Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Лекция 1 Электростатика

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 19.5.2024

48

                                                                                     -              -

Часть 2. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ. ВОЛНОВАЯ ОПТИКА

АТПП, ИДМ, БТМАС, СС, Химия, ВМКСС – второй семестр

ОГР, ТМО, МОП, СТМ, ООС, ПОТ – третий семестр


Лекция 1.     
Электростатика. Электрический заряд. Электростатическое поле. Напряженность электрического поля.

                                                      § 1 – 1 Электрический заряд.

Электричество как особый вид материи изучалось еще древними греками, но коли-чественная мера его  - электрический заряд – была введена лишь после опытов Кулона. Ос-

новным свойством заряда является его дискретность. Наименьший заряд, известный в настоящее время, равен 1,6·10 –19 Кулона (единица измерения – Кулон - будет определена позднее). Предполагается, что возможны дробные части этого заряда – кварки, но они до настоящего времени экспериментально не обнаружены. Однако, установлено, что сум-марная величина электрического заряда в доступной нашим наблюдениями части Вселен-ной остается постоянной. Это положение носит название закона сохранения заряда.

Существуют два различных типа электрических зарядов, один из которых по пред-ложению Б.Франклина был назван положительным, а другой – отрицательным. Субъек-тивный характер выбора такого названия привел к тому, что заряд электрона – наиболее известной элементарной частицы – оказался отрицательным. Это, в свою очередь, привело к некоторой путанице в определении направления электрического тока, но на первой стадии изучения электричества нас будут интересовать неподвижные заряды, обычно называемые статическими.

                                                 § 1 – 2 Закон Кулона.

Еще из школьного курса физики известно, что электрические заряды взаимодейст-вуют друг с другом. Величина силы взаимодействия измерена Кулоном, и закон, харак-теризующий силу взаимодействия двух статических точечных зарядов Q и q, носит его имя. Если учесть, что сила – это вектор, то этот закон может быть записан в таком виде:

                                                              

где  r /r – единичный вектор, направленный вдоль прямой, соединяющей оба заряда, расстояние между которыми равно r.

Коэффициент  k  вводится в связи с использованием определенной системы единиц. В принятой у нас системе СИ этот коэффициент выражается через так называемую диэлек-трическую постоянную вакуума ε0 = 8,86 · 10 –12 Ф/М ( k = 1/ 4π ε0). Причиной появления этого коэффициента является выбор единицы измерения заряда – в системе СИ заряд измеряется в Кулонах, являющихся производными единицами ( основной единицей служит Ампер – единица измерения силы тока).

Замечание: понятие точечного заряда является математической абстракцией, в действи-тельности приходится иметь дело с зарядами, заполняющими либо некоторый объем, либо некоторую площадь, а иногда – в случае тонких длинных проводов – некоторую длину. Как правило, заряды распределяются неравномерно, поэтому можно рассматривать объемную, поверхностную или линейную плотности зарядов, определяемые как:

                                             ;     ;      

где dV,dS и dl – бесконечно малые элементы объема, площади и длины соответственно.Ве-личина бесконечно малого заряда, который можно рассматривать как точечный, при этом определяется как dq1= ρdV,dq2 = σdS, dq3 = τdl.

                                  § 1 – 3 Напряженность электрического поля.

          В предыдущем разделе (механике) отмечалось, что любое взаимодействие тел, нахо-

дящихся на некотором расстоянии друг от друга, осуществляется посредством поля. При-менительно к электрическим зарядам это означает, что вокруг любого заряда существует особый вид материи – электрическое поле. Это поле не воспринимается непосредственно чувствами человека. Для обнаружения поля используются другие заряды, называемые пробными. Однако, из закона Кулона следует, что величина силы воздействия на пробный заряд  зависит  от величины этого заряда. Для характеристики самого поля вводится вели-чина силы, действующей на пробный заряд, отнесенная к величине этого пробного заряда. Эта величина называется напряженностью электрического поля. Другими словами можно сказать, что напряженность электрического поля есть сила, действующая на единич-ный положительный заряд, помещенный в данную точку поля. Если обозначить заряд, поле которого мы изучаем – Q, то напряженность поля в любой точке пространства вокруг этого заряда, находящейся на расстоянии r от него, равна:

                                E=(1/4) (Qr) /r3    ;         E  = (1/4)(Q/r2).

Напряженность поля от нескольких зарядов находится по принципу суперпозиции: напря-женность поля от суммы зарядов равна сумме всех напряженностей от каждого заряда в от-дельности, т.е. E (Σ Qi) = Σ (Ei).

 Этот принцип позволяет находить напряженность поля от любых зарядов, распреде-ленных в пространстве, причем, вместо суммы используются интегралы. Однако вычисле-ние осложняются тем, что напряженность  поля – вектор. Поэтому часто приходится сначала вычислять отдельные составляющие вектора Е, а общую величину находить их суммированием. Для прямоугольной системы координат это делается сравнительно просто:

                                                                 E2 = Ex2 + Ey2  +Ez2.

Простой пример: найти напряженность электрического поля, которую создает бесконечная нить, равномерно заряженная по длине с линейной плотностью τ. Для решения этой задачи необходимо найти поле от бесконечно малого (точечного) заряда dq и затем произвести суммирование по всей длине нити. Поле от заряда dq на расстоянии r от него (см.рис.1) рав-

Рис.1 Вычисление поля от бесконеч-ной нити.

но

dE = (1/4)(dq/r2),   dE = dEx +  dEy;

dEx = dEcosα ; dEy = dEsinα ;

Ex = dEx , Ey = dEy.

Для суммирования (интегрирования в нашем случае) удобно ввести одну переменную, а ос-тальные связать с ней при помощи геометри-ческих соотношений. За такую переменную можно взять угол . Тогда r = x/cos, y/x0 = tg.

Из последнего соотношения следует (dy/x0) = d/cos2.

                               Ex = =

                                     Ey =.     Ответ : Е = .

            Из приведенного примера следует, что принцип суперпозиции позволяет вычислить напряженность поля от любой конфигурации зарядов, представив ее как некую сумму бес-конечно малых (точечных) зарядов. Дело лишь в том, как проводить суммирование (интег-рирование). Для рассмотренного одномерного случая это простой интеграл. Для распре-деления зарядов по поверхности это будет двумерный (поверхностный) интеграл, для объемного распределения – трехмерный (объемный) интеграл. Для наглядного представ-ления электрическое поле принято изображать в виде линий, названных силовыми. Под си-ловыми линиями понимаются линии, касательные к которым в данной точке совпадают с направлением вектора напряженности в этой точке. Кроме того, было условлено, что гус-тота силовых линий должна быть пропорциональна величине напряженности. Силовые линии начинаются на положительных и кончаются на отрицательных зарядах. Картина силовых линий от двух точечных зарядов изображена на рис.2. Как видно из рисунка, в промежутке между зарядами силовые линии являются непрерывными.

Рис.2 Линии напряженности.

Это означает, что направление векторов напряженности во всех точках однозначно, т.к. линии нигде не пересекаются. Для количественного описания силовых линий вводится понятие потока.

Потоком вектора напряженности через за-данную поверхность называется скаляр-ное произведение вектора напряженности на величину этой поверхности:  Ф = (ЕS).

При этом предполагается, что поверхность  -

  •  это вектор, причем направление этого вектора определяется направлением внешней нормали n к поверхности, т.е. нормали, проведенной в сторону выпуклости поверхности (см. рис.3): dФ = (E dS) = EdS cos = En dS. Для плоской поверхности направление внешней нормали должно задаваться дополнительными условиями.  

Лекция 2  Теорема Остроградского-Гаусса

                                                     § 2 – 1 Теорема Остроградского-Гаусса.

Полный поток вектора напряженности электрического поля через любую замкнутую поверхность с точностью до коэффици-ента 1/0 равен алгебраической сумме зарядов, находящихся вну-три этой поверхности.

Доказательство этого утверждения проводится в три этапа. Сначала теорема доказывается для точечного заряда и выпуклой поверхнос-ти.Затем рассматривается поверхность любой формы, наконец , до-казательство формулируется для системы зарядов.

  1.  Рассмотрим точечный заряд Q. Опишем вокруг его воображаемую сферу и вычислим полный поток через эту поверхность. Для вычисления используем определение телесного угла d (см. рис.4):

Рис.4.Телесный угол.

 ;

                            Ф =  = 4 E R2,

т.к. в подинтегральном выражении величины E и R, а полный телесный угол равен 4. Подставляя вместо Е определение напря-женности поля для точечного заряда Q, находим, что

                                                                                   Ф =.

Рис.5. Различные формы прверхностей

Видно, что результат не зависит от радиуса сферы. Если поверхность несферическая, но выпуклая, то, как известно из стериометрии, dScos = dS  = dSn (см.рис.4), и вновь ре-зультат оказывается прежним.

2. Если поверхность интегрирования имеет произвольную форму, то для заряда внутри поверхности линии напряженности пересе-

кают ее нечетное количество раз (один или три) (см. рис.5), причем косинус угла между вектором напряженности и внешней нормалью к поверхности будет два раза положитель-ным и один раз отрицательным ( угол   - тупой), так что два слагаемых общего потока компенсируют друг друга.

         Если же заряд находится вне поверхности, то поток пересекает ее четное количество раз (два,  четыре и т.д) так, что положительные и отрицательные ( для тупых углов между  n и Е) слагаемые уничтожают друг друга и общий поток оказывается равным нулю.

3. Если зарядов несколько, то в силу принципа суперпозиции Е (Еi) = Еi ; Ф = Фi . Для каждого заряда в отдельности теорема доказана, значит она остается справедливой и для макроскопического (конечного) заряда, который можно представить в виде суммы точеч-ных зарядов.

             Математическая форма записи теоремы Гаусса имеет следующий вид:

                     Ф0 =   или в развернутом виде .

Следствие: если заряды, создающие поле, находятся вне воображаемой замкнутой поверх-ности, то поток напряженности через эту поверхность равен нулю.

Теорема Гаусса имеет достаточно важное значение, т.к. является одним из уравнений Максвелла, которые лежат в основе теории электромагнетизма. Кроме того, эта теорема может быть использована для вычисления напряженности. Для этого необходимо, чтобы величину Е можно было вынести из-под интеграла. Это можно сделать, если Е =const на всей поверхности интегрирования. Нетрудно догадаться, что воображаемая замкнутая поверхность должна иметь симметрию, подобную симметрии расположения зарядов. При этом удобно ее выбрать так, чтобы косинус угла между вектором Е и нормалью к поверхно-сти принимал значения либо 1 дибо 0. Таким условиям удовлетворяют три класса симмет-рии: сферическая, цилиндрическая и зеркальная, однако в двух последних случаях необхо-димо пренебрегать краевыми эффектами, т.к. на на краях нарушается распределение силовых линий. Ясно, что для выбора конфигурации поверхности необходимо знать, как направлен вектор Е. Здесь важно учитывать, что для статических зарядов напряженность поля вблизи зарядов должна быть перпендикулярной поверхности области распределения зарядов. В противном случае всегда будет составляющая поля, направленная вдоль поверх-ности распределения, что может вызвать электрический ток, и статическое распределение будет нарушено. Для иллюстрации полезно рассмотреть два примера.

                                                 Поле от бесконечной плоскости.

Рис.6. Поле от плоскости.

Пусть имеется плоскость, равномерно заряженная с поверхностною плотностью .Требуется найти напря-женность электрического поля в точке, отстоящей от плоскости на расстояние х0. Для решения задачи про-ведем замкнутую поверхность через заданную точку А (см. рис.6).Поверхность имеет форму прямоуголь-ного параллелепипеда, боковые грани которого пер-пендикулярны заряженной плоскости. Выбор такой формы поверхности связан с тем, что вектор напря-женности электрического поля Е вблизи плоскости должен быть нормален к ней. Кроме того, наша вооб-ражаемая поверхность должна быть симметричной относительно заряженной плоскости. Полный поток через поверхность параллелпипеда складывается из

потоков через его боковую поверхность и потоков через его верхнее и нижнее основания, параллельные заряженной плоскости. Но поток через боковые поверхности равен нулю, т.к. нормали ко всем четырем боковым граням перпендикулярны вектору Е и для них cos = =cos(n ^E) = 0. В силу симметрии потоки через верхнее и нижнее основания одинаковы так, что полный поток Ф0 = 2ЕАS. В то же время заряд, находящийся внутри нашей воображаемой поверхности равен заряду на заштрихованном (см.рис.6) участке, т.е. Q =  S. Тогда из теоремы Гаусса следует, что 2ЕАS =(1/0)  S, откуда

                                                                       ЕА =.

                                                       Поле от заряженной сферы.

Рис.7. Поле от сферы.

В качестве второго примера рассмотрим поле от заря-женной сферы, полный заряд которой равен Q. Если точ-ка А (см. рис7) , где требуется определить напряженность, находится вне заряженной сферы, то очевидно в качестве воображаемой поверхности выбрать сферу, концентри-ческую нашей заряженной сфере. В этом случае ЕА  па-раллельно n, и Ф0 = ЕАS.Т.к.площадь сферы равна 4R2, то из теоремы Гаусса нетрудно найти:

                                                                 

Лекция 3.   Работа по перемещению заряда в электрическом поле. Потенциал электростатического поля.

                          § 3 – 1. Работа по перемещению заряда в электрическом поле.

        Как уже отмечалось, на электрический заряд q со стороны поля, созданного зарядом Q,

действует кулоновская сила. Поэтому при перемещении заряда q в поле совершается рабо-та,величина которой определяется выражением dA = Fldlcos, где - угол между направ-

 Рис.8. К расчету элементарной

           работы.

лениями  силы и перемещения (см. рис 8).Учитывая, что Fcos = Fl имеем dA = Fldl. Для нашего случая F = qE; qE =   Из рис. видно, что dlcos =dR, и малая работа в поле равна

dA = ; A = = .

Из полученной форулы следует, что работа по пере-мещению заряда в поле не зависит от формы пути, т.е. электростатические силы являются потенциальными. Следовательно, заряд в поле обладает потенциальной энергией. Работа при изменении расстояния от R1 до R2 равна

                              = .

Из независимости работы от формы пути перемещения следует, что работа электро-статических сил по замкнутому пути равна нулю. В этом случае в первом интеграле величину заряда q, вынесенную за знак интегрирования, можно сократить. Тогда

                                                               .

В этой формуле интеграл с кружком обозначает так называемую циркуляцию, т.е. он обоз-начает, что интегрировапние проводится по замкнутому контуру. Справедливость этого утверждения следует из непосредственного выражения для элементарной работы при прод-

вижении вдоль элементарного перемещения dl: dA = Edlcos =El dl, где - угол между направлением силы и перемещения.

                                                                                                       

                                       § 3 – 2 Потенциал электрического поля.

Как уже отмечалось, пробный заряд в электрическом поле обладает потенциальной энергией. Однако  величина этой энергии зависит от величины заряда q. Для того, чтобы можно было охарактеризовать само поле, условились относить величину потенциальной энергии заряда q к величине этого заряда. Эту величину принято называть потенциалом электрического поля. Здесь необходимо напомнить, что само определение потенциальной энергии содержит в себе неоднозначность, т.к. эта энергия определена с точностью до некоторой постоянной. Для однозначной характеристики электрического поля принято определять эту постоянную при удалении заряда q на бесконечность. Считается, что два за-ряда, удаленные друг от друга на бесконечность, не взаимодействуют, т.е. их энергия взаимодействия и, следовательно, постоянная равны нулю. Поэтому можно сказать, что по-тенциалом электрического поля называется работа по перемещению единичного положительного заряда из данной точки поля в бесконечность. Из выражения для работы А следует, что потенциал равен

                                                                  =

Потенциал – величина скалярная, он удовлетворяет принципу суперпозиции, т.е. потенциал от суммы зарядов равен сумме потенциалов от каждого заряда в отдельности. Если заряд q равный 1 Кулону, перемещается из одной точки поля в другую, то соответствующую работу называют разностью потенциалов или напряжением U, т.е.

                                                     =U = ;

где R1 и R2 соответствуют начальному и конечному положению единичного положитель-ного зваряда. Единицей напряжения, как известно, служит один Вольт. При перемещении произвольного заряда q величина совершаемой работы увеличивается в q раз.

                          Связь между потенциалом и напряженностью электрического поля.

Связь между потенциалом и напряженностью поля легко установить из выражения для элементарной работы dA. Так dA можно записать через напряженность поля Е и перемещение dl: dA = qEcosdl, где - угол между Е и dl. С другой стороны, используя определение потенциала, работа dA = qd . Из этих выражений следует, что  d =  Ecosdl =

= El dl, и

                                                                     =   .

         Обратная связь между напряженностью и приращением потенциала должна иметь вид , однако следует отметить, что напряженность поля – вектор. Поэтому производная  должна иметь смысл производной по направлению. Для положительного заряда вектора напряженности положительны и направлены от заряда и в сторону умень-шения потенциала. Поэтому перед производной необходимо поставить знак минус, т.е.

                                                                  .

Из этого выражения видно, что величина производной зависит от угла между Е и dl. Так для направления, перпендикулярного Е , проекция El равна нулю; наоборот, для направле-ния вдоль Е производная по dl максимальна и равна Е, т.е.

                                                        в направлении Е .

Термин «производная по направлению» становится более понятным в применении к прямо-угольным координатам. Рассматривая поочередно проекции Е на оси x,y и z можно напи-сать:

                                           

 где     i,  j, и k  - единичные вектора вдоль осей x, y и z соответственно. Сам вектор Е нахо-дится как сумма:

                                                            E =   Ех + Еу + Еz  .

В теории поля производная по направлению наибольшего изменения функции называется градиентом (grad ), т.е. связь между напряженностью и потенциалом имеет вид:

                                                                 E = - grad  .

    В направлении, перпендикулярном вектору Е, величина производной от потенциала рав-на нулю, т.е. в этом направлении потенциал остается постоянным. Линии или поверхности, соединяющие точки с одинаковыми потенциалами, принято называть эквипотенциальны-ми. Примером топологии эквипотенциалей может служить рис.2 предыдущей лекции. Соотношение Е = -  l показывает, что напряженность поля можно измерять в единицах Вольт / метр.    

                  

Лекция 4.    Проводники в электрическом поле.

                     § 4 – 1 Проводники в электрическом поле.

        Статический заряд на проводниках распределяется так, чтобы поле внутри проводника было бы равно нулю. В противном случае возникновение электрического поля приведет к движению зарядов. Напомним, что проводники (металлы) характеризуются наличием сво-бодных электронов. Нас же интересует статический случай, когда движение зарядов уже прекратилось. Поэтому заряды могут располагаться только на поверхности проводника, причем так, чтобы эта поверхность была эквипотенциальной, иначе при наличии разности в проводнике опять возникнет электрический ток. Напряженность поля вблизи поверхности можно найти по теореме Гаусса, выбирая на ней достаточно малый элемент площади так, чтобы поле сохраняло свою однородность. Можно выбрать этот элемент так же, как и при вычислении поля от заряженной плоскости (см. рис.6) с той лишь разницей, что поток через основание параллелпипеда, лежащее внутри проводника, будет равнен нулю ( поля внутри проводника нет). С учетом этого

                                                                .

Рис.9. Поле на остриях.

По поверхности проводника заряды, вообще говоря, располагаются неравномерно. Так на острых концах наблюдается повышенная концентрация зарядов, при-водящая к увеличению напряженности поля иногда до таких значений, что окружающий острия воздух иони-зируется, и возникает кистевой разряд (огни Св. Эльма

на топах мачт судов во время бури). Суть этих явлений в том, что элемент площади dS заряженного тела создает поле как снаружи, так и внутри тела, по поле, направленное внутрь, компенсируется действием соседних участков ( поле внутри проводника равно нулю). Если кривизна поверхности мала ( см. рис.9), то суммарное поле соседей dE тоже мало, но с увеличением кривизны оно возрастает  так, что для его компенсации  на  выбран-

ном элементе dS должно скапливаться больше зарядов.

          На незаряженном проводнике, помещенном в электрическое поле, происходит индук-ция зарядов. При этом заряды на ближнем и дальнем концах проводника по отношению к источнику поля  имеют разные знаки так, что при исчезновении поля суммарный заряд  на проводнике снова оказывается равным нулю.  Это явление известно как  электростатическая индукция. Однако внешнее поле не может проникнуть внутрь проводника, что используется для так называемой электростатической экранировки: экранируемый объект обшивается ме-таллическими листами. Обратное, ввобще говоря, неверно: если внутри металлической по-лости по каким-либо причинам возникли заряды, то их действие распространяется за метал-лический экран. Чтобы этого не происходило, экран требуется заземлить.

                                                         § 2 – 3 Электроемкость.

Между зарядом  и потенциалом проводника существует определенная взаимосвязь. Коэффициент пропорциональности между ними носит название электроемкости или прос-то емкости: С =q. Беря приращение от обеих частей, имеем: С =q или CU =q. Отсюда

. Единицей емкости является фарада (1F) . 1F =; 10-6 фарады = 1 мкф (микрофарада), 10-12 фарады = 1 пкф (пикофарада). Величину емкости любого проводника легко определить, деля величину заряда проводника на его потенциал. Так металлический шар радиуса R, несущий заряд Q, имеет потенциал

                                                                    

Следовательно, его емкость С равна С = 40R.

          Как видно из этой формулы, электроемкость пропорциональна размерам провод-ника,и для получения больших емкостей требуются гигантские размеры проводников. Даже Земля имеет емкость чуть больше 600 мкф. Поэтому для практических целей используется система из двух противоположно заряженных пластин, называемая конденсатором. Геометрически это может быть плоская, цилиндрическая или шаровая конфигурация. Самый простой случай – это плоский конденсатор. Как уже было показано, напряженность

Рис.10. К расчету емкости

 плоского конденсатора.

поля от бесконечной заряженной пластины определяется формулой

                                  ,

где   Q/S – заряд на единицу площади. Если пластины расположены достаточно близко друг к другу, так что поле сосредоточено в области между ними, то, как это видно из рис.10, поля от каждой пластины складываются в области между пластинами и уничтожаются в области снаружи плас-

тин. В этом случае в области между пластинами напряженность поля равна E = /0 и не зависит от расстояния (поле является однородным). Напряжение между пластинами U = Ed, где d – расстояние между пластинами. Поэтому емкость плоского конденсатора Сплс равна

                                                      Сплс =

Забегая немного вперед, можно обобщить это выражения для случая, когда область между пластинами заполнена диэлектриком с диэлектрической проницаемостью , .

Известны и другие формы конденсаторов. Так, например, цилиндрические обкладки, разделенные слоем стекла, образуют так называемую лейденскую банку. В экспериментах по наблюдению фотоэффекта часто используется шаровой конденсатор. Не так давно, когда в радиотехнике использовались отдельные детали, был популярен трубчатый конденсатор.

                                                     

                                                     Соединение конденсаторов.

Рис.11.Соединение конденсаторов.

Конденсаторы можно соединять параллельно и последова-тельно друг с другом. В первом случае заряды на всех пла-стинах складываются и складываются емкости, тогда как потенциалы всех пластин одинакового знака оказываются одинаковыми:                                                                

        ;

для последовательного соединения заряды на всех конден-саторах одинаковы, а складываются в этом случае напря-жения:

     ; ; .

В частности, для двух последовательно соединенных кон-денсаторов общая емкость определяется как:

                                

                                              Энергия заряженного конденсатора.

         Пусть имеется конденсатор емкости С, заряженный до напряжения U. Для того, чтобы перенести на него добавочный заряд dQ требуется совершить работу dA = UdQ; но в кон-денсаторе заряд и напряжение связаны соотношением Q = CU, дифференцируя которое, получим dQ =CdU. Тогда dA =CUdU, и полная работа, которую надо совершить для заряда конденсатора

                                                   .

Эта работа превращается в энергию электрического поля конденсатора .

Если учесть, что объем конденсатора V = Sd, то можно говорить о плотности энергии w, где

w =. Подставляя в последнюю формулу выражение для емкости плоского конденсатора и учитывая, что U = Ed = d/0 , находим:

                                             w = .

Последнее выражение характеризует плотность энергии электрического поля.

                                        

Лекция 5. Диэлектрики в электрическом поле.

                                              § 5-1   Электрический диполь.

В проводниках электрические заряды свободны, т.е. они могут перемещаться по все-му проводнику. Диэлектрики же характеризуются прежде всего тем, что в них нет свобод-ных зарядов, и они не могут проводить электрический ток. В этом классе веществ заряды находятся в связанном состоянии, однако, центры распределения положительного и отрица-тельного зарядов, вообще говоря, могут не совпадать. Диэлектрики, в которых такое несов-падение имеет место, называются полярными. Система, состоящая из двух равных по величине, но противоположных по знаку зарядов, находящихся на расстоянии l друг от друга, называется электрическим диполем. Для описания свойств диполя вводится так  на-

Рис.12. Поле диполя.

зываемый дипольный момент р = ql, где l – вектор, проведенный из центра отрицательного заряда к центру положительного. Хотя в целом диполь нейтрален, тем не менее несовпадение центров положительного и отрицательного зарядов приводит к тому, что вокруг диполя образуется электрическое поле. Его можно вычислить по принципу суперпозиции. Наиболее просты расчеты для двух случаев: вычисления поля вдоль оси диполя и для точки, находящейся на перпендикуляре, восстановленным из середины l. Пусть точка А, где требуется найти поле диполя, отстоит от положительного заряда на расстояние х. Тогда напряженность поля от этого заряда в точке А равна:

                                

а от отрицательного q                           

Общее поле Е0 двух зарядов равно (см. рис.12)

                                    -   =

Для расстояний х l выражение для Е0 упрощается: (l+x) x и

                                                               .

  Для вычисления напряженности в точке В достаточно вспомнить, что меньшая диагональ Е ромба (см рис12) со стороной Е+ равна Е =2Е+сos .Кроме того, из рис.12 следует, что
                                                     ; и

                                          .

      Поскольку величина Е непрерывна, то при переходе от точки А к точке В значение Е должно меняться постепенно, и для произвольной точки можно показать, что

                                                                 Е0 = ,

где N – некий поправочный коэффициент, меняющийся от 1 до 2 при изменении положения точки. Точный расчет показывает, что N =, где  - угол между направлением радиуса- вектора точки и осью диполя. В рамках нашего курса этот расчет проводиться не будет.

                                              § 5-2 Механизмы поляризации.

         Кроме полярных диэлектриков существуют вещества, в которых центры положитель-ных и отрицательных зарядов совпадают друг с другом в отсутствии внешнего поля.

Такие вещества называют неполярными диэлектриками. Однако, под действием внеш-него поля у них наблюдается небольшое смещение зарядов. Молекулы диэлектрика как бы раздвигаются: заряды в ней смещаются в разные стороны, и образуются электрические диполи. В полярных  и  неполярных  диэлектриках  внешнее  электрическое  поле оказывает

Рис.13. Ориентирующее

действие на диполь внеш-него поля.

ориентирующее действие на каждый диполь. Как следует из рис.13, возникает вращающий момент, под действием кото-рого все диполи стремятся выстроиться вдоль направления поля.Однако этому стремлению противодействуют различные причины: внутренние силы, действующие между молекулами, тепловое движение молекул и т.п. Поэтому возникает некоторая преимущественная пространственная ориентация диполей, степень которой характеризуется  вектором поляризации, определяемым как суммарный дипольный момент единицы объема, т.е.

                                                                    Р =;

для большинства диэлектриков эта величина оказывается незначительной, и ее можно считать пропорциональной напряженности внешнего поля Р = 0 Е. Величина (каппа) на-зывается диэлектрической восприимчивостью. Разбиение коэффициента пропорцио-нальности на два сомножителя и 0 связано с требованиями размерности в системе СИ.

                             

                                        § 5-3 Теорема о поляризационных зарядах.

Рис.14.Вычисление поляризационно-го заряда.

Рассмотрим некоторую область внутри диэлек-трика, ограниченную поверхностью S (см.рис.14).

При поляризации происходит смещение положи-тельных зарядов в направлении напряженности и отрицательных – в противоположном. Как видно из рис.14, через те участки поверхности, где на-пряженность направлена внутрь поверхности, часть отрицательных зарядов покинет рассма-триваемую область, а через участки, где напря-женность направлена наружу, в область войдет отрицательный заряд. Если вошедший и вышед-ший заряды не равны друг другу, то область при-

оретет поляризационный заряд Qп. Для участка поверхности S (правая часть рис.14) через S войдут отрицательные заряды тех и только тех молекул, которые находятся в параллелепипеде с площадью основания S и высотой lcos, где l – величина возможного смещения зарядов в молекуле, а - угол между внешней нормалью к поверхности и вектором поляризации. Объем параллелепипеда равен S lcos, следовательно в нем находится n0S lcos молекул (n0 –концентрация молекул). При этом левому основанию параллелепипеда должна соответствовать внешняя нормаль, направлен-ная налево (угол - тупой), а для правого основания - угол - острый. Через левое основа-ние выходит, а через правое – входит отрицательный заряд. Поэтому и для левого и для правого оснований появится знак минус, т.е.  Qп = - q n0S lcos ( q- заряд каждой моле-кулы). Учитывая, что q n0 l = Р0 – величина вектора пояризации и Р0 cosn , получим:  Qп = - Рn S.

Интегрируя это выражение по всей замкнутой поверхности S, имеем:

                                                                 .

Полученная формула, вообще говоря, спаведлива для неоднородного диэлектрика. Для однородного же поляризационные заряды могут возникать только на поверхности, причем поверхностная плотность зарядов =  Qп /S = Pn . Действительно, подставляя в  послед-нее выражение значение Pn =0 En , нетрудно получить, что

= - dS ; но по теореме Гаусса = и

= -; при  0 , это может выполняться лишь при = 0.

                                            § 5-4 Вектор электрического смещения.

         Из изложенного ясно, что в диэлектриках кроме внешнего поля существует еще и соб-ственное (внутреннее) поле, поэтому можно ожидать, что Еполн = Есвоб + Епол . Однако, принцип суперпозиции в общем случае здесь не пригоден, т.к. он справедлив лишь для определенно заданного распределения зарядов, в то время как распределение зарядов в диэлектрике само определяется искомым электрическим полем. Поэтому каждое из слагаемых должно быть определено из каких-то других соображений.

           Рассмотрим замкнутую поверхность, внутри которой есть свободные Qс и поляриза-ционные  Qп заряды. Тогда теорема Гаусса принимает следующий вид:  

                                                 .

Заменяя величину Qп согласно теореме о поляризационных зарядах, можно найти:

                                               .

Домножим обе части последнего уравнения на 0 и перенесем интеграл из правой части в левую. Получаем, что

                                                  .

Выражение, стоящее в круглых скобках под знаком интеграла, представляет собой новый вектор D =0 E + P, называемый вектором электрического смещения или вектором электрической индукции. Его можно представить так:

                                      ,

где (1+) = называют относительной диэлектрической проницаемостью вещества.                  Тогда                                                              D = 0E.

Для вектора электрического смещения теорема Гаусса такова.

Лекция 6.  Постоянный электрический ток.

                                                   § 6-1 Основные определения.

Известно, что электрический ток – это направленное движение электрических заря-дов. Если количество зарядов, проходящее через заданную площадь в единицу времени не меняется с течением времени, то такой ток называют постоянным. Ясно, что движение мо-жет быть направленным только под влиянием внешних электрических сил. Для того, чтобы ток оставался постоянным с течением времени, электрическая цепь, т.е. ряд проводников, соединенных параллельно и последовательно друг другу, должна быть замкнутой.

Отсюда следует, что силы не могут быть электростатическими, т.к. работа этих сил по замкнутому контуру всегда равна нулю. Обычно эти силы называют сторонними, подчеркивая их неэлектростатическое происхождение. Сила, отнесенная к величине пере-мещаемого заряда, по аналогии с электростатикой, называется напряженностью, а работа по перемещению единичного положительного заряда на каком-либо участке получила назва-ние электродвижущей силы. Однако обычно принято говорить об электродвижущей силе источника тока E, понимая под этим работу, соверщаемую источником во всей цепи. Поскольку ЭДС – это работа, то между нею и напряженностью сторонних сил остается справедливым соотношение, полученное в электростатике4:

                                          E =.

           При разомкнутой цепи сторонние силы источника так перераспределяют заряды, что создаваемое ими поле компенсирует действие сторонних сил внутри источника. При замк-нутой цепи заряды рапределяются и вдоль проводников внешней цепи, создавая поле вну-три их.

Если на каком- либо участке цепи действуют сторонние и электростатические силы, то работа по перемещению единичного положительногозаряда будет складываться из работ каждой из этих сил по отдельности. Величину общей работы принято называть напряже-нием. Если понятие “участок” распространить на всю цепь, то очевидно, что тогда общая работа равна E.

                                                                § 6-2 Закон Ома.

Для выяснения закономерностей постоянного тока обратимся к упрощенной микро-скопической картине. Рассмотрим отдельный заряд величиной q 0 , являющийся одним из носителей тока в проводнике ( для металлов q0 = -е, где е – заряд электрона). В силу теплового движения каждый заряд движется хаотически, а под действием сторонних сил он приобретает еще и направленное движение. При хаотическом движении заряд постоянно сталкивается с ионами, масса и размеры которых значительно больше аналогичных пара-метров носителя. Ионы также участвуют в тепловом движении, но это, в основном, коле-бательные движения, амплитуда которых увеличивается с температурой. Носители, стал-киваясь с ионами, на какое – то мгновение как бы прлипают к последним (разноименные заряды стремятся притянуться друг к другу). На языке механики это означает, что носители испытывают неупругие столкновение с ионами так, что новый путь они начинают с нулевой скоростью направленного движения. Пусть время между двумя последовательными  соударениями равно . Тогда под действием напряженности носитель за это время приобретет скорость u =a. Ускорение а =F/m = q0 E/m; m – масса носителя. Вводя понятие плотности тока j , которое определяется как количество зарядов, проходящих через единичную площадку, перпендикулярную вектору скорости, можно записать:

                где    .

Величина , определенная таким способом, называется электропроводностью материала, а обратная ей =1/ -удельным электросопротивлением. Нетрудно заметить, что плотность тока – вектор, направление которого совпадает с направлением вектора скорости. Соотношение j =E носит название закона Ома в дифференциальной (векторной) форме.

Если однородный проводник имеет длину l и площадь поперечного сечения S, то закон Ома для такого проводника может быть записан в несколько ином виде. Для этого умножим обе части соотношения j =E на произведение lS и учтем, что для однородного проводника поле внутри его везде одинаково, т.е. однородно, и El =U – разность потенциалов на концах про-водника. Тогда получим:

                                                                      jSl =El S.

Введем понятие силы тока I = (jS) и обозначим l/ S =R, теперь наше соотношение приобретает обычный вид: U =IR, где U – напряжение на концах проводника, а I –сила тока.

Сила тока – скалярное произведение плотности тока и площади, которой в этом случае при-писываются векторные свойства ( направление вектора определяется как и прежде  направ-лением внешней нормали к площади). Величина R называется сопротивлением проводника.

Для соединения нескольких проводников величина общего сопротивления R0 находится по известным правилам: для последовательного соединения R0 = Ri , а для параллельного

                                                               .

Если на рассматриваемом участке имеется источник тока с ЭДС E , как уже отмечалось, об-щее напряжение складывается из разности потенциалов и ЭДС, т.е.

                                                                       U =IR +E .

Этот вариант записи соотношения между током и напряжением носит название закона Ома для участка цепи, содержащей ЭДС. Здесь важно учитывать правило знаков: считается, что положительный ток проходит от положительного полюса элемента к отрицательному; при заданном направлении тока через рассматриваемый участок, ЭДС считается положи-тельной, если она создает ток в этом же направлении и отрицательной – если в противопо-ложном. Для замкнутой цепи очевидно, что концы проводника замыкаются сами на себя и U=0. Тогда закон Ома примет вид

                                           E = (R  + r)I,

где r – внутреннее сопротивление источника тока.

                                              § 6-3 Закон Джоуля – Ленца.

При выводе дифференциального закона Ома предполагалось, что носители тока в момент столкновения с ионами как бы прилипают на мгновение к последним, т.е. носители полностью теряют свою энергию, которую онм приобрели под действием ускоряющего поля. Эта энергия передается ионам и переходит в энергию их хаотических колебаний, т.е. в теплоту.

За время свободного пробега отдельный носитель приобретает энергию, равную ра-боте, которая совершается за счет электрического поля: w = q0El l. Т.к. общее количество зарядов, проходящее в единицу времени через поверхность единичной площади, опреде-ляется плотностью тока  j , то для l = 1 количество энергии, переходящей в теплоту, равно W =jE  или

                                                          W = Е2.

Последнее выражение носит наименование дифференциального закона Джоуля-Ленца.

Для проводника, имеющего длину l  и площадь S, оно преоразуется к известному виду, достаточно лишь обе части этого выражения умножить на объем V =Sl .

                                               WV =W0 =,

где в преобразованиях использован закон Ома для участка цепи. Полученная формула описывает закон Джоуля-Ленца в интегральном виде.

Выделяющаяся теплота имеет смысл полезной лишь в нагревательных приборах; во всех других случаях это – потери энергии, снижение этих потерь составляет одну из важнейших задач электротехники. Эта теплота образуется зя счет энергии сторонних сил.

Для закнутой цепи полная работа по перемещению единичного положительного заряда по определению равна E, значит полная мощность, которую может развить источник, равна E I. Величина совершенной работы за время t определится как A =E It.

                                                      § 6-4 Основы зонной теории.

          До сих пор развитие наших представлений об электричестве происходило достаточно последовательно с использованием довольно простых моделей. Лишь в какой-то момент было стыдливо использовано понятие носителей с зарядом q0 , хотя тут же оговаривалось, что в действительности надо рассматривать электроны, которые ответственны за проводимость металлов. Однако электроны являются довольно своеобразным микроско-пическими объектами, которые плохо подчиняются законам классической механики. Более того, их свойства часто описываются лишь в представлениях квантовой теории и теории ве-роятности.

Наиболее известным следствием квантовомеханической теории является описание свойств электронов с помощью квантовых чисел: n, l, m и s, где

                         n – главное квантовое число, характеризующее энергию электрона,

                         l, - орбитальное квантовое число, определяющее форму орбиты,  

                        m – магнитное квантовое число, связанное с оринтацией орбиты,

                         s – спиновое число, определяющее собственный момент импульса электрона.

Первые три квантовых числа могут принимать только целочисленные значения –1, 2…и т.д, а s – только два значения - ½, и одному набору чисел  n, l и m соответствуют два электрона с противоположно направленными спинами.

Достаточно известным является и так называемый принцип Паули: в атомах не бывает двух электронов с одинаковыми квантовыми числами.

            Из этих двух положений следует, что энергия электронов может принимать только определенные дискретные значения так, что по мере увеличения числа электронов в атоме внешние электроны даже при температуре 0 К обладают конечной энергией.

Рис.15. Схема расположения

            зон.

В твердых телах внешние электроны вступают во вза-имодействие с соседними атомами, в результате чего их энергия немного изменяется, т.к. энергия этого взаимо-действия значительно меньше энергии электронов в атоме. Однако дискретность уровней сохраняется. Взаи-модействие электронов с соседними атомами означает, что эти ” внешние” электроны теперь принадлежат как бы всем атомам. Поэтому дискретный энергетический уро-вень, который соответствовал этим электронам в изоли-рованном атоме теперь ”расплывается“ в целый набор близко расположенных “подуровней”. Их количество определяется числом атомов, т.е. в одной грамм – молекуле вещества образуется 6,0231023 подуровней. Об-разовавшийся набор принято называть зоной.

Самые внешние электроны образуют зону проводимости, а следующему ниже-лежащему уровню соответствует валентная зона (см. рис.15). Между зоной проводимости и валентной зоной может располагаться запрещенная зона, т.е. набор значений энергии, приобретение которых электронами в данном веществе оказывается невозможным. Теория, оперирующая понятиями зоны, получила название зонной. С точки зрения зонной теории вещества разделяются на три класса: проводники, изоляторы и полупроводники. Принадлежность конкретного вещества к тому или иному классу определяется как расположением перечисленных зон, так и степенью их заполнения. Здесь сразу надо отметить, что валентная зона для простоты считается полностью заполненной. Если каждый атом вещества отдает в зону проводимости один электрон, то зона оказывается заполненной наполовину – на каждом уровне размещаются два электрона с противоположными спинами. Под действием внешнего электрическогополя электроны приобретают дополнительную энергию и переходят на свободные вышележащие подуровни. Может случиться и так, что зона проводимости – пуста, но запрещенная зона отсутствует, и под действием поля электроны из валентной зоны переходят в зону проводимости. В обоих случаях вещества будут проводить электрический ток. Если же в веществе зона проводимости пуста, а валентная зона отделена от нее достаточно широкой запрещенной зоной значений энергии, то такое вещество является изолятором. Нужны крайне высокие (несколько десятков или даже сотен киловольт) значения внешнего напряжения, чтобы электроны материала оказались бы переброшены через запрещенную зону. Наконец существуют  элементы (гер-маний и кремний), у которых запрещенная зона  довольно узкая, и энергии  теплового движения оказывается достатлчно, чтобы электроны из валентной зоны перебрасывались бы в пустую зону проводимости. При комнатных температурах таких электронов находится сравнительно мало, количество носителей в зоне проводимости незначительно по срав-нению с металлами, и такие вещества получили название полупроводников.

Указанный тип проводимости в полупроводниках называется собственной проводи-мостью. Он наблюдается только в очень чистых материалах. Обычно же любой полупро-водник содержит небольшое (примерно один атом на миллион) количество примесных атомов. Поскольку атомов примеси мало, то они не взаимодействуют между собой, и их энергетические уровни остаются нерасщепленнвми. Примесные энергетические уровни мо-гут быть как пустыми, так и заполненными. Если такой заполенный примесный уровень располагается в запрещенной зоне чуть ниже зоны проводимости, то под действием тепло-вых возбуждений  электроны с этого уровня могут переходить в зону проводимости. Если же пустой уровень находится чуть выше валентной зоны, то электроны из этой зоны могут быть переброшены на вакантный примесный уровень так, что в валентной зоне образуется «дырка», способная перемещаться от одного атома к другому, создавая «дырочную» прово-димость. Возникающая в обоих случаях проводимость называется примесной. При этом электронная примесная проводимость получила название донорной или n – проводимости, а «дырочная» проводимость была названа акцепторной или р – проводимостью. В насто-ящее время во всех полупроводниках предпочитают использовать примесную проводи-мость.

Комбинация полупроводников с различным типом проводимости позволили создать целый ряд кристаллических диодов и триодов, нашедших широкое применение в радио-электронной промышленности. Современные технологии позволяют пролучать на кристал-ле кремния размером в булавочную головку несколько десятков миллионов полупроводни-ковых элементов. Основным элементом любого электронного устройства стала микро-схема. Премиущества их использования очевидны: они экономичны в отношении потреб-ления энергии, малогабаритны, не боятся перегрузок и т.п. Из недостатков надо выделить два: если в микросхеме выходит из строя всего один элемент, то починить ее невозможно. Ремонт сводится к замене неисправной микросхемы, что стоит довольно дорого. Наконец, все микросхемы оказываются крайне чувствительны к воздействию проникающего излуче-ния. В условиях повышенной радиационной опасности их приходится заменять радиосхе-мами на сверхминиатюрных лампах.

                           § 6-5 Зависимость проводимости материалов от температуры.

Из рассмотрения проводимости металлов следует, что их сопротивление обусловле-но взаимодействием носителей с колеблющимися ионами. Поскольку с повышением температуры амплитуда тепловых колебаний увеличивается, и носители начинают чаще сталкиваться с ними, можно сделать заключение о том, что с повышением температуры сопротивление проводников должно увеличиваться. Для полупроводников же картина обратная – чем выше температура, тем больше носителей, т.е. сопротивление полупро-водников падает с повышением температуры.

С понижеитем температуры сопротивление проводников должно уменьшаться, достигая минимума при абсолютном нуле. Однако в действительности при низких, но конечных температурах сопротивление некоторых металлов скачком падает до нуля. Это явление было открыто в 1911 г и получило название сверхпроводимости. Долгое время для его наблюдения требовались температуры, близкие к температуре жидкого гелия, и лишь срав-нительно недавно удалось повысить температуру сверхпроводящего перехода до значения 90-100 К. Сверхпроводимость стало возможным наблюдать при температуре жидкого азота. Природа возникновения сверхпроводимости может быть объяснена только в рамках кванто-вой теории.

                                                          § 6-6 Правила Кирхгофа.

                 Для расчета сложных электрических цепей немецким ученым Кирхгофом были сформулированы эмпирические правила. Первое из них утверждает, чтодля любого узла электрической цепи сумма токов, входящих и выходящих из него, равна нулю.При этом то-

Рис.16. К правилам Кирхгофа.

кам приписывается определеннный знак: входящие и выходящие токи имеют различные знаки. Пример показан на рис.16.Второе правило касается замкнутого контура, выделенного в сложной цепи: сумма произведений токов на сопротивления, по которым они проходят, равняется сумме ЭДС, включенных в данный контур. При этом токам и ЭДС приписывается определенный знак: при за-данном направлении обхода контура положи-тель-ными берутся только те токи (и ЭДС), которые совпадают с выбранным направлением обхода кон-

тура. Так из рис.16 следует:

   

  1.     I1 – I2 + I3 –I4 = 0,

2. I1 R1 + I2 R2  - I4 R4 + I3 R3 = E3 – E2 – E1 .

 

Лекция 7. МАГНИТНОЕ ПОЛЕ.  Постоянное магнитное поле.

                                                           § 7 –1 Закон Ампера.

Рис.17. Взаимодействие двух

           элементов тока.

Опыты показывают, что два элемента тока взаимодейству-ют друг с другом. Принятые представления заставляют нас предположить, что это взаимодействие осуществляется посредством поля. Это поле названо магнитным. Изуче-ние свойств этого поля логично бы было проводить по аналогии с электростатическимполем, однако до настоя-щего времени магнитных «зарядов» не обнаружено. При-нято считать, что магнитное поле всегда создается движу-щимися зарядами, т.е. током. Бесконечно малый отрезок проводника, по которому проходит ток, принято называть

элементом тока. Ампером было установлено, что величина сил взаимодействия двух элементов определяется выражением:

          ,                ,

где смысл принятых обозначений ясен из рис.17 и 18. Величина k как и прежде введена из соображений размерности. В системе СИ она равна 0 4; значение постоянной 0 , которую принято называть магнитной постоянной вакуума, записывается так:

                                                        0 = 4  10 –7 .

Для определения силы как вектора закон Ампера должен быть изменен так, чтобы справа стояло векторное произведение:

                         ,               .

По аналогии с электростатическим полем для характеристики магнитного поля можно ввести силовую величину, отнесенную к единичному элементу тока. В теории магнитизма эту величину принято называть магнитной индукцией, точнее вектором магнитной индукции. Тогда закон Ампера для произвольного элемента тока I2 dl2 может быть записан как

            dF2 = I2 [dl2 dB],           dB  = dl1sin1 ,                dB = k [dl1,r12] .

Это определение как модуля, так и самого вектора dB носит название закона Био-Савара-Лапласа.

Рис.18. Правило право-го винта.

Однако для установления единиц измерения величины макро-скопического вектора B, его удобнее определить несколько иным способом. Пусть исследуемое магнитное поле создается системой проводников, а для измерения силы используется в качестве элемента тока короткий жесткий проводник, соеди-ненный с источником тока гибкими проводами. Сила, действу-ющая на пробный элемент, зависит от его ориентации в прост-ранстве. В каждой точке поля существует физически выделенное направление В, которое замечательно тем, что, во-первых, модуль действующей силы пропорционален синусу угла между этим направлением и направлением элемента тока, и, во-вторых, направление силы связано с направлением элемента тока и физи-

чески выделенным направлением В известным правилом право-

го винта:если вращать вектор dl по кратчайшему углу в сторону к физически выделенному направлению, то движение оси винта покажет направление действия силы dF = BIdlsin. В векторной записи  

                                                                   dF = I[dl B].

Сила максимальна, когда  dl перпендикулярно направлению В. В этом случае В определя-ется как:

                                                                   .

          Отсюда единица измерения магнитной индукции в системе СИ, называемая тесла, определяется как 1Н/ (1A1M).

         Магнитное поле можно наглядно изобразить с помощью силовых линий, проводя их по тем же правилам, чио и в электростатике, но характер этих линий – другой.

Как уже отмечалось,магнитных зарядов не существует, поэтому свойства силовых линий магнитного поля отличаются от свойств электростатического поля. Из следствия теоремы Гаусса вытекает, что поток вектора В через любую замкнутую поверхность должен равняться нулю, т.е. силовые линии магнитной индукции непрерывны, и

                                                                   .

Теоретический расчет величины В для конкретной конфигурации проводников произво-дится на основании закона Био-Савара-Лапласа с использованием принципа суперпозиции

, где суммирование произодится по всем проводникам, образующих данную систему.

                     

                                         § 7–2 Поле прямого тока и витка с током.

В качестве примеров расчета значений вектора магнитной индукции вычислим поле прямого тока и в центре круглого витка с током.

                                                           Поле прямого тока.

Рис.19. Поле прямого тока.

Пусть требуется найти поле отбесконечного прямого тока I на расстоянии R от него. Выберем элемент тока dl, как показано на рис.19. Величина модуля вектора определяется выражением

                              

Для суммирования свяжем все переменные друг с другом, выбирая в качестве интегрируемой переменной угол . Из рис.19 видно, что

;  .

Подставляя эти выражения в формулу для В, после пре-образований получим:

                                                            ;

                             

где 1 и  2 – углы, соответствующие направлениям на концы проводника. Если проводник

бесконечный, то 1 0, а   2 , и .

         Направление вектора В определяется правилом вычисления векторного произведения: первый сомножитель (dl в нашем случае) вращается в направлении наименьшего угла ко второму сомножителю (r). Направление движения оси правого винта при таком вращении покажет направление их векторного произведения ( на рис.- от нас – значок -). Силовые линии магнитного поля являются концентрическими окружностями, охватывающими про-водник с током. Все они  лежат в плоскости, перпендикулярной направлению тока.

                                                            Поле витка с током.

Вычислим значение вектора магнитной индукции в центре круглого витка, обтекаемого

Рис.20. Поле в центре

           витка с током.

током I. Как видно из рис.20, в этом случае элемент тока dl перпендикулярен радиусу R, и суммирование сводится просто к вычислению длины окружности. Поэтому

                                       .

