Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Вопрос 1
Клеточная теория: история и современное состояние. Значение клеточной теории для биологии и медицины.
Клеточная теория сформирована немецким исследователем зоологом Т. Шванном(1839). В своих теоритических построениях он опирался на работы ботаника М. Шлейдена (считается соавтором теории). Исходя от предположения об общей природе растительных и животных клеток (одинаковый механизм происхождения ). Шванн обобщил многочисленные данные в виде теории. В конце прошлого столетия клеточная теория получила дальнейшее развитие в работах Р. Вирхова
Основные положения клеточной теории:
Значение клеточной теории
Клеточная теория позволила понять как зарождается, развивается и функционирует живой организм, то есть создала основу эволюционной теории развития жизни, а в медицине понимания процессов жизнедеятельности и развития болезней на клеточном уровне что открыло немыслимые ранее новые возможности диагностики, лечение заболеваний.
Cтало ясно, что клетка важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.
Вопрос 2
Прокариотические и эукариотические клетки.
Прокариотическая клетка (доядерные 3,5 млрд лет назад) это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы.(одноклеточные живые организмы не обладающие оформленным клеточным ядром и другими внутренними мембранными органоидами).
Эукариотическая клетка(ядерные 1,5-2 млрд лет назад) надцарство живых организмов, клетки которых содержат ядра:
Поверхностный аппарат:
-надмембранный комплекс
-биомембрана (плазмалемма, цитолемма)
- субмембрана
Ядерный аппарат:
-кариолемма (ядерная оболочка)
-кариоплазма
-ядрышко
-хроматин(хромосома)
Цитоплазматический аппарат:
-цитозоль (гиалоплазма)
-органеллы
-включения
Вопрос 3
Согласно жидкостно-мозаичной модели структуры мембраны, предложенной Сингером, биологическая мембрана представляет собой два параллельных слоя липидов (бимолекулярный слой, липидный бислой). Мембранные липиды имеют гидрофобную (углеводородные остатки жирных кислот и др.) и гидрофильную (фосфат, холин, коламин, сахар и т.п.) части. Такие молекулы образуют в клетке бимолекулярные слои: гидрофобные части их повернуты дальше от водного окружения, т.е. друг к другу, и удерживаются вместе сильными гидрофобными взаимодействиями и слабыми силами Лондона-Ван-дер-Ваальса. Таким образом, мембраны на обеих наружных поверхностях гидрофильны, а внутри гидрофобны. Поскольку гидрофильные части молекул поглощают электроны, они видны в электронном микроскопе как два темных слоя. При физиологических температурах мембраны находятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вдоль своей продольной оси и диффундируют в плоскости слоя, реже перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей. Чем большую долю составляют ненасыщенные жирные кислоты, тем ниже температура фазового перехода (точка плавления) и тем более жидкой бывает мембрана. Более высокое содержание стеролов с их жесткими гидрофобными молекулами, лежащими в гидрофобной толще мембраны, стабилизирует мембрану (главным образом у животных). В мембрану вкраплены различные мембранные белки. Некоторые из них находятся на внешней или на внутренней поверхности липидной части мембраны; другие пронизывают всю толщу мембраны насквозь. Мембраны полупроницаемы; они обладают мельчайшими порами, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки)
Функции биомембран
1. Ограничение и обособление клеток и органелл. Обособление клеток от межклеточной среды обеспечивается плазматической мембраной, защищающей клетки от механического и химического воздействий. Плазматическая мембрана обеспечивает также сохранение разности концентраций метаболитов и неорганических ионов между внутриклеточной и внешней средой
2. Контролируемый транспорт метаболитов и ионов определяет внутреннюю среду, что существенно для гомеостаза, т.е. поддержания постоянной концентрации метаболитов и неорганических ионов, и других физиологических параметров. Регулируемый и избирательный транспорт метаболитов и неорганических ионов через поры и посредством переносчиков становится возможным благодаря обособлению клеток и органелл с помощью мембранных систем.
3. Восприятие внеклеточных сигналов и их передача внутрь клетки а также инициация сигналов.
4. Ферментативный катализ. В мембранах на границе между липидной и водной фазами локализованы ферменты. Именно здесь происходят реакции с неполярными субстратами. Примерами служат биосинтез липидов и метаболизм неполярных ксенобиотиков В мембранах локализованы наиболее важные реакции энергетического обмена, такие, как окислительное фосфорилирование и фотосинтез
5. Контактное взаимодействие с межклеточным матриксом и взаимодействие с другими клетками при слиянии клеток и образовании тканей.
6. Заякоривание цитоскелета , обеспечивающее поддержание формы клеток и органелл и клеточной подвижности
Вопрос 4
Мембранные липиды. Принципы формирования бислоя. Липиды мембран
Состав липидов биологических мембран очень разнообразен. Характерными представителями липидов клеточных мембран являются фосфолипиды, сфингомиелины и холестерин (стероидный липид). Характерной особенностью мембранных липидов является разделение их молекулы на две функционально различные части: не полярные, не несущие зарядов хвосты, состоящие из жирных кислот, и заряженные полярные головки. Полярные головки несут на себе отрицательные заряды или могут быть нейтральными. Наличие неполярных хвостов объясняет хорошую растворимость липидов в жирах и органических растворителях. В эксперименте, смешивая с водой выделенные из мембран липиды можно получить бимолекулярные слои или мембраны толщиной около 7,5 нм, где периферические зоны слоя это гидрофильные полярные головки, а центральная зона незаряженные хвосты молекул липидов. Такое же строение имеют все естественные клеточные мембраны. Клеточные мембраны сильно отличаются друг от друга по составу липидов. Например, плазматические мембраны клеток животных богаты холестерином (до 30%), и в них мало лецитина, в то время как мембраны митохондрий богаты фосфолипидами и бедны холестерином. Липидные молекулы могут перемещаться вдоль липидного слоя, могут вращаться вокруг своей оси, а также переходить из слоя в слой. Белки, плавающие в «липидном озере», тоже обладают некоторой латеральной подвижностью. Состав липидов по обе стороны мембраны различен, что определяет асимметричность в строении билипидного слоя.
Вопрос 5
Мембранные белки имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Выполняют функцию рецепторов, т.е. осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортеры специфичны, каждый из них пропускает через мембрану только определенные молекулы или определенный тип сигнала.
Классификация:
1. Топологические (поли-, монотопические)
2. Биохимические (интегральные и периферические)
Топологические:
1) политопические, или трансмембранные белки, пронизывающие бислой насквозь и контактирующие с водной средой по обеим сторонам мембраны.
2) Монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную.
Биохимические:
1) интегральные прочно встроены в мембрану и могут быть увлечены из липидного окружения только с помощью детергентов или неполярных растворителей
2) периферические белки, которые высвобождаются в сравнительно мягких условиях (например путем солевого раствора)
Вопрос 6
Организация надмембранного комплекса у клеток разных типов. Гликокаликс.
Надмембранный комплекс |
бактерии |
растения |
животные |
грибы |
1) слизистая капсула |
+ |
+- |
- |
- |
2)клеточная стенка (оболочка) |
+ Из муреина |
+ Из целлюлозы |
_ |
+ Из хитина |
3) гликокаликс |
- |
- |
+ |
- |
У грамположительных бактерий есть однослойная, толщиной 70-80 нм. клеточная стенка, образованная сложным белково-углеводным комплексом молекул (пептидогликаны). Это система длинных полисахаридных (углеводных) молекул, связанных между собой короткими белковыми мостиками. Они располагаются в несколько слоев параллельно поверхности бактериальной клетки. Все эти слои пронизаны молекулами сложных углеводов тейхоевых кислот.
У грамотрицательных бактерий клеточная стенка более сложная и имеет двойную структуру. Над первичной, плазматической мембраной, строится еще одна мембрана и скрепленная с ней пептидгликанами.
Основным компонентом клеточной стенки растительных клеток является сложный углевод целлюлоза. Прочность их очень велика и сравнима с прочностью стальной проволоки. Слои макрофибрилл располагаются под углом друг к другу, создавая мощный многослойный каркас.
Гликокаликс.
Эукариотические клетки животных не образуют клеточных стенок, но на поверхности их плазматической мембраны есть сложный мембранный комплекс гликокаликс. Он образован системой периферических белков мембраны, углеводными цепями мембранных гликопротеинов и гликолипидов, а также надмембранными участками интегральных белков, погруженных в мембрану.
Гликокаликс выполняет ряд важных функций: он участвует в рецепции молекул, содержит молекулы межклеточной адгезии, отрицательно заряженные молекулы гликокаликса создают электрический заряд на поверхности клеток. Определенный набор молекул на поверхности клеток является своеобразным маркером клеток, определяя их индивидуальность и узнаваемость сигнальными молекулами организма. Это свойство имеет очень большое значение в работе таких систем как: нервная, эндокринная, иммунная. В ряде специализированных клеток (например: во всасывающих клетках кишечного эпителия) гликокаликс несет основную функциональную нагрузку в процессах мембранного пищеварения
Вопрос 7
Транспорт веществ через мембрану. Осмос и Диффузия
Хотя толщина плазматических мембран составляет обычно всего около 7 нм, они служат барьером для ионов и молекул, в особенности для полярных (водорастворимых) молекул, таких как глюкоза или аминокислоты, поскольку неполярные (гидрофобные) липиды мембран эти вещества отталкивают. Барьер не дает водному содержимому клетки ускользнуть из нее. Тем не менее по ряду причин транспорт через мембраны все же должен идти, поскольку необходимо обеспечивать:
1) доставку питательных веществ;
2) удаление конечных продуктов обмена («отходов»);
3) секрецию различных полезных веществ;
4) создание ионных градиентов, весьма важных для нервной и мышечной деятельности;
5) поддержание в клетке соответствующего рН и надлежащей ионной концентрации, которые нужны для эффективной работы клеточных ферментов.
Диффузией называют перемещение веществ из области с высокой их концентрацией в область с низкой концентрацией по диффузионному градиенту. Это пассивный процесс, не требующий затрат энергии и протекающий спонтанно. Каждый тип молекул перемещается по своему собственному диффузионному градиенту независимо от других молекул.
На скорость диффузии влияют в первую очередь три фактора.
1. Крутизна диффузионного градиента, т. е. различие в концентрации между пунктом А и пунктом В; чем круче градиент, тем выше скорость диффузии. Клетке выгодно поддерживать крутой диффузионный градиент, если требуется быстрая доставка тех или иных веществ. В легких, например, этого можно достичь за счет ускорения тока крови, проходящей через них, или за счет усиленного дыхания.
2. Чем больше площадь поверхности мембраны, через которую диффундирует вещество, тем быстрее идет диффузия. Для клеток, форма которых близка к сферической, площадь поверхности по отношению к объему тем меньше, чем крупнее клетка. Это налагает ограничения на размеры клеток. Очень крупная аэробная клетка не могла бы, например, достаточно быстро получать кислород, если бы он поступал в нее только за счет диффузии. Некоторые животные клетки для увеличения площади поверхности, через которую идет поглощение, снабжены микроворсинками.
3. Скорость диффузии быстро снижается с увеличением расстояния (она обратно пропорциональна квадрату расстояния). Диффузия, следовательно, эффективна лишь на очень коротких отрезках пути. Это тоже налагает ограничения на размеры клеток. Диффузия служит клеткам для внутреннего транспорта молекул, поэтому диаметр большинства клеток не превышает 50 мкм и любая часть клетки отстоит от ее поверхности не более, чем на 25 мкм.
--------------------
Диффузия воды через полупроницаемые мембраны из области с высокой ее концентрацией в область с низкой концентрацией называется осмосом. Молекулы растворенного вещества слишком велики, чтобы пройти через поры в мембране, так что равновесие может быть достигнуто только за счет перемещения молекул воды. В растворе А концентрация воды выше, поэтому реальный обусловленный осмосом поток воды направлен от А к В. По достижении равновесия реальный поток будет равен нулю.
Стремление молекул воды перемешаться из одного места в другое измеряется водным потенциалом; обозначается эта величина греческой буквой у («пси»). Вода всегда движется из области с высоким водным потенциалом в область с низким потенциалом. Молекулы растворенного вещества снижают водный потенциал (в сущности, они «разбавляют» воду!). Степень этого снижения называют осмотическим потенциалом.
Вопрос 8
Транспорт веществ через мембрану. Активный транспорт.
Процесс перемещения молекул или ионов через клеточную мембрану против градиента концентрации (или против электрического градиента, а также градиента давления) называют активным транспортом. К веществам, активно транспортируемым, по крайней мере, через некоторые клеточные мембраны, относят ионы натрия, калия, кальция, железа, водорода, хлора, йода, мочевой кислоты, некоторые сахара и большинство аминокислот. Первично активный и вторично активный транспорт. В зависимости от источника используемой энергии активный транспорт подразделяется на два типа: первично активный и вторично активный. Для первично активного транспорта энергия извлекается непосредственно при расщеплении аденозинтрифосфата или некоторых других высокоэнергетических фосфатных соединений. Вторично активный транспорт обеспечивается вторичной энергией, накопленной в форме разности концентраций побочных веществ, молекул или ионов, по обе стороны клеточной мембраны, созданной первоначально первично активным транспортом. В обоих случаях, как и при облегченной диффузии, транспорт зависит от белков-переносчиков, пронизывающих клеточную мембрану. Однако функции белков-переносчиков при активном транспорте отличаются от переноса облегченной диффузией, поскольку в первом случае белки способны передавать энергию транспортируемому веществу для его перемещения против электрохимического градиента. Далее приведены примеры первично активного и вторично активного транспорта с более детальными объяснениями принципов их функционирования.
К веществам, которые транспортируются посредством первично активного транспорта, относят натрий, калий, кальций, водород, хлор и некоторые другие ионы.
Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na+/K+-нaсоса) транспортного процесса, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток. Белок-переносчик представлен комплексом из двух раздельных глобулярных белков: более крупного, называемого альфа-субъединицей, с молекулярной массой около 100000, и меньшего, называемого бета-субъединицей, с молекулярной массой около 55000. Хотя функция меньшего белка неизвестна (за исключением того, что он, возможно, закрепляет белковый комплекс в липидной мембране), крупный белок имеет три специфических характеристики, важные для функционирования насоса.
1. На выступающей внутрь клетки части белка имеются три рецепторных участка для связывания ионов натрия.
2. На наружной части белка располагаются два рецепторных участка для связывания ионов калия.
3. Внутренняя часть белка, расположенная вблизи участков связывания ионов натрия, обладает АТФ-азной активностью.
