Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

комплекс управляющих и обрабатывающих программ которые с одной стороны выступают как интерфейс между у

Работа добавлена на сайт samzan.net:


  1.  Операцио́нная систе́ма - комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения.
  2.  Возникновение и основные этапы развития операционных систем: Первые ЭВМ были построены и нашли практическое применение в 40-е годы XX века, Вскоре ЭВМ начали успешно применять для решения других задач: анализ текстов и решение сложных прикладных задач из области физики. Круг потребителей услуг ЭВМ несколько расширился. Однако, для решения каждой конкретной задачи в то время необходимо было написать заново не только код, реализующий алгоритм решения, но и процедуры ввода-вывода и другие процедуры управления процессом вычисления. Поэтому для разрешения указанных проблем были созданы специальные библиотеки процедур ввода-вывода (BIOS – Base Input-Output System). Впервые, пакетная система была разработана в середине 50-х компанией General Motors для машин IBM 701. По-видимому, это была первая операционная система. Первые многозадачные операционные системы появились в 60-е годы в результате дальнейшего развития систем пакетной обработки заданий. Основным стимулом к их появления стали новые аппаратные возможности ЭВМ. Появление системы виртуальной памяти в конце 60-х, стало последним шагом на пути к современным операционным системам. Появление в дальнейшем графических пользовательских интерфейсов и даже поддержка сетевого взаимодействия уже не были столь революционными решениями, хотя и существенно повлияли и на развитие аппаратуры компьютеров, и на развитие самих операционных систем. С конца 80-х, персональные компьютеры получили повсеместное распространение, и в сообщество пользователей ПК оказалось вовлечено множество людей различных специальностей. Многие из них не имели специальной компьютерной подготовки, но хотели использовать компьютер в своей работе, т.к. использование компьютера давало ощутимые преимущества в их деле. Таким образом, в конце 80-х сложились все условия для повсеместного перехода на графический интерфейс пользователя. Далее  Операционная система UNIX, затем linux, и в  1985 windows.\
  3.  Системные вызовы( обращение прикладной программы к ядру операционной системы для выполнения какой-либо операции.Современные операционные системы (ОС) предусматривают разделение времени между выполняющимися вычислительными процессами (многозадачность) и разделение полномочий, препятствующее исполняемым программам обращаться к данным других программ и оборудованию. Ядро ОС исполняется в привилегированном режиме работы процессора. Для выполнения межпроцессной операции или операции, требующей доступа к оборудованию, программа обращается к ядру, которое, в зависимости от полномочий вызывающего процесса, исполняет либо отказывает в исполнении такого вызова.):

 Библиотека API ,  Системные вызовы выполненные в привелегированном режиме.

Прерывания(сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код; некоторое событие в ОС, явл внешним по отношению к приложению выполняется асинхронно с приложением): -асинхронный механизм, -прерывание от таймера для планирования порядка процессов, -исключительные ситуации: 1.исправимые;  2. Неисправимые

  1.  Основные архитектуры ОС: Простейшая структуризация ОС состоит в разделении всех компонентов ОС на модули, выполняющие основные функции ОС (ядро), и модули, выполняющие вспомогательные функции ОС. Вспомогательные модули ОС оформляются либо в виде приложений (утилиты и системные обрабатывающие программы), либо в виде библиотек процедур. Вспомогательные модули загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Модули ядра постоянно находятся в оперативной памяти, то есть являются резидентными.
  2.   При наличии аппаратной поддержки режимов с разными уровнями полномочий устойчивость ОС может быть повышена путем выполнения функций ядра в привилегированном режиме, а вспомогательных модулей ОС и приложений — в пользовательском. Это дает возможность защитить коды и данные ОС и приложений от несанкционированного доступа. ОС может выступать в роли арбитра в спорах приложений за ресурсы.
  3.  Ядро, являясь структурным элементом ОС, в свою очередь, может быть логически разложено на следующие слои (начиная с самого нижнего):
  4.  машинно-зависимые компоненты ОС;
  5.   базовые механизмы ядра;
  6.   менеджеры ресурсов;
  7.   интерфейс системных вызовов.
  8.   В многослойной системе каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс. На основе функций нижележащего слоя следующий вверх по иерархии слой строит свои функции — более сложные и более мощные, которые, в свою очередь, оказываются примитивами для создания еще более мощных функций вышележащего слоя. Многослойная организация ОС существенно упрощает разработку и модернизацию системы.
  9.   Любая ОС для решения своих задач взаимодействует с аппаратными средствами компьютера, а именно: средствами поддержки привилегированного режима и трансляции адресов, средствами переключения процессов и защиты областей памяти, системой прерываний и системным таймером. Это делает ОС машинно-зависимой, привязанной к определенной аппаратной платформе.
  10.   Переносимость ОС может быть достигнута при соблюдении следующих правил. Во-первых, большая часть кода должна быть написана на языке, трансляторы которого имеются на всех компьютерах, куда предполагается переносить систему. Во-вторых, объем машинно-зависимых частей кода, которые непосредственно взаимодействуют с аппаратными средствами, должен быть по возможности минимизирован. В-третьих, аппаратно-зависимый код должен быть надежно локализован в нескольких модулях.
  11.   Микроядерная архитектура является альтернативой классическому способу построения операционной системы, в соответствии с которым все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. В микроядерных ОС в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Все остальные высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме.
  12.   Микроядерные ОС удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, что является основным недостатком микроядерной архитектуры.
  13.   Прикладная программная среда — совокупность средств ОС, предназначенная для организации выполнения приложений, использующих определенную систему машинных команд, определенный тип API и определенный формат исполняемой программы. Каждая ОС создает как минимум одну прикладную программную среду. Проблема состоит в обеспечении совместимости нескольких программных сред в рамках одной ОС. При построении множественных прикладных сред используются различные архитектурные решения, концепции эмуляции двоичного кода, трансляции API.
  14.  Классификация ОС по признаку поддержки процессов: в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.