       Все элементы тока дают одинаковое направление вектора dB так ,что суммарный вектор В перпендикулярен плоскости чертежа и направлен на нас  (значок    ).

                                            

Лекция 8. Теорема о циркуляции магнитного поля.

                                        § 8 –3 Теорема о циркуляции магнитного поля.

     Пусть имеется тонкий бесконечный провод, по которому проходит ток силой I. Выберем мысленно окружность радиуса R, концентрическую заданному току и лежащую в плоскос-ти, перпендикулярной ему. Рассмотрим  сумму  произведений проекций вектора магнитной

Рис.21. Вычисление цир-

             куляции.  

индукции на соответствующий элемент длины окружности ра-диуса R ( рис.21) Bldl.   

      Если суммирование проводится по всей длине окружности, то результат носит название циркуляции, т.е. его можно за-писать так .Для выбранного нами контура в виде окруж-ности величина интеграла может быть вычислена непосред-ственно. Во всех точках контура вектора В направлены по касательной к окружности, а значения В постоянны и равны

В =, так что его можно вынести за знак интеграла. Тогда

= 2R и циркуляция .

Рис.22. К расчету элемента контура.

Если мысленный контур не концентричен току, то результат суммирования не меняется, т.к. для любого элемента контура (см. рис.22)  Вl dl = и не зависит от расстояния х от тока до элемента контура. Угол d означает малый угол, под которым виден элемент длины контура из точки пересечения его площади током. Очевидно, что полное значение суммирования не изменится и для произвольной формы контура, который удобно в этом случае

представить как ломаную линию, состоящую из элементов окружностей и приращений ра-диуса. Здесь следует помнить, что проекции вектора В на приращения радиуса равны нулю.

Если плоскость, в которой лежит наш мысленный контур, не перпендикулярен на-правлению тока, то контур можно спроектировать на плоскость, нормальную к току, снова результат вычисления циркуляции будет прежний. Если через плоскость нашего контура проходит несколько токов I1, I2 и т.д., то поскольку выражение для циркуляции остается справедливым для каждого тока в отдельности, оно останется справедливым и для суммы токов. Итак, в общем можно записать:

                                                             .

Полученное выражение носит название теоремы о циркуляции и является одним из уравнений Максвелла. Суммирование в правой части этого уравнения носит алгебраи-ческий характер: токи могут иметь знак  (+) или (-) в зависимости от того, острый или тупой углы образуют они с направлением заданной нормали к площади, охватываемой контуром.

Поля, циркуляция которых отлична от нуля, называются вихревыми.

                           Словесная формулировка теоремы о циркуляции:

Циркуляция вектора магнитной индукции по закнутому контуру с точностью до пос-тоянного множителя 0 равна алгебраической сумме токов, охватываемых этим контуром.

                                             § 8 –4 Поле длинного соленоида.

         Применим теорему о циркуляции для вычисления поля на оси длинного соленоида. На рис.23 показаны силовые линии магнитного поля для катушки. Мысленно удлиняя ее, можно догадаться, что для достаточно протяженной катушки поле внутри соленоида и снаружи его будет направлено горизонально ( относительно рис.) Выберем контур в виде прямоугольникаАВСD так, чтобы сторона AD лежала на оси соленоида. Тогда циркуляцию

Рис.23. Силовые линии

           магнитного поля

           соленоида.

вектора магнитной индукции по такому контуру можно представить состоящей из четырех частей:           +  .

Однако на трех из них значения Вn равны нулю: на отрезках АВ и СD вектор В перпендикулярен этим сторонам, а  отре-зок ВС можно удалить в бесконечность, где В = 0. На отрез-ке AD значения В постоянны, иВlC , где l C  - дли-на соленоида. Т.к. ток I пересекает контур N раз ( N- число витков) , то Вl C = 0 NI, откуда В =0 nI, где n =N/ l C .

 

Лекция 9.   Силы, действующие  в магнитном поле.

                                   § 9 – 1 Взаимодействие прямых проводников.

Вообще говоря, силу действия на проводник с током, помещенный в магнитное пол, можно вычислить пользуясь законом Ампера, который был сформулирован на прошлой лекции. Однако для упрощения математических выкладок предположим, что величина поля определена заранее. Пусть это поле однородное, т.е. его значение одинаково во всех точках рассматриваемого пространства. Тогда сила, действующая на элемент тока, записывается в таком виде:

                                                              dF = IBdlsin,

где - угол между направлением В и элементом тока Idl.

Рис.24. Взаимодействие двуз прямых

            проводников.   

Для конечного проводника длины  L имеем:

                            F = IBLsin.

Наиболее простой вид эта формула приобретает для случая взаимодействия двух прямых проводников.Для простоты будем считать их бесконечными так, что поле, создаваемое про-водником, по которому проходит ток I1, во всех точках другого проводника с током I2 (см. рис.24), имеет одно и то же значение, если проводники параллельны друг другу. В этом случае сила, действующая на отрезок проводни-

ка длиной L с током I2, равна F12 =BL I2, или, подставляя в эту формулу явное выражение для В, имеем:

                                                                                                              ( )

Направление силы взаимодействия для параллельных и антипараллельных взаимодейству-ющих токов показано на рис.24. Из рисунка видно, что параллельные токи притягиваются, а токи с противоположным направлением отталкиваются друг от друга.

Формулу ( ) используют для определения единицы измерения силы тока – ампера. Пола-гая  I1=I2 = 1A, R = 1M и L = 1M, можно вычислить, что сила взаимодействия равна 210-7Н, т.е. за единицу силы тока принимают такой ток, который, протекая по параллельным про-водам, отстоящим друг от друга на расстояние 1м, вызывает силу 210-7Н, действующую на единицу длины проводника.

                                     § 9 – 2 Действие магнитного поля на контур с током.

        Пусть прямоугольная рамка, со сторонами a и b, обтекаемая током I, помещена в однородное магнитное поле индукции В, как показано на рис.25. Модули сил, действующих

Рис.25. Действие магнитного поля

             на рамку с током.

на соответствующие стороны рамки равны: F1=F3 = IaB sin 900 = IaB, F2 = F4 IbBsin(90-) =IbBcos. Направления всех сил указаны на рисунке, откуда следует, что сумма всех сил, действу-ющих на рамку, равна нулю. Следовательно, центр масс должен оставаться в покое, если первоначально он был неподвижен. Однако суммарный момент сил оказывается отличным от нуля.

Напомним, что момент силы М определяется век-торным произведением радиуса-вектора, проведен-ного от оси в точку приложения силы, на саму силу.   

    Вычислим моменты всех сил относительно оси z,

проходящей через центр рамки ( см. рис.25). Из рисунка видно, что моменты сил F2 и F4  равны нулю.Момент силы F1  M1 = F1sin b/2  =  IB sin b/2 = (1/2)ISBsin, где  ab = S – пло-щадь рамки. Момент силы F3 также равен М1, так что суммарный момент сил равен:

                                                          ,

где введенная величина рм =IS носит название магнитного момента рамки. Если магнитно-му моменту приписать векторные свойства, определяя его направление по правилу правого винта, движение оси которого определчется, в свою очередь, вращением винта в направле-нии обтекания рамки током, то общий момент сил, действующих на рамку, равен

                                                                 .

Этот момент стремится повернуть рамку к положению устойчивого равновесия, при котором магнитный момент рамки направлен вдоль направления поля.

                                                       § 6 – 3 Сила Лоренца.

          Опыт показывает, что сила, действующая на проводник с током, исчезает при выклю-чении тока,т.е. действие силы обусловлено движением электрических зарядов. Обращаясь к выражению силы тока I через движение отдельных зарядов, запишем:

                                                               .

Тогда сила, действующая на проводник с током в однородном магнитном поле В может быть записана как

                                                         .

Из этого равенства можно определить силу, действующую на отдельный заряд q0 . Оцени- вая количество зарядов в проводнике N = nSL, нетрудно найти, что сила, известная в физике

Рис.26. Действие силы Лоренца

             на движущийся заряд.

как сила Лоренца, равна    FЛ =q0uBsin.

Учитывая, что скорость направленного движения заря-дов в проводнике – u –вектор, и что направление силы определяется по правилу правого винта, можно опреде-лить силу Лоренца как

                            .

Сила Лоренца максимальна, когда скорость отдельного заряда перпендикулярна вектору В,и равна нулю, когда заряд движется параллельно силовым линиям магнит-ного поля. В первом случае заряд вращается по окруж-ности, радиус которой определяется законом Ньютона:

                                                    ;   .

В общем случае, когда скорость заряда составляет с направлением поля произволь-ный угол (см. рис.26.), траектория движения представляет собой винтовую линию, ось ко-торой совпадает с направлением поля. Движение заряда можно рассматривать в этом случае как сложение двух движений: вращения вокруг направления поля, обусловленного сос-тавляющей вектора скорости, нормальной к направлению В, и поступательного движения со скоростью, равной другой составляющей, параллельной полю.

Это свойство заряженных частиц вращаться в поперечном магнитном поле исполь-зуется для получения элементарных частиц с большими энергтями. Устройства, пред-назначенные для этого, называются циклотронами. Наиболее известны модификации этих устройств, которые называются синхрофазотронами. Усложнение конструкции ( и назва-ния) связано с тем, что в процессе ускорения частицы приобретают скорость, близкую к скорости света, вследствие чего их масса увеличивается, и они выпадают из условия синхронизма. Поэтому приходится увеличивать поле или уменьшать частоту напряжения.

Лекция 10. Явление электромагнитной индукции

                                          § 10 – 1 Электромагнитная индукция.

Из школьного курса физики известно, что при изменении магнитного поля, пронизы-вающего некую поверхность, ограниченную замкнутым проводящим контуром, в этом контуре возникает ЭДС, равная с обратным знаком скорости изменения магнитного потока. Это явление было откпыто в 1831 году известным английским ученым М. Фарадеем, и установленный им закон носит его имя. Определяя величину магнитного потока Ф как

                                                         Ф =BS cos =  ,

где - угол между направлением В и нормали к площади контура, закон Фарадея можно записать в виде:

                   E = -;

откуда видно, что возникновение индукционноготока возможно при изменении либо вели-чины В, либо при изменении площади контура, либо при изменении ориентации контура (вращении) относительно направления магнитного поля. Магнитный поток прято измерять в Веберах. 1 Вебер = 1Тесла м2.

Знак минус, стоящий перед производной магнитного потока отражает правило Лен-ца:индукционный ток направлен так, чтобы своим действием воспрепятствовать причине, его вызвавшей.

Проявлением индукционных токов являются токи Фуко, возникающие в массивных проводниках, помещенных в изменяющееся магнитное поле (например, в сердечниках трансформаторов). Для борьбы с этими токами сердечники набираются из очень тонких листов металла, разделенных прослойкой непроводящего лака.

                                                           § 10 – 2 Самоиндукция.

Важным частным случаем электромагнитной индукции является самоиндукция, т.е. возникновение ЭДС индукции в самом проводнике, порождающим изменяющееся магнит-ное поле. В строгой теории электромагнетизма показано, что величина магнитного потока, окружающего проводник с током, пропорциональна силе этого тока Ф = L I, где коэффици-ент пропорциональности L носит название коэффициента самоиндукции или индуктив-ности.

Качественные соображения о пропорциональности между Ф и I вытекают из закона Био-Савара-Лапласа, где установлено, что В I. Значения L определяются геометрическими свойствами проводника. Единицей измерения L в системе СИ служит Генри.

                                                      1Генри =1Вебер/Ампер.

Учитывая взаимосвязь Ф и L, можно записать

                                    Eсам = - .

Если проводник не изменяет своей формы с течением времени, то dL/dt = 0, и

                                           Eсам = -.

Для одного витка длинного соленоида Ф =ВS= 0 nIS, и, если полное число витков соле-ноида равно N= nlc, , то общий поток через весь соленоид Ф0 = Ф N = 0 n2lc IS, откуда

                                                               L = 0 n2lcS.

                                          § 10 – 3 Энергия магнитного поля.

Пусть имеется электрическая цепь, состоящая из источника постоянного тока, сопро-тивления и катушки индуктивности L. Предположим, что в некоторый момент времени источник мгновенно удаляется из цепи, которая остается замкнутой. Как следствие явления самоиндукции ток в цепи не исчезнет мгновенно, т.к. его будет поддерживать возникшая ЭДС самоиндукции. В процессе убывания тока сторонние силы, ответственные за явление самоиндукции, совершат некоторую работу. За малый промежуток времени dt, когда ток и ЭДС остаются практически неизменными, сторонние силы совершат работу dA = Eсамdq, где dq =Idt, или, используя выражение для ЭДС самоиндукции, dA= -IdtL dI/dt,  т.е.

                                                                dA=-LidI.

Полную работу сил можно найти, суммируя малые работы dA за весь период исчезновения тока:

                                                        .

По закону сохранения энергии эта работа может быть совершена лишь за счет энергии W, которой обладает катушка с током, поэтому

                                                                       .

Эту энергию можно приписать магнитному полю катушки (соленоида). Считая соленоид достаточно длинным, можно использовать формулу, связывающую индукцию поля в соле-ноиде с током: B =0 nI, откуда I = B/0 n. Подставляя это соотношение, а также значение L для соленоида в выражение для энергии катушки, получаем:

                                                                 .

Тогда плотность магнитной энергии, т.е. энергии, приходящейся на единицу объема V=lcS,

равна

                                                                  w =.

 Лекция 11.  Магнитное поле в веществе.

                                                § 11 – 1 Модель молекулярных токов.

          Под действием магнитнго поля все тела приобретают магнитные свойства – в веще-

стве появляются собственные магнитные поля так, что теперь поле внутри вещества скла-дывается из внешнего поля и собственного. В этом смысле принято говорить, что все тела являются магнетиками. Простейшее объяснение проявления магнетизма связано с гипо-тезой молекулярных токов, высказанной еще в начале XIX века Ампером. Согласно этой ги-потезе в веществе циркулируют микроскопические замкнутые токи - молекулярные токи.            С точки зрения современных представлений о строении вещества нетрудно заметить, что эта гипотеза предвосхитила электронную теорию строения атома, где каждый вращаю-щийся вокруг ядра атома электрон представляет собой элементарный круговой ток.

В отсутствие внешнего поля орбиты молекулярных токов, а, следовательно, и их магнитные моменты рМ (напомним, что рМ =IS) ориентированы хаотически в пространстве так, что вещество не проявляет никаких магнитных свойств. При наложении внешнего магнитного поля моменты ориентируются вдоль силовых линий этого поля (также как рам-ка с током)  так, что каждый бесконечно малый объем V вещества приобретает отличный от нуля магнитный момент, - вещество намагничивается. Суммарный магнитный момент единицы объема называется намагниченностью и определяется выражением:

                                                               .

В большинстве случаев значение намагниченности оказывается пропорциональным величи-не магнитного поля JB, где коэффициент пропорциональности носит название магнит-ной восприимчивости. Однако существует группа веществ, у которых упорядочение мо-ментов происходит самопроизвольным способом. Эти вещества получили название ферро-магнетиков ( по названию первого известного ферромагнетика – железа).

       

                           § 11 – 2 Связь молекулярных токов с вектором намагниченности.

Для установления соотношения между намагниченностью и молекулярными токами

Рис.27. К расчету молекулярных токов.

мысленно выделим внутри вещества некото-рую поверхность S, ограниченную контуром L, и найдем полный молекулярный ток через эту поверхность. Ясно, что вклад в этот ток дадут только те молекулярные токи, которые охватывают линию контура L.Подсчитаем сначала ток IM на малом элементе l. Этот элемент охватывает только те токи, центры которых лежат внутри изображенного на

рис. 27 цилиндра. Число таких токов равно произведению концентрации молекул n0 на объем цилиндра slcos, где s – площадь молекулярного тока, - угол между элементом l и вектором намагниченности J. Обозначая силу каждого элементарного тока i, можно найти, что IM = i n0 lcos. Учтем, что is = pM , а n0pM = J.

Кроме того, Jcos = Jl и IM = Jl l. Полный молекулярный ток через поверхность получим суммированием всех IM по контуру L:

                                                                ,

т.е. полный молекулярный ток определяется циркуляцией вектора намагниченности.

Строгая теория магнетизма делает вывод, что для молекулярных токов на поверхно-сти полученная формула сохраняет свой вид, лишь вместо IM фигурируют поверхностные тока In . В любом случае, при наличии вещества в правую часть теоремы о циркуляции добавляются молекулярные токи, и

                                       

Преобразуем это выражение, перенося интеграл циркуляции в левую часть. Тогда

                                                                                       ()

Сравнивая последнее соотношение () с теоремой о циркуляции магнитного поля в ваку-уме, находим

                                                            ,

где обозначение В0 соответствует магнитному полю в вакууме; нетрудно заметить, что подинтегральные варажения двух последних уравнений должны быть одинаковыми. Из этого следует, что

                                                                    (В - 0J) = B0 .                                             ( )

Как уже отмечалось, для большинства магнетиков J  B0 . Коэффициент пропорцио-нальности, который требуется ввести, чтобы установить точное соотношение между J и B0 , зависит от выбора системы единиц. В выбранной нами системе СИ этот коэффициент равен 1/0 , т.е.                                                  .