Вопрос 9
Транспорт в мембранной упаковке. Этапы фогоцитоза.
ФУНКЦИИ МЕМБРАНЫ
1) Барьерная плазмалемма отграничивает цитоплазму и ядро от внешней среды. Кроме того, мембрана делит внутреннее содержимое клетки на отсеки (компартменты), в которых зачастую протекают противоположные биохимические реакции.
2) Рецепторная (сигнальная) благодаря важному свойству белковых молекул денатурации, мембрана способна улавливать различные изменения в окружающей среде. Так, при воздействии на мембрану клетки различных средовых факторов (физических, химических, биологических) белки, входящие в ее состав, меняют свою пространственную конфигурацию, что служит своеобразным сигналом для клетки. Это обеспечивает связь с внешней средой, распознавание клеток и их ориентацию при формировании тканей и т.д. С этой функцией связана деятельность различных регуляторных систем и формирование иммунного ответа.
3) Обменная в состав мембраны входят не только структурные белки, которые образуют ее, но и ферментативные, являющиеся биологическими катализаторами. Они располагаются на мембране в виде «каталитического конвейера» и определяют интенсивность и направленность реакций метаболизма.
4) Транспортная молекулы веществ, диаметр которых не превышает 50 нм, могут проникать путем пассивного и активного транспорта через поры в структуре мембраны. Крупные вещества попадают в клетку путем эндоцитоза (транспорт в мембранной упаковке), требующего затраты энергии. Его разновидностями являются фаго- и пиноцитоз.
5) Пассивный транспорт вид транспорта, в котором перенос веществ осуществляется по градиенту химической или электрохимической концентрации без затраты энергии АТФ. Выделяют два вида пассивного транспорта: простая и облегченная диффузия. Диффузия это перенос ионов или молекул из зоны более высокой их концентрации в зону более низкой концентрации, т.е. по градиенту.
6) Простая диффузия ионы солей и вода проникают через трансмембранные белки или жирорастворимые вещества по градиенту концентрации.
Облегченная диффузия специфические белки-переносчики связывают вещество и переносят его через мембрану по принципу «пинг-понга». Таким способом через мембрану проходят сахара и аминокислоты. Скорость такого транспорта значительно выше, чем простой диффузии. Кроме белков- переносчиков, в облегченной диффузии принимают участие некоторые антибиотики например, грамитидин и ваномицин. Поскольку они обеспечивают транспорт ионов, их называют ионофорами.
7) Активный транспорт это вид транспорта, при котором расходуется энергия АТФ, он идёт против градиента концентрации. В нем принимают участие ферменты АТФ-азы. В наружной клеточной мембране находятся АТФ-азы, которые осуществляют перенос ионов против градиента концентрации, это явление называется ионным насосом. Примером является натрий-калиевый насос. В норме в клетке больше ионов калия, во внешней среде ионов натрия. Поэтому по законам простой диффузии калий стремится из клетки, а натрий в клетку. В противовес этому натрий-калиевый насос накачивает против градиента концентрации в клетку ионы калия, а ионы натрия выносит во внешнюю среду. Это позволяет поддерживать постоянство ионного состава в клетке и её жизнеспособность. В животной клетке одна треть АТФ расходуется на работу натрий-калиевого насоса.
Разновидностью активного транспорта является транспорт в мембранной упаковке эндоцитоз. Крупные молекулы биополимеров не могут проникать через мембрану, они поступают в клетку в мембранной упаковке. Различают фагоцитоз и пиноцитоз. Фагоцитоз захват клеткой твердых частиц, пиноцитоз жидких частиц. В этих процессах выделяют стадии:
1) узнавание рецепторами мембраны вещества; 2) впячивание (инвагинация) мембраны с образованием везикулы (пузырька); 3) отрыв пузырька от мембраны, слияние его с первичной лизосомой и восстановление целостности мембраны; 4) выделение непереваренного материала из клетки (экзоцитоз).
Эндоцитоз является способом питания для простейших. У млекопитающих и человека имеется ретикуло-гистио-эндотелиальная система клеток, способная к эндоцитозу это лейкоциты, макрофаги, клетки Купфера в печени.
Вопрос 10
Межклеточные контакты.
Межклеточные контакты возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов, а также для механического скрепления клеток друг с другом. Основные типы межклеточных контактов: а) рыхлые, или простые, контакты между плазматическими мембранами соседних клеток имеется щель шириной 1020 нм, заполненная гликокалликсом, специализированных структур на мембранах нет; б) межклеточные «замки» мембраны соседних клеток разделены таким же расстоянием, но изгибаются, образуя на поверхности клеток впячивания; в) десмосомы; г) плотные контакты (встречаются в основном в эпителиальных клетках) разделяются на зону замыкания и зону слипания (промежуточный контакт); в зоне замыкания две соседние мембраны сливаются своими наружными слоями, эта зона непроницаема для макромолекул и ионов, в зоне слипания мембраны разделены щелью в 1020 нм, заполненной плотным веществом, вероятно, белковой природы; д) щелевидные (высокопроницаемые) контакты, свойственные всем типам эпителиальной и соединительной тканей, плазматической мембраны разделены промежутком в 2 4 нм, пронизанным каналами, по которым низкомолекулярные вещества попадают из цитоплазмы одной клетки в другую, минуя межклеточную среду. В большинстве случаев межклеточные контакты разрушаются при удалении из среды ионов Са2+ . Особыми формами межклеточных контактов являются синапсы, а также плазмодесмы растит, клеток.
У многоклеточных животных организмов плазмолемма принимает участие в образовании межклеточных соединений, обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур.
Простой котакт. Простой контакт встречается среди большинства прилежащих друг к другу клеток различного происхождения. Представляет собой сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток.
Плотный (замыкающий) контакт. При таком соединении внешние слои двух плазмолемм максимально сближены. Сближение настолько плотное, что происходит как бы слияние участков плазмолемм двух соседних клеток. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Роль плотного контакта заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.
Пятно сцепления, или десмосома. Десмосома представляет собой небольшую площадку диаметром до 0,5 мкм. В зоне десмосомы со стороны цитоплазмы находится область тонких фибрилл. Функциональная роль десмосом в основном заключается в механической связи между клетками.
Щелевой контакт, или нексус. При таком типе контакта плазмолеммы соседних клеток на протяжении 0,5-3 мкм разделены промежутком в 2-3 нм. В структуре плазмолемм располагаются специальные белковые комплексы (коннексоны). Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки. В результате образуется канал из одной клетки в другую. Коннексоны могут сокращаться, изменяя диаметр внутреннего канала, и тем самым участвовать в регуляции транспорта молекул между клетками. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевого контакта заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.
Синаптический контакт,или синапс. Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип соединений характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом. Мембраны этих клеток разделены межклеточным пространством синаптической щелью шириной около 20-30 нм. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей (синаптических пузырьков), содержащих медиатор. В момент прохождения нервного импульса синаптические пузырьки выбрасывают медиатор в синаптичекую щель. Медиатор взаимодействует с рецепторными участками постсинаптической мембраны, что в конечном итоге приводит к передаче нервного импульса. Кроме передачи нервного импульса синапсы обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.
Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые каналы, соединяющие две соседние клетки. Диаметр этих каналов составляет обычно 40-50 нм. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. В молодых клетках число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. Функциональная роль плазмодесм заключается в обеспечении межклеточной циркуляции растворов, содержащих питательные вещества, ионы и другие соединения. Через плазмодесмы происходит заражение клеток растительными вирусами
Вопрос 11
Метаболизм совокупность обменных процессов обеспечивающая постоянство внутренней среды организма в неперерывно
меняющихся условиях.Представлен двмя процессами процессами катаболистическим (aka диссимиляция энергетический
обмен) и анаболитическим (aka пластический обмен ассимиляция)
Ассимиляционные процессы это совокупность реакций билогического синтеза, одно из проявлявлений реализации
наследственной информации, все процессы ассимиляции энергозатратны. Характерным примером ассимиляции является
биосинтез белка или фотосинтез
Диссимиляция совокупность реакций расщипления, основной способ добычи эергии(соответсвенно энергия наоборот накапливается)
харкатерным примером диссимиляции является расщипление глюкозы
Вопрос 12
Цитозоль или гиалоплазма - одна из составляющих частей цитоплазмы, сложная коллойдная система способная переходить
из золеобразного состояния в гелеобразное.Цитозоль заполняет все внутреннее пространство клетки и объединяет все
внутриклеточные структуры, обеспечивает обмен веществ между ними.Гиалоплазма состоит приблизительно из 20% белка,
белок в основном играет ферментативную роль, обеспечивает множество метаболических процессов проходящих в цитоплазме.
Цитозоль также выполняет скелетную функцию из-за содержания и синтеза в ней микротрубочек и микрофибрилл.
Из всего выше сказанного можно сделать вывод о том что гиалоплазма является коллоидным раствором. Представленный
ввиде смоси белков липидов углеводов и воды.
Вопрос 13
Структурные компоненты цитоплазмы: органоиды и включения.
Органеллы постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные инемембранные. Мембранные органеллы представлены двумя вариантами: двумембранным иодномембранным. Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы эндоплазматическийретикулум,комплексГольджи,лизосомы,вакуоли растительных и грибных клеток.
Общим свойством мембранных органелл является то, что все они построены из биологических мембран, замыкающихся сами на себя так, что образуются замкнутые полости или отсеки. Внутреннее содержимое этих отсеков всегда отличается от гиалоплазмы.
Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии. Пластидыхарактерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хлоропласты, хромопласты и лейкопласты.
Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента хлорофилла. Хлоропласты содержат также вспомогательные пигменты каротиноиды (оранжевого цвета). По форме хлоропласты это овальные линзовидные тельца размером (510) х (24) мкм.Хлоропласты ограничены двумя мембранами наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа.
Внутренняя мембрана хлоропласта образует впячивания внутрь стромы тилакоиды, которые имеют форму уплощенных мешочков (цистерн). Несколько таких тилакоидов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидамиграны. Функция осуществление фотосинтеза.
Лейкопласты мелкие бесцветные пластиды различной формы. Они бывают шаровидными, эллипсоидными, гантелевидными, чашевидными и т. д. Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ крахмала, реже жиров и белков.
Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ромбической и др.) и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу. Хромопласты присутствуют в клетках лепестков многих растений (лютиков, калужниц, нарциссов, одуванчиков и др.), зрелых плодов (томаты, рябина, ландыш, шиповник) и корнеплодов (морковь, свекла), а также листьев в осеннюю пору. Яркий цвет этих органов обусловлен различными пигментами, относящимися к группе каргиноидов, которые сосредоточены в хромопластах.
Митохондриинеотъемлемые компоненты всех эукариотических клеток. Они представляют собой гранулярные или нитеподобные структуры толщиной 0,5 мкм и длиной до 710 мкм.
Митохондрии ограничены двумя мембранами наружной и внутренней.Между внешней и внутренней мембранами имеется так называемое перимитохондриальное пространство.Внутренняя мембрана образует множество впячиваний внутрь митохондрий так называемых крист. На мембране крист или внутри нее располагаются ферменты, в том числе переносчики электронов и ионов водорода Н+, которые участвуют в кислородном дыхании. Наружная мембрана отличается высокой проницаемостью, и многие соединения легко проходят через нее. Внутренняя мембрана менее проницаема. Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра.
Одномембранные органеллы.
Эндоплазматический ретикулум был открыт с помощью электронного микроскопа в 1945 г. Он представляет собой систему разветвленных каналов, цистерн (вакуолей), пузырьков, создающих подобие рыхлой сети в цитоплазме.
В клетке существует два типа эндоплазматического ретикулума: гранулярный (шероховатый) и агранулярный (гладкий).Гранулярный эндоплазматический ретикулум густо усеян рибосомами, на которых осуществляется биосинтез белка. Синтезируемые белки проходят через мембрану в каналы и полости эндоплазматическогоретикулума, изолируются от цитоплазмы, накапливаются там, дозревают и перемещаются в другие части клетки либо в комплекс Гольджи в специальных мембранных пузырьках, которые отшнуровываются от цистерн эндоплазматического ретикулума.
Функции эндоплазматическогоретикулума следующие:
1. В мембранах гранулярного эндоплазматического ретикулума накапливаются и изолируются белки, которые после их синтеза могли оказаться вредными для клетки. Например, синтез гидролитических ферментов и их свободный выход в цитоплазму привел бы к самоперевариванию клетки и ее гибели. Однако этого не происходит, потому что подобные белки надежно изолированы в полостях эндоплазматического ретикулума.
2. На рибосомах гранулярного эндоплазматического ретикулума синтезируются также интегральные и периферические белки мембран клетки и некоторая часть белков цитоплазмы.
3. Цистерны шероховатого эндоплазматического ретикулума связаны с ядерной оболочкой, причем некоторые из них являются прямым продолжением последней. Считается, что после деления клетки оболочки новых ядер образуются из цистерн эндоплазматического ретикулума.
4. На мембранах гладкого эндоплазматического ретикулума протекают процессы синтеза липидов и некоторых углеводов (например, гликогена).
Комплекс (аппарат) Голъджи открыт в 1898 г. итальянским ученым К. Гольджи. Он представляет собой систему плоских дисковидных замкнутых цистерн, которые располагаются одна над другой в виде стопки и образуют диктиосому. От цистерн отходят во все стороны мембранные трубочки и пузырьки.
К комплексу Гольджи доставляются вещества, синтезируемые в эндоплазматическомретикулуме. От цистерн эндоплазматического ретикулумаотшнуровываются пузырьки, которые соединяются с цистернами комплекса Гольджи, где эти вещества модифицируются и дозревают.
Пузырьки комплекса Гольджи участвуют в формировании цитоплазматической мембраны и стенок клеток растений после деления, а также в образовании вакуолей и первичных лизосом.
Зрелые цистерны диктиосомыотшнуровывают пузырьки или вакуоли Гольджи, заполненные секретом. Содержимое таких пузырьков либо используется самой клеткой, либо выводится за ее пределы. В последнем случае пузырьки Гольджи подходят к плазматической мембране, соединяются с ней и изливают свое содержимое наружу, а их мембрана включается в плазматическую мембрану и таким образом происходит ее обновление.
Цистерны комплекса Гольджи активно извлекают моносахариды из цитоплазмы и синтезируют из них более сложные олиго- и полисахариды. У растений в результате этого образуются пектиновые вещества, гемицеллюлоза и целлюлоза, используемые для построения клеточной стенки, слизь корневого чехлика. У животных подобным образом синтезируются гликопротеины и гликолипиды гликокаликса, вырабатываются секрет поджелудочной железы, амилаза слюны, пептидные гормоны гипофиза, коллаген.
Комплекс Гольджи участвует в образовании лизосом, белков молока в молочных железах, желчи в печени, веществ хрусталика, зубной эмали и г. п.
Комплекс Гольджи и эндоплазматический ретикулум тесно связаны между собой; их совместная деятельность обеспечивает синтез и преобразование веществ в клетке, их изоляцию, накопление и транспорт.
Лизосомы это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.
Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома), где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови нейтрофилах.
Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки, т. е. негидролизуемый материал, который либо выводится за пределы клетки, либо накапливается в цитоплазме.
Расщепление лизосомами чужеродного, поступившего путем эндоцитоза материала называетсягетерофагией. Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых орга-нелл, утративших функциональную активность (аутофагия). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки автолиз. Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.
Вакуоли крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи.
Содержимое вакуолей клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них являются продуктами метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.
В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.
В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).
Рибосомы это мельчайшие сферические гранулы диаметром 1535 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе прокариотических. В отличие от других органелл цитоплазмы (пластид, митохондрий, клеточного центра и др.) рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук.
В состав рибосом входит множество молекул различных белков и несколько молекул рРНК. Полная работающая рибосома состоит из двух неравных субъединиц (рис. 1.15). Малая субъединица имеет палочковидную форму с несколькими выступами. Большая субъединица похожа на полусферу с тремя торчащими выступами. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой три.
Клеточные включения.
Помимо мембранных и немембранных органелл в клетках могут быть клеточные включения, представляющие собой непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки. Основное место локализации включений - цитоплазма, но иногда они встречаются и в ядре.
По характеру все включения - это продукты клеточного метаболизма. Они накапливаются главным образом в форме гранул, капель и кристаллов. Химический состав включений очень разнообразен.
Липоиды обычно откладываются в клетке в виде мелких капель. Большое количество жировых капель встречается в цитоплазме ряда простейших, например инфузорий. У млекопитающих жировые капли находятся в специализированных жировых клетках, в соединительной ткани. Часто значительное количество жировых включений откладывается в результате патологических процессов, например при жировом перерождении печени. Капли жира встречаются в клетках практически всех растительных тканей, очень много жира содержится в семенах некоторых растений.
Включения полисахаридов имеют чаще всего формулу гранул разнообразных размеров. У многоклеточных животных и простейших в цитоплазме клеток встречаются отложения гликогена. Гранулы гликогена хорошо видны в световом микроскопе. Особенно велики скопления гликогена в цитоплазме поперечнополосатых мышечных волокон и в клетках печени, в нейронах. В клетках растений из полисахаридов наиболее часто откладывается крахмал. Он имеет вид гранул различной формы и размеров, причем форма крахмальных гранул специфична для каждого вида растений и для определенных тканей. Отложениями крахмала богата цитоплазма клубней картофеля, зерен злаков; каждая крахмальная гранула состоит их отдельных слоев, а каждый слой, в свою очередь, включает радиально расположенные кристаллы, почти невидимые в световой микроскоп.
Белковые включения встречаются реже, чем жировые и углеводные. Белковыми гранулами богата цитоплазма яйцеклеток, где они имеют форму пластинок, шариков, дисков, палочек. Белковые включения встречаются в цитоплазме клеток печени, клеток простейших и многих других животных.
К клеточным включениям относятся некоторые пигменты, например распространенный в тканях желтый и коричневый пигментлипофусцин, круглые гранулы которого накапливаются в процессе жизнедеятельности клеток, особенно по мере их старения. Сюда же относятся пигменты желтого и красного цвета - липохромы. Они накапливаются в виде мелких капель в клетках коркового вещества надпочечников и в некоторых клетках яичников. Пигмент ретинин входит в состав зрительного пурпура сетчатки глаза. Присутствие некоторых пигментов связано с выполнением этими клетками особых функций. Примерами могут служить красный дыхательный пигмент гемоглобин в эритроцитах крови или пигмент меланин в клетках меланофорах покровных тканей животных.
В качестве включений во многих животных клетках присутствуют гранулы секрета, вырабатываемого в клетках разных типов, в первую очередь в железистых. Секреторные включения могут быть белками, сахаридами, липопротеидами и т. д. См. Включения растительной клетки
Вопрос 14
Структурно функциональная характеристика цитоскелета.
В течение 100 лет основным отличительным признаком эукариотической клетки считалось наличие в ней ядра. В последние 20 лет, благодаря интенсивному развитию клеточной и молекулярной биологии, выявлен ряд глобальных отличительных черт эукариотических организмов /Уотсон, 1978/. В числе этих черт важное место занимают выработанные на разных этапах эволюции механизмы, обеспечивающие двигательные и опорные функции эукариотических клеток.
Цитоскелет внутренняя система опоры клетки, представлена микротрубочками,микрофиламентами,промежуточнымифиламентами. Функции цитоскелета: опорно каркасная, двигательная, транспортная, участие в клеточном делении.
Микротрубочки. Определяют форму клетки и расположение органелл. Из них сформированы центриоли (9 треплетов). Центриоли образуют клеточный центр, с которым связан центр организации микротрубочек. Миктротрубочки осуществляют внутриклеточный транспорт, двумя путями. 1) За счет сборки разборки микротрубочек (транспортируемое вещество передвигается как по рельсам); 2) С использованием транспортных белков (динеин,кинезин). Эти белки одним своим концом цепляются к транспортируемому веществу, а другим к микротрубочке, и процесс пошёл. Динеин переносит все вещества в направлении от периферии к центру. Кинезин наоборот, к периферии от центра.
Диаметр микротрубочек около 25 нанометров. В основе их лежит белок тубулин, который есть в составе любых эукариотических клеток, представляют из себя белковое семейство. Идентифицировано 5тубулинов (альфа тубулин (в центриолях и жгутиках, микротрубочках), бетта тубулин (микротрубочки, центриоли, жгутики), гамма тубулин (в центросоме), дельта тубулин (в базальном тельце жгутика, в межцентриолярном пространстве), эпсилон тубулин (в перицентриолярном материале центросом)).
Микротрубочки полярны,динамичны, постоянно «разбираются собираются», живут около 10 ти минут. Процесс сборки разборки энергозависим, необходингуанозинтрифосфат.
Промежуточные филаменты.
Диаметр около 10 ти нанометров. Стабильны, различны по химической природе, находятся в частях клетки, которые подвержены нагрузке. Они тканеспецифичны: в эпителии кератиновые, в соединительной ткани виментиновые, в мышцах десминовые, в нервной ткани нейрофиламенты, в ядре ламины.
Все промежуточные филаменты сходны по молекулярной организации, имеют спиральную часть и концевые домены, в связи с этим обладают способностью к самосборкебезучастиябелков и беззатратэнергии (!).
Функция их только опорная.
Микрофиламенты.
Диметр около 7 ми нанометров. Участвуют в формировании формы клеток, и в движении клеток. Имеют + и концы, идёт процесс сборки разборки
Вопрос 15
Эндоплазмати́ческий рети́кулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев. Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.
Строение.Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум, имеют в поперечнике 0,050,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев, составляет около 50 ангстрем (5 нм, 0,005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.
Трубочки, диаметр которых колеблется в пределах 0,10,3 мкм, заполнены гомогенным содержимым. Их функция осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.
Выделяют два вида ЭПР:
гранулярный эндоплазматический ретикулум;
агранулярный (гладкий) эндоплазматический ретикулум.
На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.
Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.
Функции эндоплазматического ретикулума.При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума саркоплазматическая сеть.
Функции агранулярного эндоплазматического ретикулума.Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.
Синтез гормонов.К гормонам, которые образуются в агранулярной ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.
Накопление и преобразование углеводов.Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.
Нейтрализация ядов.Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют к молекулам токсичных веществ гидрофильные радикалы, в результате чего повышается растворимость токсичных веществ в крови и моче, и они быстрее выводятся из организма. В случае непрерывного поступления ядов, медикаментов или алкоголя образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.
Роль ЭПС как депо кальция.Концентрация ионов кальция в ЭПС может достигать 10−3 моль, в то время как в цитозоле составляет порядка 10−7 моль (в состоянии покоя). Под действием инозитолтрифосфата и некоторых других стимулов кальций высвобождается из ЭПС путем облегченной диффузии. Возврат кальция в ЭПС обеспечивается активным транспортом. При этом мембрана ЭПС обеспечивает активный перенос ионов кальция против градиентов концентрации больших порядков. И приём, и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи с физиологическими условиями.
Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как активация или инактивация ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток иммунной системы.
Саркоплазматический ретикулум.Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, представляет собой ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения.
Функции гранулярного эндоплазматического ретикулума.Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.
Синтез белков.Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.
Синтез мембран.Производством фосфолипидов ЭПР расширяет собственную поверхность мембраны, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.
Вопрос 16
Аппара́т (ко́мплекс) Го́льджи мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.
Строение.Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.
В Комплексе Гольджи выделяют 3 отдела цистерн, окруженных мембранными пузырьками:
Цис-отдел (ближний к ядру);
Медиальный отдел;
Транс-отдел (самый отдаленный от ядра).
Эти отделы различаются между собой набором ферментов. В цис-отделе первую цистерну называют "цистерной спасения", так как с ее помощью рецепторы, поступающие из промежуточной эгдоплазматической сети, возвращаются обратно. Фермент цис-отдела: фосфогликозидаза (присоединяет фосфат к углеводу - манназе). В медиальном отделе находится 2 фермента: манназидаза (отщепляет манназу) и N-ацетилглюкозаминтрансфераза (присоединяет определенные углеводы - гликозамины). В транс-отделе ферменты: пептидаза (осуществляет протеолиз)и трансфераза (осуществляет переброс химических групп).
Функции.
Сегрегация белков на 3 потока:
лизосомальный - гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркёр лизосомальных ферментов - манноза-6-фосфат. В дальнейшем эти фосфорилированные белки не буду подвергаться модификации, а попадут в лизосомы.
конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же они могут входить в состав внеклеточного матрикса.
Индуцируемая секреция - сюда попадают белки, которые функционируют за пределами клетки, поверхностного аппарата клетки, во внутренней среде организма. Характерен для секреторных клеток.
Формирование слизистых секретов - гликозамингликанов (мукополисахаридов)
Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.
Сульфатирование углеводных и белковых компонентов гликопротеидов и гликолипидов
Частичный протеолиз белков - иногда за счет этого неактивный белок переходит в активный (проинсулин превращается в инсулин).
Транспорт веществ из эндоплазматической сети.
Аппарат Гольджи асимметричен цистерны, располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭПР), на мембранах которого и происходит синтез белков рибосомами. Перемещение белков из эндоплазматической сети (ЭПС) в аппарат Гольджи происходит неизбирательно, однако не полностью или неправильно свернутые белки остаются при этом в ЭПС. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин-аспарагин-глутамин-лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи.
Модификация белков в аппарате Гольджи.В цистернах аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам в органеллы, в которых происходят их модификации гликозилирование и фосфорилирование. При О-гликозилировании к белкам присоединяются сложные сахара через атом кислорода. При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты.
Разные цистерны аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своеобразного «знака качества».
Не до конца понятно, каким образом созревающие белки перемещаются по цистернам аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм:
согласно первой, транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭПР, причём резидентные белки не включаются в отпочковывающуюся везикулу;
согласно второй, происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.
Транспорт белков из аппарата Гольджи.В конце концов от транс-Гольджи отпочковываются пузырьки, содержащие полностью зрелые белки. Главная функция аппарата Гольджи сортировка проходящих через него белков. В аппарате Гольджи происходит формирование «трехнаправленного белкового потока»:
созревание и транспорт белков плазматической мембраны;
созревание и транспорт секретов;
созревание и транспорт ферментов лизосом.
С помощью везикулярного транспорта прошедшие через аппарат Гольджи белки доставляются «по адресу» в зависимости от полученных ими в аппарате Гольджи «меток». Механизмы этого процесса также не до конца понятны. Известно, что транспорт белков из аппарата Гольджи требует участия специфических мембранных рецепторов, которые опознают «груз» и обеспечивают избирательную стыковку пузырька с той или иной органеллой.
Образование лизосом.Все гидролитические ферменты лизосом проходят через аппарат Гольджи, где они получают «метку» в виде специфического сахара маннозо-6-фосфата (М6Ф)- в составе своего олигосахарида. Присоединение этой метки происходит при участии двух ферментов. Фермент N-ацетилглюкозаминфосфотрансфераза специфически опознает лизосомальные гидролазы по деталям их третичной структуры и присоединяет N-ацетилглюкозаминфосфат к шестому атому нескольких маннозных остатков олигосахарида гидролазы. Второй фермент фосфогликозидаза отщепляет N-ацетилглюкозамин, создавая М6Ф-метку. Затем эта метка опознается белком-рецептором М6Ф, с его помощью гидролазы упаковываются в везикулы и доставляются в лизосомы. Там, в кислой среде, фосфат отщепляется от зрелой гидролазы. При нарушении работы N-ацетилглюкозаминфосфотрансферазы из-за мутаций или при генетических дефектах рецептора М6Ф все ферменты лизосом «по умолчанию» доставляются к наружной мембране и секретируются во внеклеточную среду. Выяснилось, что в норме некоторое количество рецепторов М6Ф также попадают на наружную мембрану. Они возвращают случайно попавшие во внешнюю среду ферменты лизосом внутрь клетки в процессе эндоцитоза.
Транспорт белков на наружную мембрану.Как правило, ещё в ходе синтеза белки наружной мембраны встраиваются своими гидрофобными участками в мембрану эндоплазматической сети. Затем в составе мембраны везикул они доставляются в аппарат Гольджи, а оттуда к поверхности клетки. При слиянии везикулы с плазмалеммой такие белки остаются в ее составе, а не выделяются во внешнюю среду, как те белки, что находились в полости везикулы.
Секреция.Практически все секретируемые клеткой вещества (как белковой, так и небелковой природы) проходят через аппарат Гольджи и там упаковываются в секреторные пузырьки. Так, у растений при участии диктиосом секретируется материал клеточной стенки.