Поддержка многозадачности. По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

  1.  однозадачные (например, MS-DOS, MSX) и
  2.  многозадачные (OC EC, OS/2, UNIX, Windows 95).

Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.

Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Поддержка многопользовательского режима. По числу одновременно работающих пользователей ОС делятся на:

  1.  однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);
  2.  многопользовательские (UNIX, Windows NT).

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

Вытесняющая и невытесняющая многозадачность. Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

  1.  невытесняющая многозадачность (NetWare, Windows 3.x);
  2.  вытесняющая многозадачность (Windows NT, OS/2, UNIX).

Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.

Поддержка многонитевости. Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).

Многопроцессорная обработка. Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.

В наши дни становится общепринятым введение в ОС функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft и NetWare 4.1 фирмы Novell.

Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

  1.  Понятие процесса и потока: Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Более крупная единица работы, обычно носящая название процесса, или задачи, требует для своего выполнения нескольких более мелких работ, для обозначения которых используют термины «поток», или «нить».
  2.  Состояние процесса\потока: ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток может находиться в одном из трех основных состояний:
  3.   выполнение — активное состояние потока, во время которого поток обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;
  4.   ожидание — пассивное состояние потока, находясь в котором, поток заблокирован по своим внутренним причинам (ждет осуществления некоторого события, например завершения операции ввода-вывода, получения сообщения от другого потока или освобождения какого-либо необходимого ему ресурса);
  5.   готовность — также пассивное состояние потока, но в этом случае поток заблокирован в связи с внешним по отношению к нему обстоятельством (имеет все требуемые для него ресурсы, готов выполняться, однако процессор занят выполнением другого потока).
  6.  Дескрипторы процессов и потоков: При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса и контекст процесса. Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск.
  7.  10) 11)

Операции над потоками:

1) создание потоков:

  1.  создается объект ядра поток;
  2.  создается структура контекста потока (в этой структуре контекста присваиваются начальные значения регистров, создается стек, настраивается указатель на стек);
  3.  инициализируется структура;
  4.  выделяется память для стека потока (у каждого потока есть стек);
  5.  поток попадает в состояние готовности.

2) завершение потока (уничтожение): terminatethread.

3) изменение приоритета потока.d

4) выделение процессорного времени.

5) перевод в различные состояния (ожидание, работа, и так далее).

Операции над процессами:

Создание: создается объект ядра процесс и ему присваивается идентификатор процесса. Ему даются в собственность некоторые объекты ядра (открытые файлы) (наследование – inherit). Потоку присваивается базовый приоритет, затем его можно менять.

Процесс завершается при:

а) завершении всех потоков процесса;

б) при вызове любым потоком функции завершения процесса.

В вычислительной системе может быть создана иерархическая структура запущенных на выполнение процессов. Один процесс может породить другой процесс, и в этом случае первый процесс называется РОДИТЕЛЬСКИМ, а второй процесс – ДОЧЕРНИМ. При запуске какой-либо программы из командного процессора (например, COMMAND.COM, Нортон коммандер или ДОС Навигатор), он выступает в роли родительского процесса. Дочерний процесс, в свою очередь, может запустить несколько дочерних процессов и так далее, таким образом создается иерархия процессов.

В многозадачных операционных системах все запущенные процессы работают параллельно и могут обмениваться информацией в реальном или близком к реальному времени. В однозадачной операционной системе MS-DOS родительский и дочерний процессы работать параллельно не могут, и обычно родительский процесс может продолжить свою работу только после завершения дочернего процесса.

12) Критерии оценки алгоритмов планирования: Для каждого уровня планирования процессов можно предложить много различных алгоритмов. Выбор конкретного алгоритма определяется классом задач, решаемых вычислительной системой, и целями, которых мы хотим достичь, используя планирование. К числу таких целей можно отнести:

  1.  Справедливость: гарантировать каждому заданию или процессу определенную часть времени использования процессора в компьютерной системе, стараясь не допустить возникновения ситуации, когда процесс одного пользователя постоянно занимает процессор, в то время как процесс другого пользователя фактически не приступал к выполнению.
  2.  Эффективность: постараться занять процессор на все 100% рабочего времени, не позволяя ему простаивать в ожидании процессов готовых к исполнению. В реальных вычислительных системах загрузка процессора колеблется от 40 до 90 процентов.
  3.  Сокращение полного времени выполнения (turnaround time): обеспечить минимальное время между стартом процесса или постановкой задания в очередь для загрузки и его завершением.
  4.  Сокращение времени ожидания (waiting time): минимизировать время, которое проводят процессы в состоянии готовность и задания в очереди для загрузки.
  5.  Сокращение времени отклика (response time): минимизировать время, которое требуется процессу в интерактивных системах для ответа на запрос пользователя.