Подставляя это выражение для намагниченности в уравнение ( ), получим B - B0 =B0 , и

                                                                    B = (1+)B0 .

Величина  (1+) =  называется относительной магнитной проницаемостью, т.е. В =В0 .

                                              § 11 – 3 Классификация магнетиков.

Принято различать три класса магнетиков:диамагнетики, парамагнетики и ферромагнетики.

                                                              1.Диамагнетики.                                                                            Диамагнетизм – явление универсальное.Оно обусловлено законом элетромагнитной индук-ции. В момент включения магнитного поля элементарные молекулярные токи в веществе изменяются таким образом, чтобы воспрепятствовать возникновению внешнего поля, т.е. индуцированный дополнительный магнитный момент направлен против внешнего поля. Суммарное действие всех элементарных индуцированных моментов приводит к тому, что внешнее магнитное поле В0 уменьшается: В = В0 – В инд . Это означает, что = (1+ ) 1 или  0.Величина диам крайне незначительна и составляет около 10 –4 – 10-5.
                                                           2.Парамагнетики.                                                                
 К парамагнетикам относятся вещества, атомы которых имеют незаполненные электронные оболочки, причем число электронов на них должно быть нечетно. Тогда каждый атом можно рассматривать как элементарный молекулярный ток, магнитный момент которого ориентируется вдоль направления внешнего поля., т.е. В = В
0собст .Очевидно, что для
этих веществ
  0. Значения парам достигают величины порядка 10 –3.                        …….   
                                                              3.Ферромагнетики.                                                          .  В  этих веществах между отдельными атомами возникает особый вид взаимодействия, имеющий сугубо квантовомеханическое происхождение и поэтому нами не рассматри-ваемый. Это взаимодействие носит название
обменного. Благодаря этому взаимодействию в ферромагнетиках возникают малые, но конечные области – так называемые домены, где все атомные магнитные моменты оказываются упорядоченными так, что каждый домен намагничен. Однако в макроскопическом объеме взятого образца домены ориентированы хаотически, и суммарный магнитный момент всего образца равен нулю. Внешнее магнит-ное поле стремится ориентировать все домены в одном направлении – образец намагничи-вается. Характерной особенностью ферромагнетиков является то, что собственное магнит-ное поле значительно превышает внешнее, т.е. для них  1 ( для некоторых сплавов железа   10 6 .                                                                                             

                                                  

При помещении в соленоид ферромагнитного сердечника поле в нем усиливается во много раз ( >> 1); так как магнитная проницаемость ферромагнетика существенно зависит от напряженности поля, соотношение В = 0Н                                                   становится нелинейным. Кроме того, величина магнитной индукции В зависит от предыстории материала (от значения напряженности в предыдущие моменты времени); вследствие этого изменение величины В отстает от изменения Н. Это явление получило название гистерезиса (запаздывания). Типичная зависимость В(Н) для ферромагнетика – петля гистерезиса – изображена на рисунке. Пусть перед началом опыта стержень размагничен (В = 0) и ток в цепи отсутствует (Н = 0). Начальный участок петли ОА, соответствующий увеличению напряженности Н от нуля до максимального значения, называется основной кривой намагничения. При уменьшении напряженности до нуля (участок АС петли) поле в ферро-магнетике не исчезает; остаточное намагничение характеризуется значением магнитной индукции Вост . Для снятия намагничения необходимо приложить внешнее магнитное поле противоположного направления (участок CD). Соответствующее значение напряженности Нс называется коэрцитивной силой. Дальнейшее увеличение напряженности до максимального значения (DE), уменьшение до нуля (EF) и, после изменения направления внешнего поля на первоначальное, увеличение до максимума (FA) замыкают петлю.

 

§ 11-4 Магнитное поле Земли.

        Известно, что планета Земля представляет собой гигантский постоянный магнит, северный полюс которого находится в южном полушарии Земли, а южный – на севере Канады, примерно в 1500 км от северного географического полюса. Несовпадение магнитных и географических полюсов приводит к тому, что стрелка компаса не указывает точно на полюс. Это явление известно как склонение. Для Москвы склонение – восточное, оно составляет 6,50. Установлено, что магнитное поле Земли оказывает влияние на сезонные миграции зверей и птиц . Менее известным фактом является то, что поле Земли защищает все живое на планете от убийственного действия космической радиации, создавая вокруг планеты радиационные пояса.Нижний радиационный пояс находится на высоте 200–600 км, тогда как верхний постирается до 1500 км. Кроме того, магнитное поле Земли отклоняет потоки частиц от Солнца в области, прилегающие к полюсам, вызывая полярные сияния.

Лекция 12. Переменный электрический ток.          

                                        § 12 - 1  Получение переменного тока.

Переменнвм током называется ток, направление которого периодичемки изменяется с течением времени. Основным устройством, которое используется для получения перемен-

Рис.28. Схема устройства электро-

             генератора.

ного тока, служит электрогенератор. Его дей-ствие основано на явлении электромагнитной индукции. Схема, поясняющая принцип ус-тройства электрогенератора, изображена на рис.28. Прямоугольная рамка помещается в зазор между полюсами магнита N и S так, что она может вращаться вокруг оси, проходящей через ее середину.Т.к. величины вектора маг-нитной индуцкии и площади рамки остаются постоянными, величина ЭДС электромагнит-

ной индукции (см. прошлую лекцию) определяется выражением

             E = -,

где - угол между направлением магнитного поля В и нормалью к площади рамки S. На-правление тока в рамке в выбранный момент времени определяется по правилу правой руки. Нетрудно видеть, что направление токов в верхнем и нижнем проводниках противо-положны друг другу. Концы рамки подключаются к кольцам, которые, в свою очередь, с помощью скользящих контактов подсоединены к выходным клеммам генератора. В мощных генераторах рамка содержит несколько десятков или сотен витков, токи в ней достигают значительной величины, поэтому сама рамка делается неподвижной, чтобы избе-жать трущихся контактов, а магнитная система вращается вокруг рамки. Частота вращения является госудаоственным стандартом: в США это 60Гц , в Росси –50 Гц.

                                                § 12 –2 Квазистационарные токи.

Квазистационарным называется переменный ток, для которого в любой омент времени оказывается справедливым закон Ома, сформулированный ранее для постоянного тока. Это означает, что в неразветвленных цепях сила тока, проходящего через любой элемент цепи, в данный момент времени одинакова для всех элементов. Неквазистационарными токи становятся тогда, когда частота колебаний достигает очень больших значений – таких, что соответствующая им длина волны = сТ, где с –скорость света, а Т –период колебаний, становится сравнимой с геометрическими размерами цепи. Например, для промышленного тока 50 Гц эта длина волны равна 6000 км.

В прошлом семестре было показано, что на длине волны амплитуды колебаний в разных точках пространства различны, изменяясь от максимума до нуля и нооборот через каждые /4. Поэтому мгновеннве значения ока будут одинаковы тогда, когда  l , где l – длина цепи.

        § 12 –3 Закон Ома для переменного тока.

   Рассмотрим цепь, состоящую из омического соп-ротивления, катушки индуктивности и конденса-тора. Пусть все они соеденены друг с другом пос-ледовательно и подключены к источнику перемен-ного тока с ЭДС E (см. рис. 29). Формально эта цепь разомкнута, и ее концами являются обкладки конденсатора, поэтому длч нее можно написать закон Ома для участка цепи, содержащей ЭДС, по-

лагая, что условие квазистационарности выполнено. Тогда

                                                   Ek ,                                         ( ХХ)

где  = UC  - напряжение на конденсаторе, а суммарная ЭДС складывается из ЭДС источника тока и ЭДС самоиндукции EL :

                                             Ek  = EL + E (t),                EL = -.

     Обычно величину  называют падением напряжения на индуктивности и обозна-чают UL , т.е. UL= , произведение IR =UR –падением напряжения на сопротивлении. С учетом этого уравнение (ХХ) можно преобразовать:

                                                          UR + UL + UC = E (t).                                           (ХХХ)

Вспоминая, что  и заменяя величины UC  и UL , получим

                                                     E (t).                                            ()

Предположим, что ток в нашей цепи изменяется по синусоидальному закону: I = I0 sint.

Тогда          UR = I0R sint ,                  UL = LI0 cost = LI0 sin(t -/2),

                  = .

Эти соотношения должны быть спаведливыми в любой момент времени, поэтому они спра-ведливы и для амплитудных значений, т.е.
                              .

        Трактуя эти равенства как закон Ома для участка цепи, можно заметить, что величины ZL =L  и  ZC = аналогичны по своему значению сопротивлению R. Используя такую

интерпретацию, можно видеть, что уравнение () приобретает тригонометрический смысл: напряжения на емкости и индуктивности оказываются сдвинутыми по фазе на /2 относительно напряжения на сопротивлении R. Здесь удобнее использовать векторное представление колебаний, которое рассматривалось в прошлом семестре. Любое гармо-ническое колебание y(t) = Asin( t + ) можно представить в векторном виде: длина вектора определяется амплитудой колебаний А, начальная фаза определяет угол отклонения вектора от горизональной оси, а - частоту, с которой вектор вращается вокруг начала координат. В этом представлении напряжение на сопротивлении R изображается в виде горизонтально-

Рис.30. Векторная диаграмма

  для последовательной цепи.

го вектора (см. рис.30), а напряжения на емкости и индуктивности оказываются повернутыми относи-тельно него в разные стороны на 900 . В последова-тельной цепи действующее в ней общее напряжение складывается из падения напряжений на всех участ-ках. Поэтому оно может быть найдено как геомет-рическая сумма падения напряжений на индуктив-ности, емкости и сопротивления. Тогда согласно тео-реме Пифагора можно записать, что

                         ,

или, выражая UR , UL и  UC через произведения тока на соответствующие сопротивления,

                                            .

Извлекая квадратный корень из обеих частей последнего равенства, получим:

                                             .                         ()

При выводе этого выражения учтено, что для последовательной цепи IR = IL= IC =I. Полученное выражение по своей структуре аналогично закону Ома для цепи постоянного тока. Поэтому оно называется законом Ома для переменного тока. Важно отметить, что между током и напряжением существует сдвиг фаз, величина которого определяется из рис.30:

                                            или   .

                                          § 12 – 4 Мощность переменного тока.

Значение мгновенной мощности W определим по аналогии с законом Джоуля – Ленца для постоянного тока: W =IU = I0U0 sint sin(t +). Однако, с практической точки зрения более полезно вычислить среднюю мощность за единицу времени. Определим среднее значение за время одного колебания любой переменной величины y(t) как интеграл, средний за период: . Тогда  =

   =

+ = -    +

+.

Интегралы в последнем выражении все равны нулю, т.к. среднее значение за период лю-бой периодической величины равно нулю.Поэтому , где Uэфф= ; Iэфф = - так называемые эффективные значения напряжения и тока.

Формула мощности для переменного тока отличается от аналогичной формулы для постоянного тока лишь коэффициентом cos , который принято называть коэффициентом мощности. Увеличение этого коэффициента является важной практической задачей. Там, где сдвиг фаз между током и напряжением достигает 900 , средняя мощность оказывается равной нулю.

Лекция 13. Электромагнитные колебания.       

    .                        § 13 –1 Затухающие колебания в колебательном контуре.

 Рассмотрим  последовательную цепь, содержащую катушку индуктивности L, ем-кость С, сопротивление R и ключ. Предположим, что на емкости в начальный момент вре-мени имеется некоторый заряд . Если цепь замыкается, то в цепи возникает электрический ток. Наличие катушки индуктивности обуславливает возникновение ЭДС самоиндукции, которая своим действием препятствует возрастанию разрядного тока конденсатора. В тот момент, когда напряжение на конденсаторе становится равным нулю, ток через индуктив-ность достигает максимума. В дальнейшем ЭДС самоиндукции стремится поддержать этот ток, что приводит к перезарядке конденсатора до некоторого напряжения обратной поляр-ности. Процесс перезарядки конденсатора повторяется определенное число раз в зави-симости от величины потерь энергии на сопротивлении. Способность контура к переза-рядке характеризуется качеством контура или добротностью. Добротность контура Q опре-деляется отношением энергии, запасенной на конденсаторе или в катушке индуктивности, к величине потерь энергии на сопротивлении за период:

                                                         

Для количественного описания процессов в последовательном колебательном кон-туре используется уравнение, полученное ранее при рассмотрении переменного тока:  

                                                              E (t),                                   ( ++)

с той разницей, что в нашем случае внешняя ЭДС отсутствует так, что уравнение прини-мает вид:

                                                            0.

Введем обозначения : ; =  и учтем, что по опеределению I=.Тогда наше уравнение принимает вид, знакомый по курсу прошлого семестра:

                                                         

где в качестве переменной выступает заряд q. Решением этого дифференциального урав-нения служит функция q(t) = q0 e -t cos(t + ), где величины q0 и определяются началь-ными условиями, а 2 = с учетом того, что в большинстве случаев 0 . Очевидно, что при = 0 колебания в контуре становятся незатухающими, и частота этих колебаний равна . Добротность контура Q может быть выражена через его пара-метры. Энергия, запасенная в индуктивности, равна  L/2., а мощность, выделяемая на сопротив-лении, - /2. За период Т = на сопротивлении выделится энергия RT/2 = . Поэтому                     Q = 2 .

Как видно из полусенного выражения, величина добротности определяется лишь парамет-рами контура L,C и R.

                          § 13 –2 Вынужденные колебания в контуре. Резонанс.

    Включим в цепь рассматриваемого контура внешнюю переменную ЭДС E = E0 sin(t+).

Повторяя процедуру прошлого семестра, найдем графическое решение уравнения (++). Бу-дем искать решение уравнения

                                

в виде q(t) = q0sin t. Тогда

                            .

Подставляя эти величины в исходное уравнение, имеем:

                          .

Рис.31.Графическое решение

дифференциального уравнения.

Обращаясь к векторному представлению колебаний, нетрудно заметить, что вектор r0 , стоящий в правой части уравнения является суммой двух других векто-ров,  представляющих колебания в левой части.   Из рис.31 по теореме Пифагора

                   

откуда

                         (Р)     

Из полученного выражения видно, что амплитуда заряда на конденсатора изменяется в зависимости от частоты внешней ЭДС, достигая максимума, когда подкоренное выражение минимально. Это достигается тогда, когда ; если 0 , то Р  0 

называется резонансной частотой. В момент резонанса q0 = , и напря-жение на конденсаторе

                                                                     (*)

в Q раз больше,чем напряжение внешней ЭДС.  Графическая зависимость напряжения на

Рис.32. Резонансная кривая.

конденсаторе UC  от частоты представлена на рис.32. Важной технической характеристикой контура является полоса пропускания, которая определяется как область частот ,где энергия, запасаемая в контуре на частоте , отличается от энергии на частоте 0 в наименьшее целое число раз (в два). Обычно .На границах области   =0 ..При этих условиях

                     

.

 Из этого соотношения следует, что  =. Тогда напряжение на емкости можно записать так:

                                               .

Сравнивая это выражение с формулой (*), можно заметить, что Q = . Последняя фор-мула имеет важный практический смысл. Она позволяет расчитать добротность из экспери-ментально полученной резонанмной кривой. Для этого достаточно провести горизонталь-ную прямую на уровне  qрез до пересечения  с  резонансной кривой  и спроектировать точки пересечения на ось частот. Этот интервал и определит полосу пропускания.

                    Колебательные контура широко применяются в телевизорах, радиоприемниках, передатчиках, в раздичных радиоустройствах избирательного действия и т.п. Мы же рас-смотрим более подробно одно из атмосферных явлений, которое можно представить как разряд конденсатора в колебательном контуре. Это явление – гроза, точнее возникновение молнии.

                                                 § 13 –3 Простешая теория грозы.       

           Дождь, как известно, обусловлен тем, что вертикальные потоки нагретого влажного воздуха переносят влагу в верхние слои атмосферы, где водяные пары конденсируются в мельчайшие капельки. Током воздуха капельки увлекаются вверх, постепенно увеличиваясь в своих размерах. Объем (вес) капельки растет пропорционально кубу ее радиуса, тогда как подъемная сила воздушного потока пропорциональна всего лишь квадрату радиуса капли. Поэтому наступает момент, когда капля перестает подниматься и начинает падать. При па-дении капли образуют целый поток, который выталкивает перед собой холодный воздух из верхних слоев атмосферы. Когда капли достигают поверхности Земли, образуется дождь. Началу дождя предшествует холодный вихрь. Возникновение же грозы зависит от того, переносят капли электрический заряд или не переносят. Описание механизма переноса заряда предложено американским ученым Вильямсом. Согласно его гипотезе все опре-деляется структурой грозового облака. Полеты  самолетов  внутрь  таких  облаков показали,  

Рис.33. Структура грозового облака.

