводилось также для веществ, не продемонстрировавших мутагенных свойств в тестах первого этапа. Если исследуемый агент не проявлял мутагенных свойств, постулировалась безопасность применения его человеком. Вещества, проявившие мутагенность, либо запрещали для использования, либо, если они относились к категории особо значимых, или незаменимых, исследовали дополнительно.
3. На заключительном этапе проводили тестирование для установления количественных закономерностей мутагенного действия таких специфических веществ и оценку риска применения их человеком.
Данная схема послужила прототипом целого ряда методик комплексного тестирования на мутагенность. Принципиально новым шагом на пути развития этого направления следует считать программу, предложенную в 1996 г. Дж. Эшби с соавторами, Исключительно важной особенностью этой программы является ее направленность не только на оценку мутагенности тестируемого вещества, но и на прогноз канцерогенности данного химического соединения и возможного механизма канцерогенеза. Современная система доказательств взаимосвязи между процессами мутагенеза и канцерогенеза включает целый ряд экспериментальных подтверждений обсуждаемой проблемы.
Среди них: 1) наличие хорошо изученных наследственных заболеваний, при которых одновременно с повышенной чувствительностью к действию мутагенов наблюдается многократное превышение средней частоты возникновения злокачественных новообразований; 2) четко установленная сопряженность мутагенного и канцерогенного действия противоопухолевых цитостатиков, индуцирующих мутации в соматических клетках и за счет этого оказывающих терапевтическое воздействие, но способных вызывать у леченных онкологических больных развитие вторичных опухолей; 3) накопленные сведения о возможной активации протоонкогенов за счет индукции генных и хромосомных мутаций; 4) описание случаев спорадических моногенных доминантных мутаций, обусловливающих развитие опухолей различных органов.
В программе Дж. Эшби постулируется, что вещество не является канцерогеном, если оно не проявляет мутагенного и генотоксического действия in vivo. Те же вещества, которым названные эффекты свойственны, являются потенциальными генотоксическими канцерогенами.
Вопрос 31. Мутагенез и канцерогенез. Генетическая опасность загрязнения окружающей среды.
Мутагенез это внесение изменений в нуклеотидную последовательность ДНК (мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.
Естественный, или спонтанный, мутагенез происходит вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолет, радиация, химические мутагены.
Механизм мутагенеза
Последовательность событий приводящая к мутации (внутри хромосомы) выглядит следующим образом:
· Происходит повреждение ДНК.
· В случае, если повреждение произошло в незначащем (интрон) фрагменте ДНК, то мутации не происходит.
· В случае если повреждение произошло в значащем фрагменте (экзон), и произошла корректная репарация ДНК, или вследствие вырожденности генетического кода не произошло нарушения, то мутации не происходит.
· Только в случае такого повреждения ДНК, которое произошло в значащей части, которое не было корректно репарированно, которое изменило кодировку аминокислоты, или которое привело к выпадению части ДНК и соединению ДНК вновь в единую цепь то оно приведет к мутации.
· Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.
Точечные мутации
· Миссенс-мутация
· Мутация сдвига рамки считывания
· Нонсенс-мутация
· Синонимическая сеймсенс-мутация.
Хромосомные мутации
· Инверсии
· Реципрокные транслокации
· Делеции
· Дупликации и инсерционные транслокации
Геномные мутации
· Анеуплоидия
· Полиплоидия
Вопрос.31Спонтанные и индивидуальные мутации. Мутогенны принципы тестирования приципиальных мутогенов
Вопрос.32 Мутагенез и канцерогенез. Генетическая опасность загрязнение окружающей среды
Вопрос. 33 Тератогены и Тератогенез. Примеры.