Вопрос 17
Лизосома органелла общего значения, содержащая набор ферментов кислых гидролаз, катализирующих гидролитическое(в водной среде) расщепление нк, белков, жиров, углеводов. Для лизосом характерна кислая реакция внутренней среды. Обычно ph в лизосомах составляет около 4,5-5.Они имеют оболочку из одной мембраны, покрытой иногда снаружи волокнистым слоем белка. Функция лизосом -внутриклеточное переваривание различных химических соединений и структур; аутофагия уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки;автолиз самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Представляет собой пузырек диаметром 0,2-0,8 мкм. Образуется в комплексе гольджи(первичные или неактивные лизосомы).Первичными лизосомами называют неактивные органеллы, вторичными- органеллы, в которых происходит процесс переваривания. Вторичные лизосомы появляются из первичных. Они подразделяются на гетеролизосомы(фаголизосомы) и аутолизосомы(цитолизосомы). В фаголизосомах переваривается материал, поступающий в клетку извне путем пиноцитоза или фагоцитоза, во вторых разрушаются собственные структуры клетки. Вторичные лизосомы содержат переваренный материал: аутолизосомы- собственный материал клетки, фаголизосомы- поглащенный клеткой. Вторичные лизосомы, в которых процесс переваривания завершен, называют остаточными тельцами. В них отсутствуют гидролазы и содержится непереваренный материал.
Впервые описаны в 1955 году кристианом де дювом в животной клетке, а позже были и обнаружены в растительной клетке. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли. Наличие лизосом характерно для всех клеток эукариот. У прокариот лизосомы отсутствуют, т.к. у них отсутствует фагоцитоза нет внутриклеточного пищеварения.
Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:
Ранняя эндосома в нее поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
Поздняя эндосома в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
Лизосома в нее из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
Фагосома в нее попадают более крупные частицы (бактерии и т. п.), поглощенные путем фагоцитоза. Фагосомы обычно сливаются с лизосомой.
Аутофагосома окруженный двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.
Мультивезикулярные тельца обычно окружены одинарной мембраной, содержат внутри более мелкие окруженные одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию (см. ниже), но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме. Описано образование мультивезикулярных телец, окруженных двумя мембранами, путем отпочковывания от ядерной оболочки.
Остаточные тельца (телолизосомы) пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках сливаются с наружной мембраной и путем экзоцитоза покидают клетку. При старении или патологии накапливаются
Вопрос 18
Вакуолярная система клетки представляет собой единую систему клетки, отдельные компоненты которой могут переходить друг в друга при перестройке и изменении функции мембран. В ее состав входят: эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли.
Эндоплазматическая сеть
Совокупность мембранных каналов и полостей, пронизывающих всю клетку. Бывает двух видов гладкая (агранулярная) и шероховатая (гранулярная, гранулы это рибосомы). Особенность гранулярной ЭПС состоит в том, что со стороны гиалоплазмы мембранная сеть покрыта мелкими гранулами - рибосомами. На гранулярной ЭПС идет синтез белка, на гладкой синтез липидов и углеводов. Внутри каналов ЭПС синтезированные вещества накапливаются и транспортируются по клетке.
Функции:
1. а) На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем
либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).
б) При этом синтезируемая на рибосоме пептидная цепь проникает своим лидерным концом через мембрану в полость ЭПС, где затем оказывается весь белок и формируется его третичная структура.
2. Здесь же (в просвете цистерн ЭПС) начинается модификация белков - связывание их с углеводами или иными компонентами. Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков
АппаратГольджи
Стопка плоских мембранных полостей, окруженных пузырьками. По каналам ЭПС вещества поступают в АГ, там накапливаются и химически модифицируются (например, от белков отрезаются лишние участки). Затем готовые вещества заключаются в пузырьки и отправляются по месту назначения.
а) По положению и функции, в диктиосомах различают 2 части:
проксимальная (cis-) часть обращена к ЭПС,
противоположная часть называется дистальной (trans-).
б) При этом
к проксимальной части мигрируют пузырьки от гранулярной ЭПС,
обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к дистальной и, наконец,
от дистальной части отпочковываются секреторные пузырьки и первичные лизосомы. Итак, перечень основных функций комплекса Гольджи таков:
сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,
продолжение химической модификации этих белков,
сортировка данных белков на лизосомальные, мембранные и экспортные, включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).
Лизосомы
Пузырьки, заполненные пищеварительными ферментами. Образуются в АГ. Пищеварительная вакуоль, в которой происходит переваривание пищи, получается после слияния фагоцитозного пузырька с лизосомой. Кроме того, лизосомы могут переваривать ненужные части клетки или целые клетки, например, у головастика постепенно исчезает хвост.
а) Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются
как отдельные макромолекулы (белки, полисахориды и т.д.),
так и целые структуры - органеллы, микробные частицы и пр.
б) Это могут быть вещества и структуры той же самой клетки;
в результате, обеспечивается самообновление состава клетки (при условии одновременно идущих процессов синтеза и сборки).
в) Но, кроме того, в лизосомах разрушаются и продукты эндоцитоза, т.е. растворённые вещества или твёрдые частицы, захваченные клеткой из окружающей среды.
Вакуоли
Пузырьки, заполненные каким-либо содержимым. У животных вакуоли временные, занимают около 5% клетки. У растений и грибов имеется крупная центральная вакуоль, занимающая до 90% объема зрелой клетки. Её содержимое у растений называется клеточный сок, мембрана тонопласт.
Вакуоль это место запаса воды. Вакуоли развиваются из цистерн эндоплазматической сети
Вопрос 19
Структурно-функциональная характеристика рибосом
Рибосомы - постоянные органеллы клетки, не имеющие мембранного строения. Рибосомы впервые были описаны Джорджем Паладе в 1952 году. Присутствует в клетках всех организмов, как эукариот, так и прокариот.
Рибосомы состоят из малой и большой субъединиц.
Синтез рибосом эукариот происходит в ядрышке. Рибосомы представляют собой нуклеопротеид, диаметром 20-30 нм., в состав которого входит рРНК и белок.
Рибосомы, объединенные одной иРНК образуют полисому.
Функция рибосом: биосинтез белка из аминокислот по заданной матрице на основе генетической информации, предоставляемо мРНК. Этот процесс называется трансляцией.
Выделяют следующие виды рибосомы:
1. Свободные (полирибосомы) - синтезируют белок для всех нужд клетки.
2. Рибосомы ЭПС (прикрепленные или связанные) синтезируют белок на эксплуатацию, т.е. синтезируют белки, функционирующие вне клетки.
3. Рибосомы митохондрий и пластид синтезируют белки для нужд митохондрий.
Вопрос 20
Структурно-функциональная характеристика митохондрий.
Митохондрии органеллы общего значения, двумембранного строения, обеспечивающие организм энергией. Энергетические станции клетки.
Митохондрии представляют собой структуры округлой палочковидной формы от 1 до 5 мкм.
Характерны для большинства эукариотических клеток как автотрофов, так и гетеротрофов.
Митохондрии имеют наружную и внутреннюю мембраны, перимитохондриальное и внутримитохондриальное пространство. Внутримитохондриальное пространство заполнено матриксом, содержащим кольцевую ДНК, иРНК и тРНК. Перимитохондриальное пространство представляет собой пространство между наружной и внутренней мембранами. Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок, замкнута сама на себя. Внутренняя мембрана образует выпячивания листовидной (кристы) или трубчатой (тубулы) формы.
Основная функция митохондрий синтез АТФ (синтез универсальной формы химической энергии в любой живой клетке). АТФ может образовываться двумя путями:
1. в результате субстратного фосфорилирования в жидкой фазе (например, при гликолизе);
2. в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента протонов водорода.
Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. Именно второй путь определяет митохондрии, как энергетические станции клетки. В целом второй путь образования АТФ (процесс энергообразования в митохондриях) может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние на кристах митохондрий:
1. Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;
2. Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН;
3. Перенос электронов с НАДН на кислород по дыхательной цепи;
4. Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.
Вопрос 21
Клетка открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ.
Поток энергии обеспечивается механизмами энергообеспечения брожением, фото или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз процесс бескилородного расщепления глюкозы. Фотосинтез механизм преобразования энергии солнечного света в энергию химических связей органических веществ.
Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.
Биологически активные вещества гормоны, ферменты, адреналин, серотонин и т. д.
Отредактировал Святослав Дуркин, 20 окт 2012 в 18:57.
Вопрос 22
Строение интерфазного ядра.
Компоненты инт.ядра:
1)Кариолемма: - ядерная оболочка из 2ух слоев мембран. Внешний содержит рибосомы и переходит в мембр.ЭПС. Ламины плотная пластинка ядра. Поринуклеарное пространство(20-50 нм) сообщается с цистернами ЭПС. Ядерный поровый комплекс (япк) диаметром 120нм.
Функции:-ограничивает содержимое ядра от цитолеммы . формообразование. Ядерноцитоплазматический транспорт.
2)кариоплазма-ядерный сок: ядерный матрикс-белковая структура после удвоения аминокислот; кариолимфа коллоидный раствор.
Функции: связующая. Упаковка хроматина. Транспорт веществ внутри ядра. Регуляция внутриядерных процессов.
3)ядрышко: обязат.компонент интерфазного ядра,источник рибосом.
Состав: белки 70-80, рнк-5-14, ДНК-2-12.
Фибриллярный компонент( предшествующая рнк); гранулярный компонент( комплекс р-РНК и белки);ядрышковый организатор ЯОР(гены в особых областях хромосом).
4)хроматин: ДНП (дезоксирибонуклеопротеид).
По теории Довери-хромосомы непрерывны,т.к. сохраняются в кл во время интерфазы.
Хроматин:1) гетерохроматин: окрашивается; высоконденсированный; транскрипции не происходит.2) эухроматин: не окрашивается;деконденсированный,происходит транскрипция.
Гетерохроматин: 1) конститутивный(постоянный гетерохроматин): в образовании центромеры;хромоценты;не содержит генов; структурная функция.2) факультативный: половой хроматин-содержит гены не активные в данной клетке. Факультативный может переходить в эухроматин и наоборот!
Вопрос 23
Упаковка днк в метафазную хромасому
Уровень метафазной хромосомы - четвертый уровень упаковки генетического материала. В метафпазе хроматиды еще спирализуются. Сокращение длины нитей происходит в 20 раз. Длина метафазных хромосом от 0,2 до 150 мкм, диаметр 0,2-5,0 мкм. Кольцевые молекулы ДНК прокариотических клеток содержат 5 х 10^6 пар нуклеотидов и образуют комплексы с негистоновыми белками
Вопрос 24
Хромосомы и хроматин. Гетеро- и эухроматин.
Хромосомы - нуклеопротеидные структурные Элементы ядра клетки, содержащие, днк, в которой заключена наследственная Информация организма, способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду поколений.
в митотическом цикле наблюдаются следующие Особенности структурной организации хромосом:
Различают митотическую и интерфазные формы Структурной организации хромосом, взаимопереходящие друг в друга в митотическом Цикле - это функциональные и физиологические превращения
• функциональные превращения - компактизация - декомпактизация в клеточном цикле. Компактные, конденсированные, имеющие определенное строение во время митоза.
Для интерфазных хромосом в основном Свойственно деспирализованное состояние. Степень спирализации отдельных Фрагментов хромосом варьирует, образуя совокупность более или менее рыхло Расположенных нитчатых образований и глыбок хроматина ядра эукариотических Клеток.
• смена двух физиологических форм: Транспортной ( идентифицируемой во время деления. Хромосомы компактные ясно Различимые) и функциональной в виде - хроматина (в промежутках между делениями, Хромосомы разрыхленные, нитевидные и не различимые по отдельности).
Химическая организация хромосом.
Химический состав хромосом - ДНК- 40%, Гистоновых белков - 40%. Негистоновых - 20% немного РНК. Липиды,полисахариды,ионы металлов.
Имеется 5 фракций основных гистоновых белков (Н1 , Н2А , Н2В , НЗ , Н4) и более 100 фракций кислых негистоновых белков,
Функции гистоновых белков: регуляторная (прочно соединяясь с ДНК препятствуют считыванию информации) и структурная (обеспечивают пространственную организацию ДНК в хромосомах. Образуя Нуклеогистон). Функции негистоновых белков: среди них ферменты регулирующие Процессы:
• синтеза РНК (полимеразы) и процессинга РНК,
• редупликации и репарации ДНК (геликаза. ДНК Попимераза, эндонуклеаза. Экзонуклеаза, лигаза),
• регуляторная функция, заключающаяся в «запрещении» или «разрешении» считывания информации с молекулы ДНК
Днк эукариотических клеток представлена Следующими фракциями:
а) уникальные последовательности генов 56 % - Присутствуют в гаплоидном наборе в единственном числе, образуют основную часть Структурных и регуляторных генов,
б) гены со средним числом повторов 8 % - 102 - 104 копии это структурные гены кодирующие первичную структуру гистонов или Нуклеотидов рибосомальных и транспортных РНК,
в) многократно повторяющиеся гены 12 % -10б Копий - нетранскрибируемая сателлитная ДНК. Играющая роль спейсеров (фрагментов) разделяющих структурные и регуляторные гены .
г) блуждающие структурные гены, Положение которых в хромосоме меняется в зависимости от жизненного цикла,
д) молчащие гены они реплицируются, но не Транскрибируются. Участвуют в обеспечении структурной организации хроматина и В регуляции экспрессии генов.
Понятие об интерфазных слабоспирализованных Хромосомах, образующих хроматин интерфазного ядра
Классификация и функции хроматина: различают гетеро- и эухроматин.
а) гетерохроматин:
• факультативный - образуется при Спирализации одной из двух гомологичных хромосом. Типичным примером служит Тельце полового хроматина, образуемого одной из двух Х-хромосом соматических Клеток женских особей человека и млекопитающих Функциональная роль Факультативного гетерохроматина заключается в компенсации снижении дозы определенного Гена.
• структурный ~ отличается Высокоспирализованным состоянием, которое сохраняется на протяжении всего мит. Цикла. Он занимает постоянные участки в гомологичных хромосомах - это фрагменты Околоцентромерных, теломерных участков хромосом, Не содержит структурных генов (нетранскрибируемый); Его роль не ясна, но по видимому он выполняет опорную Функцию.
б) эухроматин - имеет менее компактную организацию, деспирализуется в Конце митоза, образует слабоокрашенные нитчатые структуры содержит структурные транскрибируемые Гены: в каждой хромосоме свой порядок расположения эухроматина и гетерохроматина. Что Используется для идентификации отдельных хромосом в цитогенетике.
Вопрос 25
1. Кариоти́п совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данногобиологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).
2. Идиограмма - (идио- + греч. gramma запись, изображение; син. кариограмма) графическое изображение отдельных хромосом со всеми их структурными характеристиками.
3. Основы существующей унифицированной классификации хромосом были заложены в 1960 году в Денвере. В основу классификации положены различия в длине хромосом и расположении центромеры. На основании различий в длине выделены 23 пары хромосом, при этом парам, имеющим наибольшую длину, дан наименьший номер (самыми длинными являются хромосомы 1- и 2-й пары). Выделяют группы метацентрических, субметацентрических и акроцентрических хромосом. Отнесение хромосом к тому или иному типу производится на основе расчета центромерного индекса - отношения длины короткого плеча к длине всей хромосомы. В группе мета-центрических хромосом короткое и длинное плечи приблизительно равны, и центромерный индекс приближается к 0,5. В субметацентрических хромосомах центромерный индекс снижен и составляет от 0,25 до 0,35, в акроцентрических хромосомах он часто не превышает 0,2. На основании комбинации этих двух основных признаков хромосомы сгруппированы в 7 групп, обозначаемых буквами английского алфавита (от А до G).
Группа А включает хромосомы 1, 2, 3, причем хромосомы 1 и 3 - метацентрики (центромерный индекс первой хромосомы равен 0,48-0,49, третьей - 0,45-0,46), а хромосома 2 - самый большой субметацентрик (с центромерным индексом 0,38-0,40).
Группа В состоит из двух хромосом - 4 и 5. Это большие субметацентрические хромосомы с центромерным индексом от 0,24 до 0,30.
Вопрос 26
Деление и дифференцировка клетки. Гибель клетки. Некроз и апаптоз.
Вопрос 27
Пролифера́ция -новообразование клеток и внутриклеточных структур (митохондрий, эндоплазматической сети, рибосом и др.). Лежит в основе роста и дифференцировки тканей, обеспечивает непрерывное обновление структур организма. С помощью П. ликвидируется образовавшийся при повреждении тканей дефект и нормализуется нарушенная функция. П. может возникать и вследствие нарушения гормональных влияний, приводя к уродливому увеличению органа, например при акромегалии. П. клеток, утративших способность дифференцироваться в клетки того или иного органа, ведет к возникновению опухолей. Одни органы и ткани обладают очень высокой способностью к П. клеток (соединительная, кроветворная. костная ткань, печень, эпидермис, эпителий слизистых оболочек), другие более умеренной (скелетные мышцы, поджелудочная железа, слюнные железы и др.), третьи совсем или почти лишены этой способности (ц.н.с., миокард).
Виды пролиферации: эпителиальная, фиброзная, сосудистая
Вопрос 28
Клеточный цикл
Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла.
Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью.Клеточный цикл включает собственно митотическое деление и интерфазу - промежуток между делениями.
Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всего времени клеточного цикла) и подразделяется на три периода: пресинтетическиv или постмитотический (G1),синтетический (S) и постсинтетический или премитотический (G2).
1. G1 период наступает сразу же после митотического деления клетки и характеризуется активным ростом клетки и синтезом белка и РНК. G1 -период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые "запускающие" белки (trigger proteins), или активаторы S-периода. Они обеспечивают достижение клеткой определенного порога, после которого она вступает в S-период.
2. Синтетический (S-) период характеризуется репликацией ДНК и синтезом белков, в частности, гистонов, которые поступают в ядро из цитоплазмы и обеспечивают нуклеосомную упаковку вновь синтезированной ДНК. В результате происходит удвоение числа хромосом. Одновременно удваивается число центриолей. S-период длится у большинства клеток 8-12 часов.
3. G2 период следует за S-периодом и продолжается вплоть до митоза В течение этого периода клетка осуществляет непосредственную подготовку к делению. Происходит созревание центриолей, запасается энергия, синтезируются РНК и белки (в частности, тубу-лин), необходимые для процесса деления. Длительность G2-периода составляет 2-4 часа.
Деление клеток
Митоз (кариокинезом) является универсальным механизмом деления клеток. Митоз следует за G2-периодом и завершает клеточный цикл. Он длится 1-3 часа и обеспечивает равномерное распределение генетического материала в дочерние клетки. Митоз включает 4 основные фазы профазу, метафазу, анафазу и телофазу.
Профаза начинается с конденсации хромосом, которые становятся видимыми в световой микроскоп как нитевидные структуры. Каждая хромосома состоит из двух параллельно лежащих сестринских хроматид, связанных в области центромеры. Ядрышко и ядерная оболочка к концу фазы исчезают. Кариоплазма смешивается с цитоплазмой. Центриоли мигрируют к противоположным полюсам клетки и дают начало нитям ахроматинового веретена. В области центромеры образуются особые белковые комплексы - кинетохоры, к которым прикрепляются некоторые микротрубочки веретена (кинетохорные микротрубочки)
Метафаза соответствует максимальному уровню конденсации хромосом, которые выстраиваются в области экватора митотического веретена. Хромосомы перемещаются в экваториальную плоскость и удерживаются в ней благодаря сбалансированному натяжению кинетохорных микротрубочек.
Анафаза начинается с синхронного расщепления всех хромосом на сестринские хроматиды (в области центромеры) и движения дочерних хромосом к противоположным полюсам клетки. Анафаза характеризуется удлинением митотического веретена за счет некоторого расхождения полюсов клетки. Она завершается скоплением на полюсах клетки двух идентичных наборов хромосом. В конце анафазы благодаря сокращению актиновых микрофиламентов, начинает образовываться клеточная перетяжка, которая углубляясь, в следующей фазе приведет к цитотомии.
Телофаза - конечная стадия митоза, в течение которой реконструируются ядра дочерних клеток и завершается их разделение. Вокруг Конденсированных хромосом восстанавливается кариолемма, вновь появляются ядрышки. Ядра Клеток постепенно увеличиваются, а хромосомы прогрессивно деспирализуются и исчезают, замещаясь картиной хроматина интерфазного ядpa. Одновременно происходит углубление клеточной перетяжки, и клетки в течение некоторого времени остаются связанными суживающимся цитоплазматическим мостиком. формируютя две дочерник клетки. В телофазе происходит распределение органелл между дочерними клетками.
Вопрос 29
Трансформация (от лат. transformatio - превращение), в молекулярной генетике, изменение наследственных св-в клеток в результате проникновения в них чужеродной ДНК. В результате трансформации клетка-реципиент может приобрести и устойчиво передавать своим потомкам признак, ранее у нее отсутствующий, но имеющийся у клетки донора (напр., ген устойчивости к антибиотикам). Механизм трансформации включает необратимую адсорбцию ДНК клетки-донора (напр., выделяемую в среду в результате лизиса клеток) на пов-сти клетки-реципиента. Хорошо адсорбируется лишь ДНК, имеющая мол. массу не менее 300 тыс. Адсорбция осуществляется на спец. рецепторах, где ДНК связывается с особыми белками и "втягивается" в клетку. При этом одна из нитей ДНК разрушается благодаря нуклеазнойактивности связывающих ДНК белков, и в клетку поступает уже однонитевая ДНК. Она тут же обволакивается молекулами белков, к-рые защищаютДНК от клеточных экзонуклеаз и способствуют ее контакту с хромосомой, а затем рекомбинации с ней. На этом процесс трансформации завершается.
Трансформация впервые была открыта в 1928 Ф. Гриффитом. В 1944 О. Эвери с сотрудниками показал, что превращение нек-рых непатогенных бактерий в патогенные осуществляется в результате переноса в геном первых ДНК, высвобождающейся из клеток вирулентных штаммов.
О роли ДНК в передаче наследственной информации свидетельствует также открытие в 1952 г. Зайндером и Ледербергом явления трансдукции, заключающееся в переносе генетического материала фагами от одних бактерий к другим. Ученые при этом показали, что в процессе трансдукции активное участие принимает ДНК (Лехов А. П., 1973).
Конъюгация прямой перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте этих клеток. Для реализации процесса необходим F-фактор плазмида, кодирующая информацию, необходимую для конъюгации.
Конъюгация требует наличия двух типов клеток: доноров (F+), обладающих F-фактором, и реципиентов (F-), не обладающих им. При скрещивании клеток F- и F+ фактор фертильности передаётся с частотой, близкой к 100%.
Фактор переноса содержит гены специальных и необходимых при конъюгации структур F-пилей и ряд других генов, вовлечённых в процесс взаимодействия с F--клетками.
Процесс конъюгации может происходить только при соблюдении ряда условий.
• На поверхности реципиентных бактерий должны быть рецепторы пилей, имеющие существенное сродство ( к F-пилям, что позволяет образовать стабильную связь между пилями и рецепторами.
• Для эффективной конъюгации у F-фактора должна быть точка начала репликации, распознаваемая репликативными системами хозяина.
• Эффективность Hfr-конъюгации зависит от величины гомологии ДНК. Перенос негомологичного хромосомного материала донора не приведёт к его интеграции с ДНК реципиента.
Вопрос 30
Нуклеиновые кислоты - биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК).
Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:
Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1' до 5'. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислор
Вопрос 31
Первичная структура ДНК это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5'- на 3'-конец цепи
Правила Чаргаффа:
1.Количество аденина равно количеству тимина, а гуанина цитозину: А=Т, Г=Ц.
2.Количество пуринов равно количеству пиримидинов: А+Г=Т+Ц.
3. отношение сумм комплим-х оснований - величина постоянная для данного вида орг-в. А+Т/Г+Ц не равно 1.
Вопрос 32
Модель днк Уотсона и Крика
в 1953 г., американский биохимик Дж. Уотсон и английский физик Ф. Крик , исследуя структуру молекулы ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания - в середине. Причем последние ориентированы таким образом, что между основаниями из противоположных Цепей могут образоваться водородные связи. Из построенной ими модели выявилось, что какой-либо пурин в одной цепи всегда связан водородными связями с одним из пиримидинов в другой цепи. Такие пары имеют одинаковый размер по всей длине молекулы. Не менее важно то, что аденин может спариваться лишь с тимином, а гуанин только с с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином - три .
из лекции:
-днк состоит из двойной спирали
-цепи комплементарны и антипарал-ны
-структура спирали стабилизирована на водородных связях
-диаметр спирали 2нм ,а на 1 виток прих-ся 10 нук-в. размер нуклеотида 0,34 нм
Вопрос 33
Репликация проходит в три этапа:
1.инициация репликации
2.элонгация
3.терминация репликации.
РЕПЛИКАЦИЯ - удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называется удвоение хромосом, в основе которого лежит репликация ДНК. Репликация обеспечивает точное копирование генетической информации, заключенной в молекулах ДНК, и передачу ее от поколения к поколению. Принципы репликации: Инициация цепей ДНК. ДНК-полимеразы способны добавлять новые дезоксирибонуклеотидные звенья к 3'-концу уже имеющейся полинуклеотидной цепи. Заранее образованную цепь, к которой добавляются нуклеотиды - затравка. РНК-затравку синтезирует фермент ДНК-праймаза. Затравка отличается от остальной новосинтезированной цепи ДНК, т. к. состоит из рибонуклеотидов, и далее может быть удалена. Образовавшиеся бреши застраиваются ДНК-полимеразой. Расплетание двойной спирали ДНК. Область репликации, которая перемещается вдоль родительской спирали ДНК и характеризующуюся местным расхождением двух ее цепей была названа репликационной вилкой. В ней ДНК-полимеразы синтезируют дочерние молекулы
Вопрос 34
Структура: Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил.
Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.
1) Информационная РНК (и-РНК).
Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы.
2) Рибосомная РНК (р-РНК).
Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул.
3) Транспортная РНК (т-РНК).
Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы).
4) Минорные (малые) РНК.
Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.
5) Рибозимы.
Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).
6) Вирусные РНК.
Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК.
Вопрос 35
опр.и св гена.ген-это струк-функ единица насл-я обуслав развитие конкретного признака.нег(хим)это послед-сть нуклеотидов днк в которой закодирована послед.аминокислот днк.св 1)дискертность т.е развитие различных признаков коонтролируется разными генами.2)стабильность-при отсутвии мутации он передается в ряду поколений без изменнений.3)специфичность-каждый ген обусловливает развитие отдельного признака.4)плейотропия-способность генов обеспечивать развитие одновременно нескольких признаков.5)экспрессивность-зааключается в изменчивости количественногго выражения признака у рзных особей.6)пенетрантность-частота проявления гена в популяции.7)дозированность-завис.фенот.резутата гена от дозы гена.8)лабильность-способность к мутации.9)амплификация-увеличение числа копий гена.10)множест.аллелизм-способность ществовать в нескольки формах популяции.11)экспрессивность-качест.проявление гна в популяции.12)способность к рекомбинации.....св ген.кода:1)триплетность(аминокислота кодируется триплетом).2)универсальность-код единен для всех.3)вырожден-одна аминокислота может кодир разными триплетами 4)специфичен-каждому триплету соот-ет одна аминокислота 5)колинеарность-после.триплетов строго соответ. последовательности аминокислот 6)неперкрываемость-соседние триплеты не имеют ощего основания 7)неприрывен-читается в одном направлении без точек и запятых до бесмыс.(нонсенс)триплета
Вопрос 36
отличия днк (1)прокариот от (2)эукариот. форма днк :
(1)кольцевая (2)линейная......особен.структуры: (1)нет гистонов,нет повтор участков (2) есть гистоны,есть повтор.послед,генные кластеры...функ.активность: (1) весь геном (2)акт от 1 до 10% генома.....размер генома: (1)не большой (2)большой избыток днк....(общее)репликация происходит а интерфазе:отличия(1) в основе лежит комплементарность,антипраллельность,прерывистость,потребноость в затравке...(2)репликация начинается одновр-но в неск.молекул.расстояние между ближайщими точками репликации-репликон.все этапы регули ферментами.
Вопрос 37
Структурно-функциональная классификация генов.
Все гены делятся на два вида - структурные и функциональные. Структурные гены уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РНК. Функциональные гены, в свою очередь, бывают нескольких видов: Модуляторы (смещают процесс развития признака), Ингибиторы (уменьшают проявление признака), Интенсификаторы (усиливают проявление признака), Регуляторы (координируют активность структурных генов).
Вопрос 38
Генетический код и его св-ва.
Генетический код свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре азотистых основания аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Cвойства генетического кода:
Триплетность значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
Однозначность (специфичность) определённый кодон соответствует только одной аминокислоте.
Вырожденность (избыточность) одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность генетический код работает одинаково в организмах разного уровня сложности от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
Помехоустойчивость мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальным
Вопрос 39
Мобильные гены, онкогены, антионкогены, псевдогены.
Мобильные (подвижные) гены, «прыгающие» гены (mobile genes, transposable genes, jumping gene)[лат. mobilis подвижный; греч. genos род, происхождение] гены (элементы), способные к перемещению в геноме клетки или между геномами, которые кодируют ферменты, необходимые для их перемещения (транспозиции). Встраиваясь в различные участки хромосом, М.г. изменяют активность других генов, вызывают различные типы мутаций, способствуя нестабильности и изменчивости генома. М.г. у эукариот часто называют также транспозонами.
Онкоге́н это ген, продукт которого может стимулировать образование злокачественной опухоли. Мутации, вызывающие активацию онкогенов, повышают шанс того, что клетка превратится в раковую клетку. Считается, что гены-супрессоры опухолей (ГСО) предохраняют клетки от ракового перерождения, и, таким образом, рак возникает либо в случае нарушения работы генов-супрессоров опухолей, либо при появлении онкогенов (в результате мутации или повышения активности протоонкогенов, см.ниже)[1].
Многие клетки при появлении в них мутаций вступают в апоптоз, но в присутствии активного онкогена могут ошибочно выживать и пролиферировать. Для злокачественного перерождения клетки под действием многих онкогенов требуется дополнительная стадия, например, мутация в другом гене, факторы внешней среды (например, вирусные инфекции).
Антионкоген
Ген-супрессор опухоли (антионкоген) - ген, способный предотвращать размножение клеток онкогенов. Если мутация происходит в этом гене, то человек может стать более восприимчивым к развитию злокачественной опухоли той ткани, в которой произошла эта мутация.
Псевдогены (англ. pseudogenes) нефункциональные аналоги структурных генов, утратившие способность кодировать белок и не экспрессирующиеся в клетке[1]. Термин «псевдоген» был впервые предложен в 1977 году[2]. Некоторые псевдогены могут копироваться из мРНК и включаться в хромосомы, такие последовательности называются процессированными псевдогенами (ретропсевдогенами)[1]. Тем не менее, они также нефункциональны. Псевдогены происходят от обычных функциональных генов, однако утрачивают способность экспрессии в результате мутаций (появление стоп-кодонов, сдвиг рамки считывания и т. п.)[3].
Вопрос 40
Мультигенные семейства - иногда гены образуют группы, которые получили название мультигенных семейств. Мультигенные семейства делятся на два основных типа. Первый тип это классические семейства генов, когда гены в семействе обнаруживают высокую степень сходства в структуре, т.е. в последовательности нуклеотидов. Примером такого рода семейств являются различные рРНК, которые собраны в тандемные последовательности в ядрышковых организаторах акроцентрических хромосом, семейства генов тРНК, разбросанных по геному, пучки генов а- и р-глобинов, кератинов и кристаллинов хрусталика. При втором типе, так называемом суперсемействе генов, гены обнаруживают не очень высокую гомологию в последовательностях нуклеотидов, но связаны между собой функционально. Наиболее яркими примерами этого типа мультигенных семейств являются гены комплекса гистосов-местимости (HLA) и гены иммуноглобулинов.
Мультигенное семейство это группа генов, очень близких по нуклеотидным последовательностям, со сходными фенотипическими функциями. Число генов в разных семействах у представителей разных видов варьирует от единиц до нескольких сотен. К примеру, число генов гистонов у разных видов в отдельных семействах колеблется от 10 до 1200, генов тРНК от 6 до 400, генов 5SPHK от 200 до 24000, генов α-глобинов от 1 до 5, (β-глобинов от 2 до 7. К числу белков, кодируемых мультигенными семействами, кроме указанных выше, относятся актины и тубулины, играющие важную роль в подвижности клеток, коллагены соединительной ткани, некоторые белки клеточных мембран и сыворотки крови.
Вопрос 41
HLA-система.
Методом хромосомной гибридизации установлено, что система HLA локализуется на коротком плече 6 аутосомной хромосомы человека. Размер комплекса HLA составляет 2 сантиморгана. Молекулярные классы HLA-региона молекулы, кодируемые HLA-областью, разделены на три класса: I, II и III. Молекулы I класса HLA-A, HLA-B и HLA-C кодируются тремя отдельными парами генных локусов. Антигены I класса, впервые найденные на лейкоцитах (отсюда термин HLA), экспрессируются (синтезируются и выводятся на клеточную поверхность) почти во всех тканях (продукт четвертого локуса I класса, HLA-G, экспрессируется только в трофобласте). Молекулы I класса играют важную роль при распознавании антигена цитотоксическими T-клетками (CD8). Молекулы II класса кодируются тремя или более генными локусами (DR, DP и DQ). HLA-DR антигены известны также как Ia антигены по аналогии с антигенами иммунного ответа у мышей. Продуктами системы HLA являются антигены I и II классов. Антигены I класса являются мембранными гликопротеинами, состоящими из двух частей: глигозилированной полипептидной тяжелой цепи с молекулярной массой 44000 и В2-микроглобулина с молекулярной массой 12000. Молекулы HLA II класса также являются гликопротеинами, но состоят из двух нековалентно соединенных цепей А и В с молекулярной массой 34000 и 29000 соответственно.Антигены I класса содержатся почти на всех клетках органов и тканей организма, включая тромбоциты и стволовые гемопоэтические клетки. Антигены II класса имеют более ограниченное распространение, они выражены преимущественно на макрофагах, В-лимфоцитах, активированных Т-клетках и клетках-предшественниках гемопоэза.
HLA выполняет в организме важные биологические функции. Первоначально полагали, что HLA имеет лишь непосредственное отношение к трансплантации органов и тканей. С помощью HLA-типирования удалось подтвердить общность некоторых расстройств или по-новому подойти к вопросу их классификации. Одни из них связаны с резистентностью или, наоборот, с восприимчивостью, а также со сроками возникновения болезней, другие с остротой их течения и, наконец, третьи с продолжительностью жизни больных.
Вопрос 42
Центральная догма молекулярной биологии.
Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году.
3 класса способов передачи информации, описываемые догмой
Общие Специальные Неизвестные
ДНК → ДНК РНК → ДНК белок → ДНК
ДНК → РНК РНК → РНК белок → РНК
РНК → белок ДНК → белок белок → белок
Репликация ДНК (ДНК → ДНК)
ДНК основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.
Транскрипция (ДНК → РНК)
Транскрипция биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу мРНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.
Трансляция (РНК → белок)
Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы) ядерной мембраной, поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.
Обратная транскрипция (РНК → ДНК)
Обратная транскрипция перенос информации с РНК на ДНК, процесс, обратный нормальной транскрипции, осуществляемый ферментом обратной транскриптазой. Встречается у ретровирусов, например, ВИЧ и в случае ретротранспозонов.
Репликация РНК (РНК → РНК)
Репликация РНК копирование цепи РНК на комплемлементарную ей цепь РНК с помощью фермента РНК-зависимой РНК-полимеразы. Вирусы, содержащие одноцепочечную (например, пикорнавирусы, к которым относится вирус ящура) или двуцепочечную РНК реплицируются подобным способом.
Прямая трансляция белка на матрице ДНК (ДНК → белок)
Прямая трансляция была продемонстрирована в клеточных экстрактах кишечной палочки, которые содержали рибосомы, но не иРНК. Такие экстракты синтезировали белки с введённых в систему ДНК, и антибиотик неомицин усиливал этот эффект.
Вопрос 43
Биосинтез белка.
Биосинтез белка сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.
(Процесс биосинтеза белка подразделяется на три этапа:
Транскрипция,процессинг,трансляция.
Транскрипция-процесс синтеза и-РНК происходит в ядре на одной из цепей ДНК,ферментативно.
Процессинг-это созревание и-РНК в ядерном соке.
Трансляция-синтез белка на и-РНК.)
Вопрос 44
Транскрипция. Процессинг, сплайсинг. Отличие транскрипции у про- и эукариот.
Процессинг РНК (посттранскрипционные модификации РНК) совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.
Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Также модифицируются (другими механизмами) рибосомные РНК, транспортные РНК и малые ядерные РНК.
Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемых единой последовательностью нуклеотидов ДНК, альтернативный сплайсинг.
Альтернативный сплайсинг процесс, позволяющий одному гену производить несколько мРНК и, соответственно, белков. Большинство генов в эукариотических геномах содержат экзоны и интроны. После транскрипции в процессе сплайсинга интроны удаляются из пре-мРНК. А вот экзон может включаться (или нет) в состав конечного транскрипта. Таким образом, с помощью альтернативного сплайсинга можно получить множество транскриптов, а, следовательно, и белков. Объединение различных сайтов сплайсинга позволяет индивидуальным генам экспрессировать множество мРНК, которые кодируют белки, порой, с антагонистическими функциями. Экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути. Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка. Разные изоформы тропонина образуются в разных тканях и на определенных стадиях их развития.
РНК-полимераза прокариот обеспечивает транскрипцию генов, несущих информацию о последовательностях молекул РНК всех трех классов: рибосомной РНК (рРНК), транспорт-ной РНК (тРНК) и информационной (или матричной) РНК (мРНК).
В эукариотических клетках имеются три различные РНК-по-лимеразы, каждая из которых специфически узнает промото-ры, контролирующие транскрипцию трех различных классов молекул РНК. РНК-полимераза I локализуется в ядрышке и синтезирует основные рибосомные РНК. РНК-полимераза III осуществляет транскрипцию транспортных РНК и одного ком-понента рибосом - 5SPHK. Транскрипция молекул мРНК, не-сущих информацию о структуре белков, осуществляется РНК-полимеразой II. Ферменты II и III типа локализуются в нуклеоплазме.
Процессы образования мРНК в прокариотических и эукариотических клетках характеризуются существенными различиями. В эукариотических клетках после инициации транскрипции происходит модификация 5'-трифосфата в образующейся цепи за счет присоединения так называемого кэпа метилированного остатка гуанозина. Кроме того, у большинства транскриптов происходит также модификация 3'-концов - по окончании транскрипции к ним присоединяется цепочка из остатков аденина, образующая характерный ро1уА-«хвост» (исключением из этого правила являются мРНК гистонных белков). У всех эукариот при транскрипции ДНК образуются молекулы РНК трех вышеназванных классов. Все они участвуют в процессе трансляции - третьей разновидности матричных процессов передачи информации - от РНК к белку.
Вопрос 45
Трансляция - это процесс, в результате которого рибосомы считывают генетическую информацию матричных РНК и создают белковый продукт в соответствии с этой информацией.
Специфические молекулы транспортных РНК (тРНК) служат посредниками между кодом мРНК и конечной белковой последовательностью. В их состав входит последовательность, узнающая код мРНК и соответствующая этому коду аминокислота.
События трансляции разделяют на последующие события: инициацию, элонгацию и терминацию. На стадии инициации рибосома связывает мРНК и первая аминокислота присоединяется к рибосоме. Во время элонгации происходит рост полипептидной цепи. На стадии терминации рибосома отделяется от мРНК и процес трансляции заканчивается. У прокариот и эукариот процессы трансляции схожи, но имеются и существенные различия.
Трансляция происходит в цитоплазме, где находятся рибосомы. В зависимости от дальнейшего преднозначения синтезируемых белков, они могут образовываться либо в цитозоле, либо на поверхности шероховатого эндоплазматического ретикулума.
Полипептидные цепи синтезируются однонаправленно: с амино-конца к карбокси-концу.
При инициации первая и вторая молекулы аминоацил-тРНК спариваются с первыми двумя кодонами мРНК. Далее трансляция продолжается в направлении 5'>3' кодон за кодоном до тех пор, пока не достигнет стоп-сигнала, расположенного сразу же за кодоном, детерминирующим С-концевую аминокислоту.
Модификация белков. Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген основной белковый компонент соединительной ткани. Реакции модификации белков не являются реакциями матричного типа. Такие биохимические реакции называются ступенчатыми.
Вопрос 46
Экспрессия генов это процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционный модификаций белков.
Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.
На сегодняшний день известно более двухсот вариантов посттрансляционной модификации белков. Посттрансляционные модификации оказывают различные эффекты на белки: регулируют продолжительность их существования в клетке, ферментативную активность, взаимодействия с другими белками.
Конститутивные гены это гены с постоянной экспрессией, они постоянно включены, то есть функционируют на всех стадиях онтогенеза и во всех тканях. К конститутивным относятся гены, кодирующие тРНК, рРНК, ДНК-полимеразы, РНК-полимеразы, белки-гистоны, белки рибосом и т.д. Иначе говоря, это «гены домашнего хозяйства», без которых клетки не могут существовать. Ренулируемые гены это гены с регулируемой экспрессией, они могут включаться и выключаться. У многоклеточных организмов индуцибельные гены их называют тканеспецифичными, потому что они по-разному функционируют в разных тканях на разных этапах онтогенеза. Регуляция активности генов осуществляется и на уровне транскрипции, и на уровне трансляции. Включение генов называется индукцией, а выключение репрессией.
Современная теория регуляции экспрессии генов у прокариот была предложена французскими исследователями Ф.Жакобом и Ж.Моно, которые исследовали биосинтез у E.сoli ферментов, метаболизирующих лактозу (β- галактозидазы, β-галактозидпермеазы и β-галактозидтрансацетилазы). Обнаружено, что при культивировании E.сoli на глюкозе содержание ферментов, метаболизирующих лактозу, минимально, но при замене глюкозы на лактозу происходит взрывоподобное усиление синтеза ферментов, разщепляющих лактозу на глюкозу и галактозу, и обеспечивают последующий метаболизм последних.
У бактерий существуют ферменты 3-х типов: а) конститутивные, которые присутствуют в клетках в постоянных количествах, независимо от их метаболического состояния; б) индуцибельные их количество в клетках при обычных условиях незначительно, но может увеличиваться в сотни и тысячи раз, если в культуральную среду добавлять субстраты этих ферментов; в) репрессабельные ферменты, синтез которых в клетке прекращается при добавлении в среду конечных продуктов тех метаболических путей, где функционируют эти ферменты. На основании этих фактов и была сформулирована теория оперона.
