У вас вопросы?
У нас ответы:) SamZan.net

Производство цемента

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

"Производство цемента"

СОДЕРЖАНИЕ:

Введение

Глава 1. Технологические операции по подготовке сырья

1.1 Сырьевые материалы для производства цемента

1.1.1 Карбонатные породы

1.1.2 Глинистые породы

1.1.3 Корректирующие добавки

1.1.4 Активные минеральные добавки

1.1.5 Техногенные продукты других отраслей промышленности

1.2 Основные технологические операции получения сырья

1.2.1 Добыча и транспортировка сырья

1.2.2 Дробление

1.2.3 Тонкое измельчение материалов (помол)

1.2.4 Мельницы самоизмельчения

1.2.5 Переработка, транспортирование и хранение порошков

1.2.6 Тепловая обработка сырья

Глава 2. Технология производства портландцемента

2.1 Вещественный состав портландцемента

2.2 Технологическая схема производства портландцемента сухим способом

2.3 Особые виды портландцемента

Список литературы

Приложение

Введение

Слово "цемент" относится к собирательным понятиям — он объединяет различные виды вяжущих материалов, полученных путем обжига некоторых горных пород и подвергнутых измельчению. Вяжущими их назвали за способность соединять (связывать) в единое целое как отдельные частицы мелких наполнителей, так и более крупные фрагменты.

В распоряжении древних прорабов пирамид, мавзолеев и прочих циклопических построек были только строительный гипс да воздушная известь, получаемые в результате обжигания гипсового камня и известняка. На протяжении нескольких тысячелетий бетоны и растворы на их основе были единственно известными вяжущими материалами (не считая глины), а кизяк да птичьи яйца — первыми модифицирующими добавками. Огромный купол «Всем-богам-храма» (древнего римского Пантеона: 43 метра в пролете); растянувшаяся на 5000 км самая большая ограда в мире — Великая Китайская стена; бетонная галерея легендарного лабиринта в древнем Египте; массивные культовые сооружения индусов — все эти строительные шедевры создавались путем использования «прабабушек» и «прадедушек» современных цементов. Шло время, и уже другие вяжущие материалы, получаемые искусственным путем и способные при затворении (замешивании) водой превращаться в пластичную массу, отвердевая при этом не только на воздухе, но и в водной стихии, были созданы пытливыми умами человечества.

Цемент не является природным материалом. Его изготовление - процесс дорогостоящий и энергоемкий, однако результат стоит того - на выходе получают один из самых популярных строительных материалов, который используется как самостоятельно, так и в качестве составляющего компонента других строительных материалов (например, бетона и железобетона). Цементные заводы, как правило, находятся сразу же на месте добычи сырьевых материалов для производства цемента.

В России же производство портландцемента было расширено лишь в конце XIX в. Над его созданием и совершенствованием много работал А. Р. Шуляченко, которого называют “отцом русского цементного производства”. Его заслуга состоит в том, что высококачественные отечественные портландцементы вытеснили цементы иностранного производства. В России первый завод по производству портландцемента был построен в 1856 г., а к началу 1-й Мировой войны уже работало 60 цементных заводов общей производительностью около 1,6 млн т цемента в год.

Глава 1. Технологические операции по подготовке сырья

1.1 Сырьевые материалы для производства цемента

1.1.1 Карбонатные породы. Они широко распространены в природе, что способствует развитию на их основе производства цемента. Из карбонатных пород используют известняк, мел, известняк-ракушечник, мрамор, известковый туф, мергели и др. Все эти породы содержат в основном углекислый кальцит CaCO3 . Известняки состоят из кристаллов кальцита различных размеров. Мел представляет собой рыхлую, слабо сцементированную породу с землистым илом. Качество карбонатного сырья зависит от его структуры, количества примесей, равномерности их распределения в массе сырья. Для производства цемента пригодны карбонатные породы при содержании 40-43,5 % CaО и 3,2-3,7 % MgO. Желательно, чтобы содержание Na2O и К 2О в сумме не превышало 1 %, а SO3 – 1,5-1,7 %. Более благоприятны породы с постоянным химическим составом и однородной мелкокристаллической структурой. полезны примеси тонкодисперсных глин и аморфного кремнезема при равномерном их распределении в карбонатной породе. Особым видом карбонатного сырья является мергель - переходная горная порода от известняков к глинам. Мергель представляет собой природную тонкодисперсную смесь осадочного происхождения глинисто-песчаных пород(20-50%) и углекислый кальция (50-80 %). В зависимости от содержания CaCO3 мергели подразделяются на песчаные, глинистые и известковые. Наиболее ценное сырье – известковый мергель, содержащий 75-80 % CaCO3 и 20-25 % глины. По химическому составу он близок к портландцементной сырьевой смеси. Такой состав сырья существенно упрощает технологию производства. Мергели, в которых содержание CaCO3 соответствует составу портландцементной сырьевой смеси, называют натуральной. От качества сырья зависят температура обжига, производительность печей и свойства конечного продукта. Чем выше плотность известняков, тем труднее идет процесс обжига. Свойства сырья влияют на выбор обжигового агрегата.

1.1.2 Глинистые породы

Глинистое сырье (глины, глинистый мергель, глинистый сланец, лесс и др.) необходимо для производства портландцемента. Глины имеют различный минералогический и гранулометрический состав даже в пределах одного месторождения. Минералогический состав глин представлен преимущественно водными алюмосиликатами и кварцем, химический состав глин характеризуется наличием трех оксидов, %: SiO2 -60-80, Al2O3 -5-20, Fe2O3- 3-15.

1.1.3 Корректирующие добавки

При особо благоприятном химическом составе сырьевых материалов портландцементная смесь требуемого состава может быть приготовлена только из двух компонентов – карбонатного и глинистого. Но в большинстве слуае6в получить заданную сырьевую смесь из двух компонентов почти не удается, поэтому применяют третий и даже четвертый компоненты - корректирующие добавки, содержащие значительное количество одного из оксидов, недостающих в сырьевой смеси. В качестве железосодержащей добавки обычно используют пиритные огарки с сернокислотных заводов, реже – колошниковую пыль доменных печей. В качестве глиноземистой добавки применяют богатые глиноземом маложелезистые глины, бокситы. Кремнеземистой добавкой служат кварцевые пески, опоки, трепел. Содержание оксидов в корректирующих добавках должно быть, % : для железистых Fe2O3 – не менее 40; для кремнеземистых SiO2 - не менее 70; для глиноземистых Al2O3 - не менее 30. Наиболее широко используются железистые добавки. Бокситы также являются корректирующей добавкой при получении портландцементного клинкера. Боксит представляет собой гидроксид алюминия с примесями Fe2O3, SiO2, CaО, MgO и TiO2.

1.1.4 Активные минеральные добавки

К ним относятся природные или искусственные минеральные вещества, которые сами по себе вяжущими свойствами не обладают, но, будучи смешанными в тонкомолотом виде с известью, образуют при затворении водой тесто, способное после твердения на воздухе продолжать твердеть и под водой, а при смешивании с портландцементом повышают его водостойкость и антикоррозионные свойства. Введение активных минеральных добавок несколько снижает себестоимость цемента.

1.1.5 Техногенные продукты других отраслей промышленности

 

Наиболее широкое применение цементной промышленности нашли доменные и электротермофосфорные шлаки, топливные шлаки и золы, нефелиновый ( белитовый ) шлам, гипсосодержащие отходы. Использование шлаков на цементных заводах способствует решению проблемы обеспечения их сырьем на амортизационный срок. Нефелиновый (белитовый) шлам – отход комплексной переработки апатито – нефелиновых пород в глинозем, соду, поташ. Поскольку шлам прошел частичную термическую обработку, он состоит в основном из двухкальциевого силиката – минерала, входящего в состав портландцементного клинкера и способного к гидравлическому твердению. Гранулированные шлаки и нефелиновый шлам близки по составу портландцементной сырьевой шихте, поэтому могут использоваться не только как активные минеральные добавки, но и как компоненты портландцементной сырьевой смеси. Так как эти материалы уже прошли тепловую обработку, не содержат СаСО3 и включают ряд минералов, близких по составу минералам цементного клинкера, то обжиг шихт с наличием в их составе нефелинового шлама и шлака требует меньшего расхода топлива. Например, при использовании нефелинового шлама производительность вращающихся печей повышается примерно на 25 %, снижаются удельные расходы топлива на обжиг клинкера, электроэнергии и мелющих тел (приблизительно на 20 %). Но молотые шлаки и нефелиновый шлам вызывают загустение сырьевых цементных шламов. Повышенное содержание щелочей в нефелиновом шламе может снизить качество цемента.

Рис.1. Сырье для производства портландцемента

2. Основные технологические процессы получения сырья

1.2.1 Добыча и транспортировка сырья

Операции по добыче и транспортировке сырья – важнейшие технологические переделы производства. При производстве портландцемента доля затрат на добычу сырья составляет около 10 % общих расходов. В каждом отдельном случае способ добычи сырья должен быть тщательно обоснован, так как от этого зависят затраты и на последующие технологические операции. Выбору способа добычи предшествует анализ химического состава сырья. Добыча сырья производится открытым способом непосредственно с поверхности земли. Слой горной породы обычно закрыт слоем пустой породы, поэтому в комплекс горнодобывающих работ входит ее удаление – вскрышные работы. Конечная стоимость сырья в значительной степени зависит от затрат на вскрышные работы. Их осуществляют бульдозерами, экскаваторами и тд. Твердые и плотные горные породы (известняк) разрабатывают, как правило, взрывом. Буровзрывные работы обеспечивают как отделение породы от массива, так и дробление негабаритных кусков. Особенность таких работ на карьерах заводов цемента – относительно небольшие объемы ежедневной добычи и ограниченный допустимый размер кусков взорванной породы. Чаще применяют буровые машины ударно- канатного или вращательного бурения. Рыхлые и мягкие породы (мел, глина и др.) добывают без предварительной подготовки прямой экскавации одно- или многоковшовыми (роторными) экскаваторами, которые выполняют сразу две операции: отделение породы от пласта и погрузку готового сырья.

Для доставки сырья на завод обычно используют железнодорожный и автомобильный транспорт, воздушно- канатные дороги, ленточные конвейеры, гидротранспорт. Железнодорожный транспорт наиболее эффективно использовать в неглубоких карьерах с объемом перевозок сырья свыше 2 млн т/год при дальности транспортирования более 8 км. Преимущества данного вида транспорта :высокая производительность, надежность работы в любых условиях, низкий расход электроэнергии, большой срок службы подвижного состава; недостатки : высокие капитальные затраты на устройство железнодорожного пути и эксплуатационные расходы на его содержание и ремонт. Автомобильный транспорт целесообразно применять для транспортирования материалов при сложном рельефе поверхности, малых объемах перевозок и дальности транспортирования до 8 км. Мягкие, рыхлые и мелкокусковые породы доставляют на завод при расстоянии 1-6 км в благоприятных климатических условиях ленточными конвейерами. На цементных заводах с невысокой производительностью, расположенных в сильно пересеченной местности, а также на равнине при пересечении технологических путей от горных цехов автомобильными дорогами, железнодорожными путями и др. используют воздушно-канатные дороги. К их достоинствам относят независимость от рельефа местности, возможность полной автоматизации производственных процессов, малую трудоемкость обслуживания; к недостаткам – невысокую производительность и большие капитальные затраты.

1.2.2 Дробление

Дробление – это процесс механического измельчения твердых тел. Цель дробления – уменьшения размера кусков сырья до такой степени, при которой последующий помол осуществляется с наименьшими затратами электроэнергии. Измельчение материалов производят следующими способами: раздавливанием, раскалыванием, ударом, изломом, истиранием. Для дробления материалов применяют щековые, конусные, валковые и молотковые дробилки.

Выбор схемы дробления и типа дробильного оборудования зависит от свойств исходного сырья, мягкие породы ( мел, глина) дробят по одноступенчатой схеме в валковых дробилках до кусков размеров 200 мм. В них материал измельчают способом раздавливания между валками, вращающимися навстречу друг другу. При разных скоростях вращения валков имеет место и истирание материала. В зависимости от свойств исходного материала применяют гладкие, рифленые и зубчатые валки. Твердые породы (известняк, мрамор) дробят по двухступенчатой схеме (рис.2):1. На щековых дробилках до кусков размером 75- 200 мм. В таких дробилках используют способы раздавливания, раскалывания и частичного истирания материала. Преимущества дробилки данного типа являются простота, надежность, а также возможность переработки достаточно влажных материалов.2. На молотковых дробилках до кусков размером 8 – 10 мм. На данной дробилке измельчение производят ударом и частично истиранием.

1.2.3 Тонкое измельчение материалов (помол)

Основным агрегатом для тонкого измельчения и помола портландцементных сырьевых смесей является шаровая трубная мельница, отличающаяся простотой конструкции, надежностью и удобством эксплуатации, обеспечивающая высокую степень измельчения. Чтобы предохранить барабан и днище мельницы от преждевременного износа, их футеруют продольными и торцевыми стальными или чугунными плитами. Измельчение материала в шаровой мельнице осуществляется ударами свободно падающих мелющих тел. Существенный недостаток шаровых мельниц – низкая интенсивность движения мелющих тел. Так же при сухом помоле измельчаемый материал нагревается до температуры 100 – 2000 С, что ведет к повышению износа бронефутеровки, мелющих тел, а также может вызвать термическое разложение измельчаемых материалов. Для успешной работы мельниц сухого помола необходимо осуществлять вентиляцию мельничного пространства ( аспирацию). Скорость воздушного потока обеспечивается вентилятором, просасывающим воздух через мельницу и последующие очистные устройства. Холодный воздух, поступающий в мельницу, охлаждает футеровку корпуса, мелющие тела и измельчаемый материал. Проходя через мельницу, он увлекает мельчайшие частицы, предотвращая их налипание на мелющие тела. Благодаря аспирации производительность мельницы повышается на 20-25 %, уменьшается пылевыделение, улучшаются санитарно-гигиенические условия труда. Диспергирование (понижение прочности на начальных стадиях) цементного клинкера осуществляется за счет применения интенсификаторов помола.

1.2.4. Мельницы самоизмельчения

Перспективное направление в развитии техники измельчения сырья — применение каскадных мельниц, в которых помол материалов осуществляется без использования мелющих тел — по принципу самоизмельчения. Мельница (рис. 3) представляет собой короткий полый вращающийся барабан большого диаметра, закрытый с двух сторон торцевыми стенками с полыми цапфами. Внутренняя полость барабана футерована бронеплитами с лопастями-подъемниками. Материал поступает в мельницу через цапфу 1, отбрасывается при вращении барабана к периферии на лопасти, поднимается последними и вновь падает вниз, ударяясь по пути о куски поступающего в мельницу материала и повторно о лопасти. Оптимальная степень заполнения таких мельниц материалом составляет 20...25 %. Помол в мельнице происходит за счет ударов материала о лопасти и соударения размалываемых кусков. Для усиления размалывающего действия в мельницу может быть загружено небольшое количество стальных шаров (5...6 % от внутреннего объема мельницы).

Рис. 3. Мельница сухого самоизмельчения « Аэрофол »: 1 – загрузочная цапфа; 2 – поперечные била; 3 – зубчатые выступы; 4 – разгрузочный патрубок

Эффективность процесса самоизмельчения определяется максимальной крупностью кусков исходного материала, а также соотношением крупных и мелких фракций. Оптимальная крупность подаваемого в мельницу материала зависит от ее диаметра и частоты вращения. