У вас вопросы?
У нас ответы:) SamZan.net

1 Матрицей называется прямоугольная таблица чисел

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025

1 вопрос

Определение 1.1Матрицей называется прямоугольная таблица чисел.

Обозначения: А — матрица,  - элемент матрицы,  номер строки, в которой стоит данный элемент,  номер соответствующего столбца; m — число строк матрицы, n — число ее столбцов.

Определение 1.2. Числа m и n называются размерностями матрицы.

Определение 1.3. Матрица называется квадратной, если m = n. Число n в этом случае называют порядком квадратной матрицы.

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

.

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

Примеры.

1. 2.

Определение 1.5Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

Замечание. Для того, чтобы легче запомнить эту формулу, можно использовать так называемое правило треугольников. Оно заключается в следующем: элементы, произведения которых входят в определитель со знаком «+», располагаются так:

 образуя два треугольника, симметричных относительно главной диагонали. Элементы, произведения которых входят в определитель со знаком «-», располагаются аналогичным образом относительно побочной диагонали:

Примеры.

1.

2.

Определение1. 6Транспонированием матрицы называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования. В результате получается матрица А`, называемаятранспонированной по отношению к матрице А, элементы которой связаны с элементами А соотношением a`ij = aji .

Основные свойства определителей.

Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).

Свойство 1. Определитель не изменяется при транспонировании, т.е.

Доказательство.

=

Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.

Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.

  .

Доказательство.

   

Свойство 3. Определитель, имеющий нулевую строку, равен 0.

Доказательство этого свойства следует из свойства 2 при k = 0.

Свойство 4. Определитель, имеющий две равные строки, равен 0.

Доказательство.

Свойство 5. Определитель, две строки которого пропорциональны, равен 0.

Доказательство следует из свойств 2 и 4.

Свойство 6. При перестановке двух строк определителя он умножается на —1.

Доказательство.

Свойство 7.

Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.

Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Доказательство следует из свойств 7 и 5.

Разложение определителя по строке.

Определение1. 7Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для  

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка — так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1. Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

 где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Тогда

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель  с помощью разложения по первому столбцу. Заметим, что  при этом искать не требуется, так как следовательно, и  Найдем  и  Следовательно,

=

Определители более высоких порядков.

Определение1. 9. Определитель n-го порядка

есть сумма n! членов  каждый из которых соответствует одному из n! упорядоченных множеств  полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка  с помощью разложения по 2-му столбцу. Для этого найдем  и :

 Следовательно,

Лекция 2. Системы линейных уравнений. Метод Гаусса. Правило Крамера.

Определение 2.1Линейными операциями над какими-либо объектами называются их сложение и умножение на число.

Определение 2.2. Линейной комбинацией переменных называется результат применения к ним линейных операций, т.е.  где числа, переменные.

Определение 2.3. Линейным уравнением называется уравнение вида

(2.1)

 где  и b — числа, - неизвестные.

Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой — число.

Определение 2.4. Линейное уравнение называется однородным, если b = 0. В противном случае уравнение называется неоднородным.

Определение 2.5Системой линейных уравнений (линейной системой) называется система вида

(2.2)

где , - числа, - неизвестные, n — число неизвестных, m — число уравнений.

Определение 2.6. Решением линейной системы (2.2) называется набор чисел

 которые при подстановке вместо неизвестных обращают каждое уравнение системы в верное равенство.

Метод Гаусса решения линейных систем.

Замечание. Линейная система (2.2) может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

Примеры:

1. . Единственным решением является пара чисел х = 1, у = 2.

2. . Решением этой системы будут любые два числа х и у, удовлетворяющие условию у = 3 — х. Например, х=1, у=2; х=0, у=3 и т. д.

3.. Очевидно, что эта система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

Условия существования и количества решений линейной системы будут изучены в дальнейшем, а пока рассмотрим способы нахождения единственного решения системы,

в которой число уравнений равно числу неизвестных: (2.3)

Операции над матрицами, их свойства, ранг матрицы

Определение. Матрицей размера mn, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

Основные действия над матрицами.

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.

Определение.  Матрица вида:

= E,называется единичной матрицей

Определение. Если amn = anm , то матрица называется симметрической.

Пример.    - симметрическая матрица

Определение. Квадратная матрица вида называется диагональной матрицей.

 Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

cij = aij  bij

С = А + В = В + А.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к  умножению (делению) каждого элемента матрицы на это число.

Операция умножения матриц.

 

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

AB = C;

 Свойства операции умножения матриц.

1)Умножение матриц не коммутативно, т.е. АВ  ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения  А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа  верно соотношение:

(AB) = (A)B = A(B).

5) Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство:

(АВ)Т = ВТАТ, где индексом Т обозначается транспонированная матрица.

6) Заметим также, что для любых квадратных матриц det (AB) = detAdetB.

Понятие det (определитель, детерминант) будет  рассмотрено ниже.

 Определение. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

Определение. Дополнительный минор произвольного элемента квадратной матрицы aij  равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.

 

Свойство 3.  Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

 

Свойство 4. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Определение: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

 

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

 Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

 

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Определение. Элементарными преобразованиями матрицы назовем следующие преобразования:

1) умножение строки на число, отличное от нуля;

2) прибавление к элемнтам одной строки элементов другой строки;

3) перестановка строк;

4) вычеркивание (удаление) одной из одинаковых строк (столбцов);

5) транспонирование;

Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы

Определение. Алгебраическим дополнением минора матрицы называется  его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.

Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.

Базисный минор матрицы. Ранг матрицы.

Как было сказано выше, минором матрицы порядка s называется определитель матрицы, образованной из элементов исходной матрицы, находящихся на пересечении каких - либо выбранных s строк и s столбцов.

Определение.  В матрице порядка mn минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.

Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.

В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.

Определение. Порядок базисного минора матрицы называется рангом матрицы и обозначается Rg А.

Очень важным свойством элементарных преобразований  матриц является то, что они не изменяют ранг матрицы.

Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.

 Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные.

Теорема. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.

2 Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

Определение. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию: XA = AX = E, где Е - единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратной к матрице А и обозначается А-1. Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

3 СЛАУ, их исследование и решение (метод Крамера, матричный метод, метод Гаусса,   теорема Кронекера-Капелли).

Метод Крамера.

(Габриель Крамер (1704-1752) швейцарский математик)

Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

Для этого необходимо, чтобы определитель матрицы системы не равнялся 0.

det A  0;

Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку. Определитель в этом случае будет равен нулю.

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:xi = i/, где  = det A,  а i – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:   ,                                    

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной. Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

Теорема Кронекера – Капелли.(условие совместности системы)

(Леопольд Кронекер (1823-1891) немецкий математик)

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

Очевидно, что система (1) может быть записана в виде:

x1 + x2 + … + xn 

Метод Гаусса.

(Карл Фридрих Гаусс (1777-1855) немецкий математик)

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и




1. умножение на число- произведение вектора А на число наз
2. рефератов для гр. Т41 и У41 Инфраструктура предприятий
3. ПСИХОЛОГИЯ СЕМЕЙНЫХ ОТНОШЕНИЙДИАГНОСТИКА КОРРЕКЦИЯ МОСКВ
4. технічного прогресу
5. Аудиторські докази та робочі документи аудитора
6. реферат дисертації на здобуття наукового ступеня кандидата медичних наук Харків ~ 2001 Д
7. стимулирование инвестирования в Россию капиталов находящихся за рубежом.html
8. Красноярский государственный медицинский университет им
9. Развитие новых жанров искусства как технической революции
10. строка которой можно манипулировать средствами языка str
11. Информация
12. Реферат - Использование аэрофото - и космической информации в гидрологических исследованиях
13. Реферат- Поводження й переконання
14. ДЕНЬ ЗЕМЛИ Педагогически задачи
15.  Задачи и принципы уголовного законодательства
16. спиртового раствора Производство- Получают прибавлением мелкоизмельчённого йода настойку аптечную йо
17. Геополитическая модернизация как стимул разрушения геополитических структу
18. Технология креатива драйв + немного шизофрении + много работы
19. КОНСПЕКТ ЛЕКЦИЙ 18 часов
20. тематикой Вармию и Мазуры издревле называют