Оперон это комплекс генетических элементов, отвечающих за координированный синтез ферментов, которые катализируют ряд последовательных реакций. В состав лактозного оперона E.сoli (Lac-оперон) входят: 1 структурные гены, которые кодируют первичную структуру ферментов, катализирующих последовательные реакции метаболизма лактозы 2. контрольные (регуляторные) сайты оперона, которые содержат промотор, оператор и терминатор. Промотор - это участок ДНК, с которым взаимодействует РНК-полимераза, а промотор Lac-оперона дополнительно содержит участок, с которым взаимодействует белок-активатор, контролирующий связывание РНК- полимеразы с промотором. Оператор - это участок ДНК, с которым специфически связывается белок-репрессор. Оператор непосредственно прилегает к структурным генам и связывание белка-репрессора с оператором противодействует считыванию РНК-полимеразой информации со структурных генов. Терминатор это последовательность ДНК, которая распознается РНК- полмеразой как сигнал к прекращению транскрипции.Для функционирования оперона еще необходимо существование регуляторного гена, который экспрессирует регуляторный белок-репрессор. Этот ген структурно не связан с опероном и может находиться на значительном расстоянии от него.
1.Репрессия Lac- оперона. Синтез ферментов метаболиз- ма лактозы в клетках E.сoli заблокирован, поскольку связанный с оператором белок- репрессор противо- действует транскрип- ции генов этих ферментов. Среда содержит достаточ- ные количества глюкозы.
2.Индукция Lac- оперона. При снижении в среде уровня глюкозы и появлении лактозы гены, кодирующие ферменты обмена лактозы, разблокируются. Лактоза связывается с белком-репрессором и изменяет его конформацию. Репрессор теряет сродство к оператору и покидает его. Начинается транскрипцию генов метаболизма лактозы и синтез молекул этих ферментов. То есть лактоза выполняет функцию индуктора синтеза ферментов, которые катализируют ее собственный обмен.
3.Существует еще один вариант индукции Lac-оперона, благодаря существованию белка активатора катаболических генов. Этот белок после присоединения цАМФ стимулирует транскрипцию структурных генов, а уровень цАМФ возрастает в ответ на дефицит глюкозы.
Метаболический принцип регуляции активности оперона; сродство белка- репрессора к оператору контролируется метаболитами цепи реакций, ферменты которой кодируются этим опероном.
Различают индуцибельные опероны, активатор которых - исходный субстрат метаболического пути. При отсутствии субстрата белок-супрессор блокирует оператор и не дает РНК-полимеразе транскрибировать структурные гены. При появлении субстрата определенное его количество связывается с белком- репрессором, тот теряет сродство к оператору и покидает его. Это приводит к разблокированию транскрипции структурных генов. Репресабельные опероны для них регулятором служит конечный метаболит. В его отсутствии белок- репрессор имеет низкое сродство к оператору и не мешает считыванию структурных генов (ген включен). При накоплении конечного метаболита, определенное его количество связывается с белком-репрессором, который приобретает повышенное сродство к оператору и блокирует транскрипцию генов.
Вопрос 47
Транскриптон. Генная регуляция эукариот.
Вопрос 48
Позитивный и негативный конроль.Индукция и репрессия.
Репрессия (repression)-Один из двух альтернативных (наряду с индукцией) механизмов регуляции действия генов, заключающийся в подавлении транскрипции или трансляции путем связывания белка-репрессора (кодируемого геном-регулятором) с оператором в ДНК либо специфическим участком мРНК.
Кратко:В зависимости от характера взаимодействия оператора и регуляторного белка различают два типа регуляции активности генов в опероне: негативную и позитивную. При негативной, или отрицательной, регуляции связывание регуляторного белка с оператором репрессирует работу оперона, а при позитивной -наоборот, активирует его . В свою очередь негативной и позитивной могут быть как индукция, так и репрессия. В случае негативной индукции индуктор делает регуляторный белок неспособным связываться с оператором, и при этом структурные гены транскрибируются как, например, в лактозном опероне. При негативной же репрессии регуляторный белок приобретает свойства репрессора после взаимодействия с корепрессором. Таким корепрессором в триптофановом опероне служит накопленный в клетке триптофан, взаимодействие его с регуляторный белком приводит к подавлению транскрипции. При позитивной, или положительной, индукции под влиянием индуктора регуляторный белок (апоиндуктор) связывается с оператором и помогает РНК-полимеразе начать транскрипцию. В случае же позитивной репрессии корепрессор инактивирует апоиндуктор и тем самым способствует прекращению транскрипции.
сли кому надо 52 вопрос Подробно:Общую теорию регуляции синтеза белка разработали Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию для синтеза специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизм регуляции синтеза белка вероятно более сложный. У бактерий доказана индукция ферментов (т. е. синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления индукция и репрессия взаимосвязаны.
Согласно теории Жакоба и Моно в биосинтезе белка у бактерий участвуют по крайней мере три типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано выше, служит матрицей для биосинтеза белка.
Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-оператором. Он служит как бы пусковым механизмом для функционирования структурных генов. Ген-оператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т. е. формирование мРНК, начинается с промотора участка ДНК, являющегося точкой инициации для синтеза мРНК, и далее распространяется последовательно вдоль оператора и струк¬турных генов. Координированный одним оператором одиночный ген или группа структурных генов образует оперон.
В свою очередь деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регулятора. Поскольку структурные гены и ген-регулятор находятся в разных участках цепи ДНК, связь между ними, как предполагают Ф. Жакоб и Ж. Моно, осуществляется при помощи вещества-посредника, оказавшегося белком и названного репрессором. Образование репрессора происходит в рибосомах ядра на матрице специфической мРНК, синтезированной на гене-регуляторе. Репрессор имеет сродство к гену-оператору и обратимо соединяется с ним в комплекс. Образование такого комплекса приводит к блокированию синтеза мРНК и, следовательно, синтеза белка, т.е. функция гена-регулятора состоит, в том, чтобы через белок-репрессор прекращать деятельность структурных генов, синтезирующих мРНК. Репрессор, кроме того, обладает способностью строго специфически связываться с определенными низкомолекулярными веществами, называемыми индукторами, или эффекторами. Когда такой индуктор соединяется с репрессором, последний теряет способность связываться с геном-оператором, который таким образом выходит из-под контроля гена-регулятора, и начинается синтез мРНК.
Это типичный пример отрицательной формы контроля, когда индуктор, соединяясь с белком-репрессором, вызывает изменения его третичной структуры настолько, что репрессор теряет способность связываться с геном-оператором. Этот процесс аналогичен взаимоотношениям аллостерического центра фермента с эффектором, под влиянием которого изменяется третичная структура фермента и он теряет способность связываться со своим субстратом.
Вопрос 49
Физические карты.Виды.Способы построения.Разрешающая способность.
Физическая карта графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов. Разрешение от 2Мб до 100 кб. База- 1 пара нуклеотидов.
В 60-е годы цитогенетики использовали методы окрашивания хромосом для выявления так называемых бэндов (поперечных полосок) на хромосомах. В 70-х годах научились разрезать ДНК на участки ферментами, узнающими коротенькие отрезки, в которых информация записана в виде палиндромов (перевертышей), читаемых одинаково в обоих направлениях: с начала до конца и с конца до начала. Эти ферменты были названы рестрикционными. С их помощью построили так называемые рестрикционные физические карты.
Виды физических карт:
1) Рестрикционная карта вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4-6 п.н.). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.Различают 2 стратегии построения: 1)стратегия «Сверху вниз» - ДНК расщепляется рестриктазами, затем для каждого из фрагмнтов ДНК строится рестрикционная карта.2)стратегия «снизу вверх» - расщепление на мелкие фрагменты, которые после идентификации объединяются в контиги(клонотека последовательностей), по которым составляются рестрикционные карты.
Для построения рестрикционной карты используют гибридизацию по методу Е. Саузерна.
1. Рестрикция эндонуклеазами рестрикции для разрезания высокомолекулярной ДНК на более мелкие фрагменты.
2. Фрагменты ДНК подвергаются электрофорезу в агарозном геле для разделения по длине.
3. В случае, если некоторые фрагменты ДНК длиннее 15 кб, перед переносом гель обрабатывают, например, соляной кислотой, которая вызывает депуринизацию ДНК и облегчает перенос на мембрану.
4. В случае, когда используют щелочной метод переноса, агарозный гель помещают в щелочной раствор, при этом двойная спираль ДНК денатурирует и облегчает связывание отрицательно заряженной ДНК с положительно заряженной мембраной для дальнейшей гибридизации. При этом разрушаются и остатки РНК.
5. Листок нитроцеллюлозной (или нейлоновой) мембраны помещают сверху или снизу от агарозного геля. Давление осуществляют непосредственно на гель или через несколько слоев бумаги. Для успешного переноса необходим плотный контакт геля и мембраны. Буфер переносится капиллярными силами из участка с высоким содержанием воды в зону с низким содержанием воды (мембрана). При этом осуществляется перенос ДНК из геля на мембрану. Полианионная ДНК связывается с положительно заряженной мембраной силами ионообменных взаимодействий.
6. Для окончательного закрепления ДНК на мембране, последняя нагревается в вакууме до температуры 80 °C в течение двух часов или освещается ультрафиолетовым излучением (в случае нейлоновых мембран).
7. Осуществляют гибридизацию радиоактивно (флюоресцентно) меченной пробы с известной последовательностью ДНК с мембраной.
8. После гибридизации избыток пробы отмывают с мембраны и визуализируют продукты гибридизации путем авторадиографии (в случае радиоактивной пробы) или оценивают окраску мембраны (в случае использования хромогенного окрашивания).
2) Химические карты расположение по длине хромосомы А-Т и Г-Ц пар неклеотидных оснований, которые выявляются с помощью химического анализа. 3)Секвенсовые карты. Секвенирование биополимеров (белков и нуклеиновых кислот ДНК и РНК) определение их первичной аминокислотной или нуклеотидной последовательности. В результате секвенирования получают формальное описание первичной структуры линейной макромолекулы в виде последовательности мономеров в текстовом виде. Размеры секвенируемых участков ДНК обычно не превышают 100 пар нуклеотидов и 1000 пар нуклеотидов при секвенировании по Сенгеру.
Секвенирование ДНК по Сэнгеру: метод "терминаторов"
Дезоксинуклеотидный метод, или метод «обрыва цепи»(метод терминирующих аналогов трифосфатов), был разработан Ф. Сенгером в 1977 году и в настоящее время широко используется для определения нуклеотидной последовательности ДНК. Более мощный и более технологичный, этот способ, несколько модифицированный, применяется до сих пор. В основе метода тоже лежало ферментативное копирование с помощью фрагмента Кленова ДНК полимеразы I из E.coli. В качестве праймеров использовали синтетические олигонуклеотиды. Специфическую терминацию синтеза обеспечивали добавлением в реакционную смесь помимо четырех типов dNTP (один из которых был радиоактивно мечен по альфа положению фосфата) еще и одного из 2',3'-дидезоксинуклеозидтрифосфатов (ddATP, ddTTP, ddCTP или ddGTP), который способен включаться в растущую цепь ДНК, но не способен обеспечивать дальнейшее копирование из-за отсутствия 3'-ОН группы. Отношение концентраций dNTP/ddNTP авторы подбирали экспериментально, так, чтобы в итоге получить набор копий ДНК различной длины. Таким образом, для определения первичной структуры исследуемого фрагмента ДНК требовалось провести четыре реакции копирования: по одному типу терминаторов в каждой из реакций. После этого полученные продукты разгонялись в полиакриламидном геле на соседних дорожках и по расположению полос определялась последовательность нуклеотидов.
Секвенирование ДНК по Максаму и Гилберту : метод химической деградации
В 1976 г. А. Максамом и У. Гилбертом был разработан метод секвенирования, основанный на специфической химической деградации фрагмента ДНК, радиоактивно меченного с одного конца. Препарат меченной ДНК разделяли на четыре аликвоты и каждую обрабатывали реагентом, модифицирующим одно или два из четырех оснований. А. Максам и У. Гилберт предложили модифицировать пуриновые основания диметилсульфатом. При этом происходит метилирование адениновых остатков по азоту в положении 3, а гуаниновых - по азоту в положении 7. Обработка образца ДНК соляной кислотой при 0°С приводит к выщеплению метиладенина. Последующая инкубация при температуре 90°С в щелочной среде вызывает разрыв сахарно-фосфатной цепи ДНК в местах выщепления оснований. Обработка пиперидином приводит к гидролизу образца по остаткам метилгуанина. Пиримидиновые основания модифицируют гидразином. Если реакцию вести в бессолевой среде, то модифицируются как цитозин, так и тимидин; если обработку вести в присутствии 2М NaCl, то модифицируется лишь цитозин. Расщепление цепи ДНК на фрагменты и в этом случае осуществляется пиперидином. Условия реакций авторы подбирали таким образом, чтобы в итоге получить полный набор субфрагментов разной длины. Последующий электрофорез в полиакриламидном геле позволяет восстановить полную структуру исследуемого фрагмента.
Вопрос 50
Методы ДНК-диагностики
ДНК-диагностика - это группа методов, которые основаны на выявлении ДНК возбудителя в забранном у пациента материале.
Методы ДНК-диагностики включают в себя такие методы, как ПЦР (полимеразная цепная реакция) и ЛЦР (лигазная цепная реакция). Для исследования методом ПЦР может быть забран практически любой материал. На анализ берут по особой методике соскоб из мочеиспускательного канала, влагалища и шейки матки. Также материалом для ПЦР могут служить кровь, моча, мокрота и т. п.
В ходе различных манипуляций, ДНК инфекции (если она присутствует в забранном материале) многократно удваивается, пока количество ДНК не станет равным 10 8 10 12 штук. Это количество ДНК становится заметным для оборудования, которое проводит диагностику. Таким образом, ПЦР позволяет обнаружить даже одного возбудителя, даже часть возбудителя в пробирке: если хоть один кусочек ДНК вредоносной инфекции есть, он будет «размножен».
Разновидности методов ДНК-диагностики.
В гуманной медицине используют прямые и косвенные методы ДНК-диагностики.
При прямой диагностике обнаруживают мутации клонированного гена, когда известна его экзон-интронная организация или нуклеотидная последовательность полноразмерной комплементарной ДНК.
Используя прямые методы ДНК-диагностики обнаруживают мутации, изменяющие длину разрезанных фрагментов ДНК, которые выявляют электрофарезом на каком-то из указанных выше геле.
Если мутации известны, то их выявляют с помощью ферментов-рестриктаз, которые распознают строго определённые нуклеиновые последовательности.
Использование ферментов бактериального происхождения рестриктаз позволяет разрезать двойную нить ДНК в определённых последовательностях из 4-8 нуклеотидов. Разрезанные участки мутантной ДНК, отличающиеся по длине от нормальных участков. Разница в размерах мутагенных и нормальных участков ДНК выявляется методом электрофареза на агарозном или полиакриламидном геле.