Независимо от поставленных целей планирования желательно также, чтобы алгоритмы обладали следующими свойствами:

  1.  Были предсказуемыми. Одно и то же задание должно выполняться приблизительно за одно и то же время. Применение алгоритма планирования не должно приводить, к примеру, к извлечению корня квадратного из 4 за сотые доли секунды при одном запуске и за несколько суток при втором запуске.
  2.  Имели минимальные накладные расходы, связанные с их работой. Если на каждые 100 миллисекунд, выделенных процессу для использования процессора, будет приходиться 200 миллисекунд на определение того, какой именно процесс получит процессор в свое распоряжение, и на переключение контекста, то такой алгоритм, очевидно, использовать не стоит.
  3.  Равномерно загружали ресурсы вычислительной системы, отдавая предпочтение тем процессам, которые будут занимать малоиспользуемые ресурсы.
  4.  Обладали масштабируемостью, т. е. не сразу теряли работоспособность при увеличении нагрузки. Например, рост количества процессов в системе в два раза не должен приводить к увеличению полного времени выполнения процессов на порядок.

Многие из приведенных выше целей и свойств являются противоречивыми. Улучшая работу алгоритма с точки зрения одного критерия, мы ухудшаем ее с точки зрения другого. Приспосабливая алгоритм под один класс задач, мы тем самым дискриминируем задачи другого класса. “В одну телегу впрячь не можно коня и трепетную лань”. Ничего не поделаешь. Такова жизнь.

13) Пакетные алгоритмы планирования: В пакетных системах не бывает пользователей, терпеливо ожидающих за своими терминалами быстрого ответа на свой короткий запрос. Поэтому для них зачастую приемлемы неприоритетные алгоритмы или приоритетные алгоритмы с длительными периодами для каждого процесса. Такой подход сокращает количество переключений между процессами, повышая при этом производительность работы системы. Пакетные алгоритмы носят весьма общий характер и часто находят применение также и в других ситуациях, поэтому их стоит изучить даже тем, кто не работает в сфере корпоративных вычислений с использованием универсальных машин.

14) Первым пришел - первым обслужен

Алгоритм без переключений "первым пришел - первым обслужен" является самым простым из алгоритмов планирования. Процессам предоставляется доступ к процессору в том порядке, в котором они его запрашивают. Чаще всего формируется единая очередь ждущих процессов. Как только появляется первая задача, она немедленно запускается и работает столько, сколько необходимо. Остальные задачи ставятся в конец очереди. Когда текущий процесс блокируется, запускается следующий в очереди, а когда блокировка снимается, процесс попадает в конец очереди.

Основное преимущество алгоритма - легкость понимания и программирования. В этом алгоритме все процессы в состоянии готовности контролируются одним связным списком. Чтобы выбрать процесс для запуска, нужно всего лишь взять первый элемент списка и удалить его. Появление нового процесса приводит к помещению его в конец списка.




1. Курсовая работа на тему- Инжиниринг
2. на тему МОНТАЖ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ Выполнил- студент группы ЭС0901
3. Ответы на вопросы государственного экзамена
4. Предпринимательский риск
5. Строение вещества
6. тематики и математического моделирования КУРСОВАЯ РАБОТА по дисциплине
7. Я хмыкнула почесала нос случайно измазав его цветным мелком и прикусив язык от усердия нарисовала на подб
8. ТЕМА 15 ИСПОЛНИТЕЛЬНАЯ ВЛАСТЬ В РОССИЙСКОЙ ФЕДЕРАЦИИ 1
9. Промышленная электроника Отчет о лабораторной работе 2 ИЗМЕРЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПР
10. Среди большого количества финансовых инструментов всего мира для начинающего инвестора интерес предста
11. Учебник подготовлен кафедрой конституционного государственного права зарубежных стран Московской государ
12. тематичних наук ІваноФранківськ 1999 Дисертацією є рукопис
13. Лабораторная работа 9
14. О средствах массовой информации от 27 декабря 1991 г.html
15. ВВЕДЕНИЕ В соответствии с международным российским правом и законодательством обеспечение интересов дет
16. ЛЕКЦИЯ 9 ОСНОВНЫЕ СВЕДЕНИЯ ПО ДИНАМИЧЕСКИМ ИСПЫТАНИЯМ ВАГОНОВ 1
17. Реформирования органов государственной власти в период кризиса крепостной системы первой половине XIX века
18. национальный доход й страны; доля национального дохода й страны которую она расходует на закупку товар
19.  КЛАССИФИКАЦИЯ И ОБЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИИ [1
20. Деятельность аппарата и депутатов Городской думы г.Челябинска по взаимодействию со СМИ