что разные части облака несут разный заряд (см. рис.33). Нижний слой тучи, как правило, несет отрицательный заряд, однако в середине слоя существует область положительного заря-да. Эта область – своебразное сердце грозы. Существующее вокруг ее электрическое поле ионизирует окружающий воздух, постоянно порождая положительные и отрицательные за-ряды.Дождевые капли, двигаясь к Земле, поля-ризуются. Земля несет отрицательный заряд, поэтому на нижней части капли возникает по-ложительный заряд. Увеличенное изображение капли приведено в правой части рисунка. При движении капли вниз  –  ее нижняя часть поло-жительна, - и она притягивает отрицательные

ионы, тогда как положительные ионы отталкиваются. Верхняя же часть капли оказывает на ионы меньшее влияние.В результате капли притягивают отрицательные тоны и при-обретают отрицательный заряд. Положительный же заряд переносится в верхнюю часть ту-чи и постепенно переходит в ионосферу. Накопление заряда в различных частях грозового облака приводит к появлению огромной разности потенциалов, достигающей 100 млн Вольт. Эта разность потенциалов может образовываться как между различными облаками, так и между облаком и земной поверхностью. Рассмотрим второй случай. По мере накоп-ления заряда в нижней части облака вблизи его нижней кромки образуется электрическое поле, которое ионизирует воздух. Поле различно в разных точках, поэтому и степень поляризации будет различной. Там, где воздух ионизируется полностью, образуется новое состояние вещества – плазма. Плазма начинает светиться и для уменьшения потерь энергии на излучение стремится образовать шарообразную форму. Внешне это выглядит так: из тучи внезапно вываливается небольшой светящийся комок, получивший название белого лидера, и устремляется к Земле. Скорость его движения достигает 50 000 км/сек. Но лидер двигается с остановками, во время которых может произойти его деление. Движение лидера подготавливает канал  для основного разряда. Если лидер делится, то возможно ветвление разряда. Когда до Земли остается около 100 метров, с земной поверхности навстречу лидеру поднимается заряд, стремящийся двигаться вдоль острых высоких предметов. При смы-кании лидера с этим зарядом образуется канал, по которому отрицательный заряд попадает на Землю. Образуется гигантская искра, но длительность этого искрового разряда мала. Через доли секунды из тучи выходит новый комок – так называемый темный лидер. Он с большой скоростью и без остановки устремляется к Земле по подготовленному каналу. Вслед за ним идет основной разряд. Искра возникает снова. Темный лидер может образовываться несколько раз, вызывая несколько ударов молнии ( рекорд – 42 раза).

Каждый удар молнии переносит до 40 Кулонов, но отрицательный заряд не удержи-вается на Земле. Между земной поверхностью и ионосферой существует разность потен-циалов около 400 киловольт, поэтому в атмосфере постоянно идет ток, направленный вверх. Его плотность мала – несколько микроампер на кв. метр ( 1 мкА = 10 –6 А), но общее значение тока достигает 1800 Ампер. Мощность, развиваемая в такой цепи, превышает 700 Мегаватт. Грозы лишь компенсируют утечку заряда. Ежесекундно на Земле происходит около 300 гроз. Средний разрядный ток в них также равен 1800 Ампер, обеспечивая неизменность заряда Земли.  

Лекция 14. Уравнения Максвелла. Электромагнитные волны.

                                               § 14 –1 Теория Максвелла.

          Рассмотрим проводящий виток, помещенный в изменяющееся магнитное поле. По за-

Рис.34. Направление

индукционного тока.

кону Фарадея в витке возникает ЭДС индукции. Направление индукционного тока таково, что он своим действием препятст-вует изменению магнитного поля. Если внешнее магнитное поле возрастает, его изменение В направлено по полю (см. рис.34), и напрвление индукционного тока должно быть таким, чтобы маг-нитный момент витка Iинд S был нап равлен против поля В. Как уже указывалось (§ 6-4) величина ЭДС индукции определяется выражением

                                             E = -;               Ф = .

Если виток не изменяет своей формы, то знак производной можно внести под знак инте-грала. Тогда получим:

                                                                   E  = -,

где наклонные  означают частную производную (предполагается, что значения В могут зависить от времени и координат).

Согласно своему определению ЭДС характеризует работу, совершаемую стороннми силами по всему замкнутому контуру (витку), т.е. E = , где Е представляет собой напряженность сторонних сил, создающих индукционный ток. Виток замкнут и однороден, поэтому силовые линии электрического поля тоже должны быть замкнутыми, т.е. индуци-рованное в проводнике электрическое поле является вихревым. Максвелл предположил, что наличие проводника не является обязательным: силовые линии электрического поля останутся замкнутыми и в свободном пространстве. На основании этого он сделал вывод, что всякое изменяющееся во времени магнитное поле порждает вокруг себя вихревое электрическое поле. Это положение называют первой гипотезой Максвелла, Закон Фара-дея теперь записывается так:

                                                       .                                                   ( I )

Кроме этого существует второе положеие теории Максвелла, которое вытекает из рассмотрения теоремы о циркуляции магнитного поля. Как было показано, циркуляция магнитного поля имеет следующий вид:

                                                        .

Рис.35. К выводу теоремы о

             полном токе.  

Это значит, что любое магнитное поле порождается то-ками. При рассмотрении переменного тока в цепи, содер-жащей конденсатор, можно было заметить, что линии тока прерываются на его пластинах  - в пространстве между пластинами ток отсутствует (см. рис.35). Тогда оказывается, что выбирая контур интегрирования L внут-ри этой области, можно нарушить теорему о циркуляции. Максвелл предоложил, что теорема  о  циркуляции векто-

ра магнитной индукции остается справедливой и для контура L за счет того, что в простран-стве между пластинами также имеется некий «волшебный» ток Iволш , причем полный ток в цепи складывается из тока проводимости I пров и этого «волшебного» тока,т.е.
                                                           .

В проводниках I пров = Iполн , а в пространстве между пластинами Iполн = Iволш . Нетрудно видеть, что при этих условиях теорема о циркуляции справедлива везде.

Обратимся к рассмотрению «волшебного тока» внутри пластин конденсатора. Мы знаем, что ток I пров =dQ/dt. На конденсаторе Q = S ( - плотность поверхностных зарядов, а S – площадь пластин конденсатора). Напряженность электрического поля внутри конден-сатора равна E = /0  или D0 = , где D0 = 0 E – вектор электрического смещения. С учетом этого запишем

                                                       

В то же время очевидно, что I пров = Iволш, поэтому последний ток Максвелл назвал током смещения. Теперь теорема о циркуляции принимает новый вид, где под знаком суммы стоит полный ток Iполн:

                                                .

Для проводников произвольного сечения и для проиэвольной формы пластин конденсатора токи выражаются через соответствующее суммирование плотности токов:

                                         Iпров = ;  I смещ =  ,

так что теорема о полном токе приобретает следующий вид:

                                                              .                                (II)

Если проводники отсутствуют, ток проводимости равен нулю, и уравнение (II) имеет вид:

                                                            .                                           (III)

Таким образом, второе положение теории Максвелла может быть сформулировано так:

Всякое изменяющееся во времени электрическое поле порождает вокруг себя магнитное вихревре поле.

 Уравнения (I) и (II) называются уравнениями Максвелла. Вместе с уравнениями

                                                и .

 Рис.36. К вычислению цир-

куляций для векторов Е и В.   

они составляют так называемую систему уравнений Мак-

свелла, полностью описывающую свойства электрическо-

го и магнитного полей.

                    § 14-2 Электромагнитные волны.

 Из уравнений Максвелла вытекает вывод о существова-нии  электромагнитных волн.  Для того, чтобы показать это, рассмотрим уравнения (I) и (III)  в  применении к кон-кретным полям. Пусть имеется некоторая система коор-динат  Х,Y,Z, как показано на рис.36, и в начале координат какими-то внешними причинами созданы электрическое и магнитное поля, характеризующиеся векторами Е иВ  соот-ветственно. Направления этих векторов указаны на рис.

Выберем малые прямоугольники со сторонами dx, dy и dz (см. рис.) Вычислим циркуляции

векторов Е и В по периметру прямоугольников. Для вычисления используем тот же прием, с помощью которого была определена величина вектора магнитной индукции на оси длин-ного соленоида. Направление обхода контуров выберем по часовой стрелке, и учтем, что величины Е и В могут зависеть от х. На расстоянии dx от начала координат они принимают значения Е + dЕ и В + dВ  соответственно. При этих условиях

                               или

                                                .

Аналогично для вектора В

                         .

Значения (E+dE)dy и Bdz взяты со знаком минус потому, что ветора на соответствующих отрезках направлены против выбранного обхода контуров. Подставляя вычисленные значе-ния циркуляции в уравнения (I) и (III), получим:

                    и , откуда

               ;       ,        где производная по х имеет смысл частной произ-

водной, поэтому правильнее заменить знак  на знак частной производной :

                                                       ;                .

       Диффернецируя первое уравнение по х, а второе – по t, и сравнивая полученные результаты, имеем:

                                                                  .

        Из курса механики известно, что это уравнение относится к так называемым волновым уравнениям, решению которых соответствует бегущая волна. Скорость распространения волны определяется коэффициентом, стоящим перед второй производной по времени:

                                                                           .

Аналогичное уравнение может быть получено и для вектора магнитной индукции В.Из ура- внений (I) и (III) следует, что электрический и магнитный вектора связаны между собой, по-

Рис.37. Структура электромагнитной

             волны.

этому волны названы электромагнитными. Подставляя численные значения 0 и 0 ,полу-чим,что v = c = 3108 м/c, т.е. скорость распро-странения электромагнитной волны равна ско-рости света. Если волна распространяется в сре-де, характеризующейся постоянными и , то скорость электромагнитной волны

           - показатель преломления среды относительно вакуума.

Электромагнитные волны обладают следу-ющими свойствами:

волны поперечны, т.к. вектора Е иВ направлены по осям Y и Z, тогда как волна распро-страняется вдоль оси Х.

волны поляризованы, т.к. изменяющееся магнитное поле перпендикулярно индуцирован-ному им электрическому.

Это электрическое поле создает переменное магнитное, плоскость колебаний которого сов-падает с плоскостью первичного магнитного поля (см. рис.37) так, что магнитное поле сох-раняет свою ориентацию в пространстве. Если в любой плоскости, перпендикулярной нап-равлению распространения, значения Е и В не зависят от координат, то волна называется плоской, и ее можно записать так:

                                                          

В этом выражении - волновое число, = сТ, =2/T. Формула плоской электромаг-нитной волны будет часто использоваться при рассмотрении оптических явлений. Свето-выми являются волны, длина которых лежит в интервале от 0,4 до 0,7 мкм. Волна, в которой колебания имеют одну частоту, называется монохроматической (одноцветной). Белый свет содержит не менее семи основных цветов. Для упрошения математических выкладок часто ограничиваются рассмотрением монохроматических волн.

Лекция 15. ОПТИКА.  Представления о свете. Законы геометрической оптики.

                                             § 15 –1 Развитие представлений о свете.

        Хотя попытки дать объяснения природы света были сделаны еще в древности (Евклид и Лукреций Кар), первая стройная теория света была разработа И.Ньютоном в кон-це семнадца-того века. Ньютон считал, что свет – это поток мельчайших частиц – корпус-кул, поэтому его теория получила название корпускулярной. Одновременно с ним Гук и Гюйгенс развивали волновую теорию, однако она не получила широкого признания отчасти из-за высокого авторитета Ньютона и отчасти из-за недостатков самой теории. которая представляла свет как упругие колебания среды Ньютон установил, что свет в представле-ниях волновой теории  должен быть поперечными колебаниями, что казалось маловероят-ным, учитывая эмпирические факты распространение света в воздухе и,особенно, в меж-звездном пространстве.Лишь позднее была предложена гипотеза о существовании особой среды,заполняющей всю Вселенную,- эфира, упругие свойства которого обеспечивали тре-буемую скорость распространения света.Успехи волновой теории связаны с работами Юн-га, Френеля и Пуассона, которые были выполнены в первой половине XIX века. Работы этих исследователей позволили объяснить такие явления как интерференция и дифракция света. Д.Максвелл установил, что свет – это электромагнитные волны. В тот момент, когда волновая теория стала общепризнанной, были установлены закономерности излучения света атомами и открыт фотоэффект. Эти факты противоречили волновой теории. Позднее была развита новая теория – дуалистическая, где свету приписывались и волновые и кор-пускулярные свойства. Луи де Бройль высказал гипотезу о всеобщем дуализме материи: каждая частица обладает волновыми свойствами, и каждой волне могут быть приписаны определенная масса и импульс. Свет – лишь пример проявления дуализма в природе. В нашем курсе мы будем рассматривать преимущественно волновые явления.

                                       § 15 –2 Законы отражения и преломления света.

     Волновая теория широко использует принцип Гюйгенса: каждая точка среды, до которой дошел волновой фронт, становится источником вторичных колебаний так, что положение волнового фронта в любой последующий промежуток времени находится как огибающая этих вторичных возбуждений. Отметим, что волновым фронтом называется поверхность, соединяющая точки,колебания в которых имеют одинаковые фазы.

Рис.38. К выводу закона прелом-

            ления света.

На рис.38 это изображается линией S. Руководствуясь этим принципом, выведем законы преломления и от-ражения света.Пусть на границу раздела двух сред па-дает плоский волновой фронт АВ.В момент, когда его левый край достигнет точки А (см. рис.38), в среде 2 вокруг этой точки начнет образовываться сферичес-кая волна. Правый край фронта подойдет к границе раздела через время t =BD/c, где с – скорость распро-странения света в среде1. За это время сферическая волна из точки А  успеет распространиться на рассто-яние АС=vt (v –скорость распространения света в среде 2).Из рис.видно,что    BAD =     и    АDC =      

как углы с взаимно перпендикулярными сторонами. Поэтому можно записать:

                                               .

Сравнивая эти два выражения, можно заметить, что

                                                                          .

Как уже упоминалось,скорость электромагнитных волн в среде v =c/= c/n .Поэтому отношение синусов можно приравнять к показателю преломления второй среды относи-тельно первой:

                                                                           .

     Если свет распространяется в обратном направлении, т.е из среды 2 в среду 1, то закон преломления остается в силе, но теперь n12 – это показатель преломления среды 1 относи-тельно среды 2. Можно заметить, что в этом случае угол преломления становится больше угла падения, но существует предельное значение угла преломления,  т.к.  синус не может быть больше единицы. Угол падения, который соответствует этому углу преломления назы-вается предельным. При дальнейшем увеличении угла падения свет не проходит в среду 1, испытывая полное внутреннее отражение.

Рис.39. К выводу закона отраже-

             ния света.  

Вывод закона отражения света производится анало-

гичным способом, с той разницей, что теперь вторич-ная волна распространяется в той же среде (рис.39). Треугольники  ACD  и ABD равны, т.к. сторона AD  - общая, а АВ = СD =ct, где как и прежде t – вре-мя распространения  волнового фронта от точки С до точки D. Из равенства треугольников следует, что  

 CAD =   ABD, как углы с взаимно перпендикулярны-ми сторонами, но    CAD = и     ABD = и , т.е. угол падения равен углу отражения.

                                         

Лекция 16. Волновая оптика. Явление интерференции.

§ 16 –1 Явление интерференции.

       Интерференцией называется сложение волн от двух или нескольких источников, когда в результате сложения нарущается принцип суперпозиции интенсивностей. Как сле-дует из прошлых лекций, плотности энергии электрического и магнитного полей пропор-циональны квадратамвеличин Е и В, поэтому можно считать, что плотность энергии в элек-тромагнитной волне также пропорциональна квадрату амплитуды волны. Принято считать, что плотность энергии определяет интенсивность световой волны, которую человеческий глаз оценивает как освещенность. При сложении волн должен выполняться принцип супер-позиции энергий каждой из слагаемых волн. Наша повседневная практика дает примеры справедливости этого положения: две лампы дают в два раза больше света, чем одна. Можно показать, однако, что этот принцип выполняется не всегда.

Рис.40. Сложение коге-

рентных колебаний.

         Пусть имеется две плоских волны y1 = A1sin(tkx1) и y2 =

 =A2sin(tkx2), где х1 и х2 -расстояния, которые прошли волны до момента встречи. Для того, чтобы найти сумму колебаний от двух волн в точке встречи, представленных в векторном виде (рис.40). Как видно из рис., по теореме косинусов можно запи-сать

                     ,

т.е. результат сложения зависит от разности х2 – х1. При условии k(x2x1) =2n ( n = 0,1,2 и т.д.)

                      ,

    а при k(x2x1) =(2n-1)

                                                    .

    Очевидно, что при условии А12   или  в зависимости от разности хода x2x1. Если учесть, что энергия каждой волны равна А2, суммарная энергия должна равняться 2А2, тогда как результат сложения либо в два раза больше, чем суммарная энергия, либо равен нулю, т.е. кажется, что не выполняется закон сохранения энергии. Колебания, для которых подобные результаты имеют место, называются когерентными. Если принцип суперпозиции выполняется, то источники называют некогерентными. Для того, чтобы волны давали когерентные колебания, необходимо выполнение трех условий:

   1.должны иметь одинаковую частоту,

   2. разность фаз колебаний должна быть постоянной хотя бы на время волны наблюдений,

   3. колебания каждой из суммируемых волн должны лежать в одной плоскости.