Для выявления точечных мутаций используют аллельспецифическую полимеразную цепную реакцию, позволяющую многократно увеличивать уникальную последовательность ДНК с последующим выявлением мутации.
Косвенные методы ДНК-диагностики применяются в тех случаях, когда при наследственных заболеваниях ген не клонирован или заболевания сопровождается повреждением различных генов, либо молекулярная организация гена не позволяет использовать прямые методы.
Косвенная ДНК-диагностика в основном сводится к анализу полиморфных генетических маркеров. Такими маркерами могут быть участки ДНК, существующие в популяции в нескольких аллельных вариантах (по составу нуклеотодов, числу нуклеотидных поворотов). На основании изменчивости состава маркеровых участков ДНК дифференцируют материнское или отцовское происхождение конкретного варианта маркера, сцепленного с геном болезни (маркер и ген близко располагаются друг к другу).
При проведении косвенных методов ДНК-диагностики исследованных болезней осуществляют те же этапы подготовительных операций, что и при осуществлении прямых методов ДНК-диагностики. Методами ДНК-диагностики широко пользуются в зоотехнической практике.
Вопрос 51
Генотерапия совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций.
Ретровирусные векторные системы. Ретровирусы относятся к группе вирусов, РНК-геном которых в инфицированных клетках конвертируется в ДНК. Геном ретровирусов включает три структурных гена, обозначенные как gag, pol и env, фланки- рованых элементами, названными длинными терминальными повторами (LTR, viral long terminal repeat). В LTR содержатся регуляторные элементы, выполняющие важные функции в жизненном цикле ретровируса. Эти повторы необходимы для интеграции ДНК копии генома вируса с геномом хозяина. Они определяют, где начало и где конец вирусного генома. LTR также служат энхансер-промоторными последовательностями, т.е. они контролируют экспрессию генов вируса. Большой геном ретровирусов облегчает генетические манипуляции.
После инфицирования клетки-мишени копия ретровирусной ДНК интегрируется с ее геномом строго определенным образом. Практически все инфицированные клетки способны экс- прессировать гены, привнесенные вирусом. Мощные транскрипционные энхансеры существенно повышают уровень экспрессии генов, клонированных в клетках различных типов. С их помощью можно переместить до 8 т.п.о., что в большинстве случаев более чем достаточно для синтеза крупномолекулярных белков. Весьма удобным для исследователя является то обстоятельство, что ретровирусные векторы можно размножать, достигая их высокой концентрации в небольшом объёме - более 109 вирусных частиц/см3. В опытах по инфицированию ретровирусами мозга, печени, мышц, глаз или клеток панкреатических островков грызунов показана устойчивая экспрессия трансгенов в течение более 6 мес. [9]. Ранние этапы жизненного цикла ретровирусов и векторов на их основе показаны на рис. 1.
Векторы на основе ретровирусов с самого начала их разработки предназначались для введения через неповрежденные клетки за счет механизмов слияния, обеспечиваемых поверхностными белками оболочки вируса. Чувствительность дыхательного эпителия к ретровирусным инфекциям подразумевает возможность ингаляционного пути введения в организм человека векторных конструкций на основе ретровирусов.
Вопрос 52
Изменчивость универсальное свойство живого изменять свои признаки под действием среды.
Различают изменчивость наследственную и ненаследственную. Под наследственной изменчивостью понимают способность к изменениям самого генетического материала, а под ненаследственной - способность организмов реагировать на условия окружающей среды, изменяться в пределах нормы реакции, заданной генотипом.
Наследственную изменчивость в свою очередь подразделяют на комбинативную и мутационную. Комбинативная изменчивость представляет собой результат перекомбинации генов и перекомбинации хромосом, несущих различные аллели, и выражается в появлении разнообразия организмов - потомков, получивших новые комбинации дискретных единиц генетического материала, уже существовавших у родительских форм. Мутационная изменчивость изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации.
Принято также выделять онтогенетическую изменчивость. Онтогенетическая изменчивость - это реализация нормы реакции организма во времени, в ходе его индивидуального развития. По этому критерию она относится к ненаследственной изменчивости. Существует ряд факторов, несомненно указывающих и на изменения самого генетического материала в ходе онтогенеза, что приближает онтогенетическую изменчивость к наследственной.
Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных) может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Причины:
1) модификационная изменчивость (воздействие условий окружающей среды)
2) комбинативная изменчивость (воздействие других генов генотипа).
Экспрессивность степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.
Пенетрантность вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.
Норма реакции.
Предел проявления модификационной изменчивости организма при неизменном генотипе норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы интенсивность окраски большинства животных и многие другие качественные признаки.
Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.
Классификация изменчивости.
Комбинативная изменчивость представояет собой изменения генотипа потомков в результате перекомбинации родительских генов.
Механизмы комбинативной изменчивости:
1) независимое расхождение хромосом в анафазу І мейоза.
2) Кроссенговер
3) Случайное слияние гамет
4) Случайный подбор родительских пар
Вопрос 53
Генные мутации-это качественное (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Гуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.
Классификация мутаций.
Мутации бывают геномные , хромосомные и генные .
При геномных мутациях у организма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2n обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией , происходит образование полиплоидных организмов, геном которых представлен 4n, 6n и т.д. хромосомами. Различают аллополиплоидию , в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию , для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2n.
При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельны
Вопрос 54
классификация и примеры мутагенов
Вопрос 55
антимутационные механизмы
Вопрос 56
репрация днк
Вопрос 57
Клеточная медицина и клеточные технологии.
Будущее медицины сегодня напрямую связывают с развитием клеточных технологий. Эта технология позволяет, не меняя поврежденный орган, "обновлять" его клеточный состав. Такое "обновление" структурно-функциональных элементом органа, позволяет решать те же задачи, что и органная трансплантация. Вместе с тем, эта технология намного расширяет возможности трансплантационного лечения, делая его доступным для широкого круга разных категорий пациентов. Основой для развития клеточных технологии являются стволовые клетки, способные в зависимости от микроокружения превращаться в клетки разных органов и тканей. Одна такая клетка может дать множество функционально активных потомков. В настоящее время в мире активно разрабатываются подходы к наращиванию стволовых клеток, а также интенсивно исследуются возможности их генетической модификации. Список болезней, при лечении которых клеточные технологии уже используются или их применение планируется в ближайшем будущем, быстро растет. В этот список, по-видимому, войдут все болезни, медикоментозное лечение которых малоэффективно. Обогащенным источником стволовых клеток являются фетальные ткани. Относительно высоко содержание этих клеток в пуповинной крови. Будучи трансплантированными, аллогенные стволовые клетки способны приживляться и дифференцироваться в зависимости от микроокружения. Эти клетки способны значительно повысить адаптивные возможности организма за счет усиления процессов физиологической и репаративной клеточной регенерации (Сухих Г.Т., 1998). При соблюдении определенных условий аллогенная клеточная трансплантация может не вызывать иммунных реакций, направленных на отторжение донорских клеток. Это подразумевает возможность применения трансплантационных клеточных технологий без использования иммуносупрессорной терапии. Представляется важной с медицинской точки зрения способность низкодифференцированных клеток тормозить, а в некоторых случаях реверсировать развитие грубоволокнистой соединительной ткани. Такое торможение создает важные дополнительные предпосылки для эффективного восполнения клеточных потерь организма новыми функционально-полноценными клетками (Favcett J.W., 1998; Моисеев и соавт., 1998)
Трансплантация низкодифференцированных клеток незрелой кроветворной ткани во взрослый организм может способствовать восстановлению кровотока в ишеминизированных органах и тканях. Этот эффект объясняется наличием в этой ткани незрелых предшественников эндотелиальных клеток, способных генерировать рост новых кроветворных сосудов (Murohara et al.,2000; Fuch et al., 2001) . В неврологии трансплантационная клеточная технология была впервые применена при лечении болезни Паркинсона (Lindvall et al., 1994). Весьма обнадеживающие результаты применения клеточной технологии получены при лечении болезни Хагинтона (Dunnett et al ., 1997). Значительный опыт в лечении травматических поражений головного и спинного мозга накоплен в Новосибирском центре иммунотерапии и клеточной трансплантации.
Предметом исследования и клинического применения является противоопухолевая активность низкодифференцированных кроветворных клеток. Важным компонентом этой активности является способность этих клеток прямо супрессировать опухолевый рост (Seledtsov et al., 1995; 1997).
Имеются данные об антиатеросклеротической активности низкодифференцированных клеток. Одно из проявлений этой активности - снижение сывороточного уровня атерогенных липопротеинов (Рунович и соавт., 2000). Результатом трансплантации низкодифференцированных клеток, полученных из донорской незрелой кроветворной ткани является значительное повышение регенераторных и адаптивных возможностей организма. Вызываемое этими клетками "обновление" организма, по-видимому, может препятствовать развитию процессов, ведущих к старению организма (Сухих Г.Т., 1998). Отсюда перспективность и целесообразность использования клеточных технологий в лечении целого ряда заболеваний, обусловленных старением организма.
Вопрос 58
Генные болезни это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена
Большинство генных патологий обусловлено мутациями в структурных генах
мутации могут возникать на этапах редупликации днк рекомбинции днк и репарации днк
частота мутации увеличивается под влиянием мутагенов
химические мутагены вещества, вызывающие мутации,
физические мутагены ионизирующие излучения, в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,
биологические мутагены например, ретровирусы, ретротранспозоны.
по классификации генный болезней
болезни аминокислотного обмена - Фенилкетонория - неусвоение фенилаланина
углеводного обмена - гликогеновая болезнь - нарушение синтеза/распада гликогена
липидный обмен- болезнь Гоше накопление сложных липидов в нервной ткани
пуриновый обмен пиримидиновый обмен - подагра снижение выведения солей мочевой кислоты
обмена соединительной ткани - болезнь морфана (ака арахнодактилия) нарушение синтеза гликопротеина(фибрилин1)
циркулирующих белков -гемаглобинпатия -нарушение синтеза гемоглобина
Вопрос 59
генные болезни
Вопрос 60
Оперон функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов.
Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.
Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).
Характерным примером оперонной организации генома прокариот является лактозный оперон, триптофановый, пиримидиновый и bgl опероны у Escherichia coli
Начинается и заканчивается оперон регуляторными областями промотором в начале и терминатором в конце, кроме этого, каждый отдельный цистрон может иметь в своей структуре собственный промотор и/или терминатор.
Вопрос 61
Гомеостаз
1. К. Бернар.
Впервые гомеостатические процессы в организме как процессы, обеспечивающие постоянство его внутренней среды, рассмотрел французский естествоиспытатель и физиолог К. Бернар в середине XIX в.
В становлении учения о гомеостазе ведущую роль сыграла идея К.Бернара о том, что для живого организма существуют «собственно, две среды: одна среда внешняя, в которой помещен организм, другая среда внутренняя, в которой живут элементы тканей». В 1878 г. ученый формулирует концепцию о постоянстве состава и свойств внутренней среды. Ключевой идеей этой концепции стала мысль о том, что внутреннюю среду составляет не только кровь, но и все плазматические и бластоматические жидкости, которые из нее происходят.
К внутренней среде относятся только жидкие составляющие организма, которые омывают все элементы тканей, т.е. плазма крови, лимфа и тканевая жидкость. Атрибутом внутренней среды К. Бернар считал то, что она находится «в непосредственном соприкосновении с анатомическими элементами живого существа». Он отмечал, что, изучая физиологические свойства этих элементов, необходимо рассматривать условия их проявления и их зависимость от окружающей среды.
Ученый справедливо считал, что проявления жизни обусловлены конфликтом между существующими силами организма (конституцией) и влиянием внешней среды. Жизненный конфликт в организме проявляется в виде двух противоположных и диалектически связанных феноменов: синтеза и распада. В результате этих процессов организм приспосабливается, или адаптируется, к условиям среды.
Таким образом, К.Бернар еще во второй половине XIX столетия дал правильное научное определение внутренней среды организма, выделил ее элементы, описал состав, свойства, эволюционное происхождение и подчеркнул ее значение в обеспечении жизнедеятельности организма.
2. У. Кеннон.
В отличие от К. Бернара, выводы которого базировались на широких биологических обобщениях, У. Кеннон пришел к заключению о значении постоянства внутренней среды организма другим методом: на основе экспериментальных физиологических исследований.
Термин гомеостаз образован из двух греческих слов: homoios подобный, сходный и stasis стояние, неподвижность. В толковании этого термина У. Кеннон подчеркивал, что слово stasis подразумевает не только устойчивое состояние, но и условие, ведущее к этому явлению, а слово homoios указывает на сходство и подобие явлений.
Понятие гомеостаза, по мнению У. Кеннона, включает в себя и физиологические механизмы, обеспечивающие устойчивость живых существ. Эта особая устойчивость не характеризуется стабильностью процессов, наоборот, они динамичны и постоянно меняются, однако в условиях «нормы» колебания физиологических показателей довольно жестко ограничены.
Для биологических наук в понимании гомеостаза по У.Кеннону ценно то, что живые организмы рассматриваются как открытые системы, имеющие множество связей с окружающей средой. Эти связи осуществляются через посредство органов дыхания и пищеварения, поверхностных рецепторов, нервной и мышечной систем и др. Изменения в окружающей среде прямо или опосредованно воздействуют на указанные системы, вызывая в них соответствующие изменения. Однако эти воздействия обычно не сопровождаются большими отклонениями от нормы и не вызывают серьезных нарушений в физиологических процессах.
3. Понятие гомеостаза
Гомеостаз состояние относительного динамического равновесия системы, поддерживаемого за счет механизмов саморегуляции. Это определение не только включает в себя знания об относительности постоянства внутренней среды, но и демонстрирует значение гомеостатических механизмов биологических систем, обеспечивающих это постоянство.
К жизненным функциям организма относят гомеостатические механизмы самого различного характера и действия: нервные, гуморально-гормональные, барьерные, контролирующие и осуществляющие постоянство внутренней среды и действующие на разных уровнях.
Вопрос 62
Регенера́ция (восстановление) способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток).
Физиологическая регенерация
В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.
Репаративная регенерация
Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.
При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.
При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.
У человека хорошо регенерирует эпидермис, к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань (кости срастаются после переломов). С утратой части печени (до 75 %) оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. При определённых условиях могут регенерировать кончики пальцев[1]. В связи с обнаружением на регенерирующих тканях слабых электрических напряжений можно предположить, что слабые электрофорезные токи ускоряют регенерацию