Практическое получение когерентных колебаний связано с определенными трудностями. Необходимо иметь в виду, что световые волны получаются при излучении атомов, когда электорны переходят с одного энергетического уровня на другой. Время излучения крайне незначительно и составляет около 10 –8 сек. Новый кат излучения происходит с другой на-чальной фазой, которая раз от раза изменяется случайным образом. На языке корпускуляр-

Рис.41. Схема получения

          когерентных волн.

ных представлений такая порция излучения называется кван-том, а в волновой теории ее называют цугом. Для получения когерентных волн необходимо, чтобы они происходили из одного цуга. Это можно сделать лишь путем его деления (см. рис.41). Для этих целей используются специальные приспособ-ления: билинзы Бийе, бипризмы и бизеркала Френеля и др. (рис.42). Во всех  случаях  явление  интерференции  возможно,

если максимальная разность хода не превышает длину цуга L = c, где = 10 –8 сек – время излучения цуга,т.е. L=3м.

Рис.42. Интерференционные схемы: а)бипризма Френеля, б)билинза Френеля.

«Раздвоение» источника достигается либо преломлением в призме, либо отражением в двух зеркалах. Угол «разворота» зеркал и преломляющий угол призмы близки к 1800 для того, чтобы достичь наилучшей видимости картины интерференции.

  Как было показано, амплитуда суммарных колебаний определяется разностью хода интер-ферирующих волн или разностью фаз складывающихся колебаний. Если разность фаз  изменяется случайным образом, то среднее значение cos за время наблюдения равно ну-лю, и мы видим обыкновенное сложение интенсивностей. Если же источники когерентны, то при условии  k(x2x1) = 2n  колебания  дадут максимум  суммарной  амплитуды, а при k(x2x1) = (2n-1)  - минимум. Учитывая, что  k = 2/ , ( - длина волны ) условия макси-мума и минимума интенсивностей можно записать так:

                                                               (x2x1) = 2n/2     для максимума и

                                                               (x2x1) = (2n-1)/2  для минимума.

Это значит, что если разность хода интерферирующих волн равна четному числу полуволн, то получается максимум, а если нечетному – минимум интенсивности. Нарушение закона сохранения энергии при этом не происходит. Она лишь перераспределяется – в max – боль-ше, а в min меньше, но средняя энергия остается неизменной. Глаз воспринимает такое перераспределение как чередование темных и светлых полос, контрастность которых определяется соотношением интенсивностей интерферирующих источников.

                                                     § !0 –4 Полосы равной толщины.

 Наиболее часто в повседневной жизни явление интерференции проявляется в так называемых полосах равной толщины, которые получаются при отражении света от тонких

Рис.43. Интерференция в тон-

             ких пленках.

пленок. Пусть имеется тонкая пленка переменной тол-щины (рис.43), на которую падают параллельные лучи света. Выберем два луча, один из которых отражается от верхней поверхности пленки, а другой – от нижней. Раз-ность хода между лучами определяется удвоенной длиной AD и участком ВС. Однако следует иметь в виду, что пленка является более плотной оптической средой, и ско-рость света в ней меньше. Вследствие этого время, затра-чиваемое светом на прохождение пути AD будет больше в n раз, где n – показатель преломления пленки. Поэтому принято говорить об оптической длине пути света, кото-рая равна ADn. Теперь разность оптических путей лучей

1 и 2 = 2n(AD) – BC +/2. Величина /2 добавляется потому, что происходит изменение фазы волны на 180 0, что эквивалентно увеличению пути на /2.Из рис можно увидить, что AD = DF/cos;AF = DFtg;AC = 2AF= =2DFtg;BC =ACsin = 2DFtg sin. Согласно закону преломления света sin = nsin. C учетом этого = 2nDF/cos - 2DFsintg + +/2 = 2nDF(1- -sin2)/cos +/2 = 2DFcos +/2.

Если = (2n-1)/2, то 2DFncos =n cоответствует условию минимума освещенности, а = =n= 2DFncos +/2 – условию максимума.Условия интерференции будут одинаковыми для всех мест, где толщина пленки также одинакова, в связи с чем говорят, что интерференци-онная картина локализована на поверхности пленки. При наблюдении в белом свете карти-на усложняется, т.к. для каждого из цветовых компонент белого света условия max и min будут свои. На поверхности пленки будут видны цветные пятна (вспомните пленки бензи-на и масла на поверхности луж).  Частным  случаем  полос  равной  толщины  являются

Рис.44. Схема для наблю-

    дения колец Ньютона.

кольца Ньютона. Роль пленки переменной толщины здесь иг-рает воздушная прослойка между собирающей линзой и стек-лянной пластинкой (см.рис.44). Т.к. оптическая структура об-ладает осевой симметрией, наблюдающиеся интерференци-онные полосы принимают вид концентрических колец. Для толщины прослойки h разность хода между лучами, отражен-ными от нижней поверхности линзы и от пластинки соот-ветственно равна =2h +/2 - (/2) добавляется из-за условий отражения. В то же время из рис.44 на основании свойств перпендикуляра. опущенного из вершины прямого угла на ги-потенузу, следует:

                                                                           ,

где m – номер наблюдаеиого кольца. Пренебрегая малой величиной h2  по сравнению с ра-диусом линзы R,находим . Для темных колец = (2m+1)/2 = 2h + /2 и 2h =m. Подставляя это соотношение в формулу для квадрата радиуса кольца, получим:

                                                                      .

Лекция 17.   Дифракция  света.

                                                        § 17 –1Метод зон Френеля.

Дифракией называется когерентное рассеяние света на объектах, геометрические размеры которых сравнимы с длиной световой волны. Наблюдающаяся дифракционная кар-тина является результатом интерференции вторичных источников, образующихся на по-верхности объекта. Расчет интерференционной картины можно проводить пользуясь мето-дом суперпозиции, однако применение этого метода сопряжено с известными математи-ческими трудностями. В связи мы ограничимся рассмотрения качественного подхода к ре-шению поставленной задачи, развитого Френелем. Основной идеей, определяющей сущ-ность такого рассмотрения, является принцип Гюйгенса –Френеля, который представляет собой дополненный принцип Гюйгенса. Френель постулировал, что все элементарные вто-ричные источники являются когерентнми. Для оценки результирующей амплитуды колебаний в точке наблюдения был разработан специальный метод, получивший название метода зон Френеля. Согласно этому методу волновой фронт (будем называть волновым фронтом поверхность, которая соединяет все точки, колеблющиеся в одинаковой фазе) раз-бивается на отдельные участки, именуемые зонами. Разбиение на зоны должно удовлетво-рять двум условиям:    

1.площади всех зон одинаковы,

2.расстояния от двух соседних зон до точки наблюдения отличаются на половину длины волны.

Первое условие означает, что амплитуды колебаний от всех зон в точке наблюдения будут одинаковыми, тогда как из второго условия следует, что колебания двух соседних зон скла-дываются в противофазе. В этом случае вместо вычисления сложных интегралов достаточ-но подсчитать число зон. Если оно – четно – в точке наблюдения будет минимум освещен-ности (зоны попарно гасят друг друга), если же количество зон на участке волнового фрон-та, видимого из точки наблюдения, окажется нечетным – в ней будет конечная освещен-ность.

                                              § 17 –2 Метод векторных диаграмм.

               Для оценки вкладов от каждой зоны в суммарную освещенность используем метод векторных диаграмм. Для этого разобьем каждую зону на ряд узких «подзон» так, что каж-дая подзона отличается от соседней лишь небольшим сдигом по фазе. Колебания каждой из «подзон» будем представлять в виде вектора, длина которого определяется амплитудой ко-

Рис.45. Векторная

диаграмма одной

зоны.

лебаний. Площади  «подзон»  выберем  одинаковыми. Как  видно  из рис.45, вектора каждой «подзоны» оказываются повернутыми отно-сительно соседних на небоьшой угол, но «подзоны» на противополож-ных краях зоны отличаются по фазе на 1800 .Суммарное действие всех «подзон» изображается вектором Е . Нетрудно сообразить, что при устремлении ширины каждой «подзоны» к нулю, получившаяся лома-ная линия превращается в плавную полуокружность.

Действие двух зон должно быть равным нулю, но оказывается, что амплитуды колебаний зон не совсем одтнаковые. Их величина зависит от косинуса угла между нормалью к по-верхности зоны и направлением на точку наблюдения. Результат сложения двух и трех зон

Рис.46. Векторные диаграммы для разного числа зон.

показан на рис.46( б,в и г). Как видно из рис., две зо-ны почти уничтожаются, а амплитуда третьей зоны почти равна амплитуде первой. Там же показано (рис.46а) действие всего

волнового фронта А0, ког-да препятствие отсутству-

ет. Оно оказывается в два раза меньше, чем действие первой зоны. Витки спирали располо-жены достаточно плотно, и при большом количестве открытыз зон суммарная амплитуда А  А0 остается практически неизменной при изменении числа зон.

                                   § 17 –3 Дифракция Френеля на круглом отверстии.

Рис.47. К вычислению радиуса зоны.

Применим метод зон к анализу так называе-мой  дифракции  Френеля, когда источник света – точечный, и волновая поверхность имеет форму сферы.В качестве препятствия рассмотрим небольшое круглое отверстие в непрозрачном экране. выберем точку наблю-дения О так, чтобы в отверстии укладыва-лось бы целое число зон Френеля. Пусть волновой  фронт  от  точечного  источника S,

дошедший до экрана, имеет радиус SB = а (см. рис.47). Расстояние от точки наблюдения О  до плоскости экрана равно МО = b+. Мысленно разобьем волновой фронт на концентри-ческие зоны ( на рис.47 показана одна зона) так, что расстояние от n – зоны до точки наблю-дения О  равно b + n/2. Из треугольника SBM по теореме Пифагора получим:

                                      МВ2 = SB2 – SM2 = .                             (IV)

 Аналогично из  ОМВ :=.                    (V)

Члены, содержащие множители 2 и 2, отброшены как малые по сравнению с a  и b. При-равнивая правые части уравнений (IV) и (V), получим   Выражая отсюда и подставляя его в (IV), получим формулу для радиуса любой зоны:

                                                                  .

Численные значения радиуса первой зоны можно оценить, полагая a  b  1м,   0,5мкм. Подстановка этих значений показывает, что r1 0,3 мм. Поэтому при диаметре отверстия 1 -  -2 мм  в нем уложится 5-7 зон. Поскольку их амплитуды примерно одинаковы, результат сложения существенно зависит от числа зон. При нечетном числе зон в точке наблюдения

Рис.48. Смещение зон относительно отверстия.

будет максимум, а при четном – минимум ос-вещенности. Рассмотрим, как будет изменять-ся результат сложения колебаний при измене-нии положения точки О. Если точка смещается вдоль оси  SO, то характер разбиения на зоны не изменится, произойдет лишь изменение числа зон, укладывающихся в отверстии, т.е. будет наблюдаться чередование максимумом и минимумов освещенности. Если же точка О смещается перпендикулярно оси SO, то харак-

тер разбиения на зоны также не изменится, но произойдет поворот направления наблюдения

относительно перпендикуляра, восставленного

из центра отверстия к плоскости экрана (см. рис. 48. Вследствие этого часть зон начнет за-крываться, что приведет к изменению осве-щенности. Пусть для определенности в тот мо-

мент, когда точка наблюдения находится на оси OS, а в отверстии укладывается нечетное число зон (например – три). Когда часть наружной зоны начнет закрываться, освещенность уменьшится.Одновременно с противоположного края отверстия появится часть новой зоны, которая еще больше уменьшит освещенность ( здесь нада вспомнить, что соседние зоны гасят друг друга). Поэтому при дальнейшем удалении точки наблюдения от оси наступит момент, когда освещенность уменьшится до нуля..Это условие будет выполняться для всех точек, находящихся на окружности, радиус которой определяется расстоянием от точки на-блюдения до оси OS. Вокруг светлой точки появится темное кольцо, продолжая рассужде-ния подобным образом, можно придти к заключению, что дифракционная картина от круг-лого отверстия пред-ставляет собой чередование чветлых и темных колец.

                                       § 17 –4 Дифракция Френеля на круглом экране.

Рис.49. Диффракция на круглом

             экране.

Пусть препятствием служит теперь небольшой не-прозрачный диск, и пусть радиус волнового фронта настолько велик, что волновая поверхность прак-тически  совпадает с  плоской  поверхностью  диска ( рис.49). Разобьем волновой фронт на зоны спосо-бом, аналогичным изложенному в предыдущем па-раграфе. В точку наблюдения В приходят все коле-бания волнового фронта за исключением тех зон, которые закрыты диском. Это суммарное колебание на векторной диаграмме (см. рис.46) изобразится вектором АД . Начало вектора соответствует точке, лежащей на краю диска. При изменении расстоя-

ния от диска до точки В число закрытых зон будет меняться, и начало вектора АД станет описывать окружность вокруг центра спирали, тогда как конец вектора всегда находится в ее центре. При большом числе открытых зон длина вектора почти не изменяется. Поэтому в точке В будет наблюдаться светлое пятно (пятно Пуассона).

                                                § 17 –5 Дифракция Фраунгофера.

Этот вид дифракции наблюдается в параллельных лучах, когда волновой фронт ста-новится плоским, а зоны Френеля принимают вид узких прямоугольных полосок. Опти-

  

Рис.50. Диффракция Фраунгофера на    

             щели.

ческая схема наблюдения  этого вида диф-ракции представлена на рис.50. В роли пре-пятствия здесь выступает узкая прямоуголь-ная щель (узкая сторона щели лежит в плос-кости рисунка). Разбиение поверхности щели на зоны Френеля осуществляется следующим образом: через край щели (точка М0 ) прово-дится плоскость (М0 Р), перпендикулярная идущим в точку наблюдения лучам, а затем проводятся параллельные ей плоскости, от-стоящие друг от друга на полволны.Эти плос-кости, пересекая плоскость щели, разбивают ее на зоны Френеля, которые представляют собой полосы, параллельные краям щели:

границы зон изображаются точками М 01, М2 …, а отрезки М 0М1 , М1М2 определяют ширину первой, второй и т.д.зон.Из рис видно,что в расчете не учитывается разность хода от плоскости М0Р до фокуса линзы Л, предназначенной для создания резкого изображения на экране. Это является следствием таутохронизма линзы, означающего, что лучи прохо-дят пути от М0Р до фокуса линзы за одинаковое время. Попутно заметим, что линза ЛК предназначена для создания параллельного пучка лучей.  Предположим, что угол выбран таким образом, что на ширине щели укладывается целое число зон, т.е. МР = k/2 ( k = 1,2,3 …). В то же время из М0РМ следует, что МР = ММ0 sin  или MP = bsin. Если число зон четное ( k =2m), то выбранное направление соответствует минимуму освещенности  (  зоны попарно гасят друг друга), а если – нечетно (k = 2m-1) – то максимуму. Таким образом, имеем:  
                                          
bsin = m  - условие минимума,  

                                       bsin = (2ь-1)/2 – условие максимума.

            При движении точки наблюдения в направлении, перпендикулярном плоскости рисунка (вдоль длинной стороны щели) картина не изменяется, и на экране видны чере-дующиеся  темные и светлые полосы. Однако интенсивности светлых полос быстро убы-вают так, что практически с трудом удается наблюдать более двух таких полос с  каждой стороны от центрального максимума.

                                             § 17 –6 Дифракционная решетка.

Рис.51. Дифракция на щели.

Возьмем теперь в качестве препятствия диф-ракционную решетку, т.е непрозрачную пла-стинку с одинаковыми параллельнымии рав-ноотстоящими друг от друга щелями(рис51). Обозначим, как и прежде, ширину щели b, а ширину непрозрачного участка – а . Величи-ну d = а + b назовем периодом или постоян-ной решетки.Выбирая ту же волновую по-верхность, что и при рассмотрении дифрак-

 ции на одной щели, и применяя принцип Гюйгенса-Френеля, можно заметить, что теперь в каждой точке экрана для наблюдений собираются лучи, идущие от всех N щелей. Для вы-числения результата сложения выделим в каждой щели одинаковые точки(например- верх-ние).Две таких точки в соседних щелях при заданном угле имеют разность фаз, равную

  =  . В точке наблюдения колебания от всех щелей сложатся в одинаковых фазах, если разность фаз равна 2n (n =0,1,2…), т.е.    = = 2n, откуда получается ус-ловие для максимумов dsin = n . Можно показать, что кроме этих максимумов существу-ют еще другие, положения которых зависит от числа щелей, но интенсивность их крайне не значительна. Чтобы различать эти максимумы с теми, которые удовлетворяют условию dsin = n, принято называть их дополнительными максимумами, а максимумы, соответ-ствующие условию dsin = n - главными. Значение числа n определяет порядок главного максимума (первый максимум, второй и т.д) Между максимумами должны располагаться минимумы освещенности, но с практической точки зрения они не представляют особого интереса и в нашем курсе не рассматриваются.

Полученные условия главных максимумов справедливы для одной длины волны све-та. Если же свет – белый, то для каждого из его составляющих цветов условия максимумов будут соответствовать различным углам , т.е. на экране получится набор цветных полос. Другими словами, дифракционная решетка позволяет анализировать спектральный состав световых лучей. Поэтому решетку можно использовать как спектральный аппарат. Все спектральные аппараты характеризуются такими величинами как дисперсионная область, угловая дисперсия и разрешающая способность.

        Дисперсионная область G определяет ширину спектрального интервала от до+ , в котором максимумы для различных волн не перекрываются друг с другом.Величина G =/n, где  n - порядок максимума.

Угловая дисперсия D определяет угловое расстояние между волнами, длина которых отличается на единицу (длины).Выражение для определения D  можно получить, дифферен-цируя условия главных максимумов: dcos =nd. Отсюда D определяется как

                                                                     .

Под разрешающей способностью А подразумевается возможность спектрального аппарата различать линии, соответствующие близким значениям длин волн и + . Она определяется выражением

                                                                         .

                                               § 17 –7 Дифракция рентгеновских лучей.

          Рентгеновскими лучами называют электромагнитное излучение, длина волн которого примерно равна !0 –10 м. Длина волны рентгеновских лучей много меньше световых волн,

Рис.52. Дифракция рентгенов-

           ских лучей.

поэтому наблюдать дифракцию этих лучей в стандар-тных схемах не удается. Препятствиями, размеры кото-рых сравнимы с длиной волны рентгеновских лучей, могут служить лишь межатомные расстояния в твер-дых телах. Схема дифракции показана на рис.52. Ато-мы кристалла расположены в правильном порядке, об-разуя плоскости, отражающие лучи. Коэффициент пре-ломления лучей близок к единице, и лучи отражаются от  различных плоскостей без заметного преломления (nр 1). Обозначая угол скольжения лучей через , а расстояние между отдельными слоями через d, можно

заметить, что разность хода между интерферирующими лучами =AD +DCBC. Из ADF AD = FD/sin; AF = dtg, а из АВС ВС = 2AFcos. С учетом того, что AD = DC, имеем:

                                                     

Условие максимума будет выполняться при 2dsin = k , где k –целое число. Полученная формула носит название формулы Вульфа – Брэггов.

Рассмотренный случай дифракции относится к конкретным межатомным плоскостям и монохроматическому излучению, что заметно упрощает анализ условий образования мак-симумов. В действительности же межатомные плоскости могут быть ориентированы произ- вольным образом, причем в роли интерферирующих лучей могут выступать лучи, отраженные не только от соседних плоскостей. Кроме того, следует иметь ввиду, что реаль-ные кристаллические структуры имют три измерения, каждому из которых могут соответст-вовать различные условия образования максимумов. Тем не менее рентгенографический метод анализа  кристаллов нашел широкое применение в петрографии, рентгеноструктур-ном анализе и ряде других приложений.

Лекция 18.      Поляризация света. Взаимодествие света с веществом.

                                                    §18-1 Явление поляризации.

        Обычно считается, чтопонятие поляризации связано с сохранением неизменной ориен-тации плоскости колебаний. Говорить о поляризации имеет смысл только для поперечных колебаний. Свет, как мы знаем, является электромагнитной волной, а эти волны – попереч-ны и поляризованы (см.рис.37) так, что казалось бы, световые колебания всегда должны быть поляризованы. Однако мы знаем, что световые волны испускаются отдельными цуга-ми, продолжительность которых не превышает 10–8 сек. Процесс испускания является слу-

Рис.53. Прохождение света через

           анализатор и поляризатор.

чайным, и фаза испущенной волны, а также ориента-ции векторов Е и В в плоскости, пер пендикулярной направлению излучения, могут быть любыми.Т.к. вектора Е и В в волне жестко связаны друг с другом, имеет смысл рассматривать лишь один из них (пусть, для определенности, это будет вектор Е). В среднем, в любой волне все допустимые ориентации вектора Е

равновероятны (см. рис.53). Существуют приспобле-ния, называемые поляризаторами, которые обладают способностью пропускать через себя световые лучи

только с одним направлением плоскости колебаний электрического вектора Е, так что на выходе поляризатора свет становится плоско (линейно) поляризованным. Человеческий глаз не в состоянии обнаружить, поляризован свет или неполяризован. Для того, чтобы обнаружить это, необходимо использовать второе такое же приспособление, которое на-зывают анализатором. Если направление пропускания анализатора и поляризатора совпа-дают, луч света на выходе из анализатора имеет максимальную интенсивность. При про-извольном угле между направлениями анализатора и поляризатора (см.рис.53) амплитуда световых колебаний, выходящих из анализатора ЕА = ЕП cos, где ЕП – амплитуда колеба-ний на выходе из поляризатора. В электромагнитной волне плотность энергии (интенсив-ность) пропорциональна квадрату амплитуды колебаний Е, т.е. I П  Е и IА  Е . На осно-вании этого получаем:

                                                                       .

Это соотношение называется законом Малюса.

                                                              §18-2 Закон Брюстера.

Простейшим приспособлением для поляризации света может служить прозрачное диэлектрическое зеркало. Пусть на диэлектрик (см. рис.54) падает луч естественного све-

Рис.54. Поляризация света при отражении и преломлении.

та. Обозначим через n2  коэффициент преломления диэлектрика, а через n1 – коэффициент преломления среды, откуда падает свет ( - угол падения, - угол преломления). Условимся изображать направление колебаний вектора Е в виде точек или тонких чер-точек, где точка изображает направление вектора, перпендику-лярное плоскости чертежа, а черточка означает, что вектор Е ле-жит в плоскости чертежа. В естественном свете равновероятны все направления колебаний Е, что изображается в виде того, что количество точек и черточек одинаково. Опыт показывает, что отраженный и преломленнвй лучи становятся частично поляри-зованными, причем в отраженном свете преобладающими ста-новятся колебания, плоскость которых перпендикулярна плос-

кости чертежа, а в преломленном предпочтительнее оказываются направления колебаний в плоскости чертежа ( на рис. это изображается в виде преимущества числа точек или черто-чек). Существует угол падения, при котором  отраженные лучи становятся полностью поля-ризованными. Этот угол называется углом Брюстера, его значение связано с отношением n2/n1 = n21, т.е. относительным показателем преломления:

                                                                           .

Качественное объяснение этого закона следует из рассмотрения микроскопической картины распространения светв в веществе. Рассмотрим упрощенную модель взаимодействия света с веществом, согласно которой переменное электрическое поле световой волны приводит в двихение атомы вещества. Атом же представим как диполь, где роль отрицательного заряда

Рис.55. Индикатрисса излучения диполя.

играет внешний электрон, а вся остальная часть атома рассматривается как положи-тельный заряд (ион). Т.к. масса положитель-ного иона во много раз ( более 2000) больше, чем масса электрона, можно рассматривать лишь колебания электрона. Строгая теория электромагнетиза показывает, что колеблю-щийся диполь становится излучателем элек-тромагнитных волн, причем интенсивность излучения различна в разных направлениях. Для иллюстрации анизотропности излуча-

тельной способности диполя строится диаграмма (индикатрисса), на которой интенсивность излучения в заданном направлении изображается в виде вектора. Длина этого вектора и ха-рактеризует интенсивность излучения. Пространственное изображение индикатриссы при-ведено на рис.55. В правой части рисунка показано сечение диаграммы вертикальной пло-скостью, проходящей через центр диаграммы.

Положения рассмотренной модели применим для объяснения закона Брюстера. В па-дающем на границу раздела двух сред естественном свете вектор Е принимает всевозмож-ные направления (см.рис.53), но без ограничения общности можно рассматривать лишь два:

Рис.56. К выводу закона Брюстера.

Е  и Е   , т.к. любой вектор Е можно пред-ставить  как  их  сумму  (см.  левую  часть рис.56). Вектор Е  соответствует колебани-ям, которые происходят в направлении, пер-пендикулярным плоскости чертежа,а Е   ха-рактеризует колебания в этой плоскости. Представляет интерес рассмотреть лишь со-ставляющую Е  .Если диполь излучает волну Е   в направлении преломленного луча ( пра-

вая часть рис.56), то из диаграммы направленности следует, что в направлении,перпендику-лярном этому лучу, никакого излучения не происходит. В этом направлении излучаются лишь волны с напряженностью Е  . Из этого следует, что если луч преломленный и луч от-раженный перпендикулярны друг другу, то в отраженном свете полностью отсутствуют ко-лебания с Е   .Из рисунка видно, что + + 900 = 1800,или + =900, тогда как из закона преломления следует, что sin = n21 sin . Подставляя в закон преломления = 900 - , по-лучим sin = n21sin(900 -) = n21cos, т.е.

                                                                       tg = n21.

                                                        §18-3 Поглощение света.

При прохождении света через вещество часть энергии световой волны поглощается, переходя во внутреннюю энергию вещества. Для оценки величины этих по-терь рассмотрим световой поток, распространяющейся вдоль оси х (рис.57).0пыт показы-вает,что при прохождении очень тонкого слоя вещества толщиной dx относительная убыль

Рис.57. Изменение интенсивнос-

    ти света при его поглощении.

интенсивности, т.е.отношение изменения интенсив-ности dI в этом слое к  интенсивности падающего света I(х) ( см.рис.57),пропорциональна толщине слоя:

                      ,

где коэффициент К, зависящий от свойств вещества, называется коэффициентом поглощения.Знак минус отражает убывание интенсивности с ростом х. Измене-ние интенсивности света при прохождении слоя конеч-ной толщины х находится путем прямого интегри-рования вышеприведенной формулы:

                                        .

Потенцируя последнюю формулу, получим известный закон Бугера: .

             § 18 - 4 Рассеяние света.

          Плоская волна, распространяющаяся в однородной среде, остается плоской.Однако если среда неоднородна и в ней имеются включения с другими оптическими свойствами, то кроме волны, распространяющейся в первоначальном направлении, появляются волны, рассеянные в стороны. Эти волны уносят часть энергии и уменьшают интенсивность первоначального луча. Характер рассеяния зависит от размеров и природы неоднородностей.Если их размеры больше длины волны.то наблюдается чисто геометрическое рассеяние.Это касается прежде всего твердых частиц, взвешенных в воздухе.Падающий на разные участки поверхности частицы солнечный свет отражается под различными углами. Если при этом спектральный состав света не меняется, то рассеянный свет остается белым (примером это-го может служить белый цвет неба в пустынях.когда восходящие воздушные потоки пере-носят в верхние слои атмосферы мелкие частицы песка). В целом наблюдаемая картина рас-сеяния очень чувствительна к размерам и форме неоднородностей( радуга и гало вокруг солнца, вызванные наличием в земной атмосфере соответственно капелек и льдинок).

             Если размеры неоднородносей существенно меньше длин волн света, то интен-сивность рассеянного света удовлетворяет закону Рэлея: Iрас~ Io 4 , где -частота падаю-щего света, причем интенсивность рассеянного света различна по разным направлениям (т.е анизотропна). Сильная зависимость интенсивности рассеянного света от частоты означает,

Рис.58. Рассеяние света в атмосфере.

что существенно сильнее рассеиваются вол-ны с большей частотой. В частности, если через среду идет волна от источника белого света (от Солнца - см.рис.58),то при наблю-дении сбоку среда кажется голубоватой, а сам источник на просвет выглядит более красным. Этим объясняется голубой цвет неба и красный цвет зари. Разные цветовые

оттенки получаются из-за разных геометри-

ческих расположении источника и наблюдателя. Так в глаз наблюдателя 1 ( см.рис.) прихо-дит прямой луч, тогда как наблюдатель 2 видит, в основном, рассеянные лучи.

                                                               § 18 - 5 Дисперсия света.

             Дисперсией называется зависимость скорости распространения световой волны в среде от частоты. Поскольку скорость волны однозначно связана с показателем прелом-ления среды ( v = c/n; n = ), то нашей задачей будет выяснение характера зависимости диэлектрической постоянной от частоты. Здесь уместно напомнить, что =1+ ( - диэлектрическая  восприимчивость, определяющая соотношение между поляризацией ве-щества Р и действующем электрическим полем Е : Р = о Е ).В то же время величина вектора поляризации определялась как суммарный дипольный момент единичного объема: Р =Nqx, гдe величина qx характеризует дипольный момент каждой молекулы диэлектрика. При решении задачи будем пользоваться той же моделью.что применялась ранее при рас-

смотрении закона Брюстера. Под действием переменного электрического поля световой волны расстояние электрона до положительного иона периодически изменяется.т.е. элек-трон совершает вынужденные колебания под действием внешней периодической силы.Вид этого уравнения, и его решение уже изучались ( см уравнение колебаний в кон-туре).Поэтому можно сразу написать выражение для амплитуды колебаний электрона в атоме:

где характеризует затухание колебаний, а 0 может рассматриваться как собственная частота колебаний электрона в атоме.Для упрощения математических выкладок будем пренебрегать затуханием,т.е положим = 0.Тогда величина поляризации равна:

                                                             Р =.

С другой стороны,выше указывалось,что Р = 0 Е, поэтому

                                                                    = .

Тогда                                                         = 1 + = 1 +;     = n2 .

Таким образом, имеем:

                                                             .

Рис.59 Частотная зависи-

мость показателя прелом-

ления.

График частотной зависимости в сделанных упрощениях по-казан на рис.59. Из рис. видно,что вдали от резонансной частоты показатель преломления (точнее n2 ) возрастает про-порционально квадрату частоты.Такая частотная  зависимость получила название нормальной дисперсии. Когда же частота внешних колебаний приближается к частоте собственных, амплитуда возрастает неограниченно.Ясно,однако,что этот результат есть следствие наших упрощений. При наличии за-тухания кривая имеет конечный максимум ( см. рис.59 ). Вблизи резонансной кривой показатель преломления имеет другой характер зависимости. Говорят, что - это область ано-мальной дисперсии, т.к. для нее величина n2 падает с ростом частоты, причем это наблюдается на фоне повышения пог-лощения света (амплитуда колебаний электрона возрастает).

СОДЕРЖАНИЕ

№ лекции

Содержание лекции

Страница

1.

ЭЛЕКТРОСТАТИКА. Электрический заряд.Электрическое поле. Напряженность электрического поля.

2

2.

Теорема Остроградского-Гаусса

4

3.

Работа по перемещению заряда в электрическом поле. Потенциал электростатического поля.

7

4.

Проводники в ээлектрическом поле

9

5.

Диэлектрики в электрическом поле

12

6.

Постоянный электрический ток

15

7.

МАГНИТНОЕ ПОЛЕ. Постоянное магнитное поле

19

8.

Теорема о циркуляции магнитного поля

22

9.

Силы, действующие в магнитном поле

23

10.

Явление электромагнитной индукции

25

11.

Магнитное поле в веществе

27

12.

Переменный электрический ток

30

13.

Электромагнитные колебания

33

14.

Уравнения Максвелла. Электромагнитные волны.

37

15.

Представления о свете. Законы геометрической оптики

40

16.

Волновая оптика. Явление интерференции

42

17.

Дифракция света

44

18.

Поляризация света. Взаимодействие света с веществом. Дисперсия света

49




1. Методические рекомендации для студентов составлены- Базюк Н.html
2. Иски в гражданском процессе
3. Специфика и технологии информационного сопровождения социальных проектов.html
4. Реферат з Вступу до фаху
5. Vous Hur m~r du Добрий день Hello-Good fternoon Bonjour Hej-God middg
6. групп. Декарбоксилирование СООН групп
7.  Творчество Платона и Аристотеля 2
8. А И даже на просторах только что дезинтегрировавшегося а точнее развалившегося СССР идет поиск новых возм
9. Статья 1. Предмет регулирования настоящего Федерального закона Предметом регулирования настоящего Федера.
10. НА ТЕМУ РАЗМЕЩЕНИЕ ПРОИЗВОДСТВЕННЫХ ПОДРАЗДЕЛЕНИЙ И ХОЗЯЙСТВЕННЫХ ЦЕНТРОВ Глава 1 Анализ существующег
11. Начальная общеобразовательная школа 98 Внутришкольный контроль ~ главный источник информации для диа
12. правовых форм межгосударственного сотрудничества является такой субъект международного права как междуна.html
13. а. Также мы можем помочь Вам правильно составить брачный договор
14. Билеты по географии Украины за 11 класс.html
15. Лабораторная работа N4 Исследование полевого транзистора Выполнил- Жуматай Н
16. Картофель жаренный с овощами Потребуется 1 кг картофеля 150 г замороженного сладкого перца 2 большие репч
17. Контрольная работа Ветеринарносанитарная экспертиза мяса
18. Лекция 12 Тиристоры Тиристор это полупроводниковый прибор который состоит из трих или более электронно
19. Искусство Италии 16 века
20. старый Каир ажурные минареты мечети Мохаммеда Али или мечети Султана Калауна гигантский акведук от Нила к.html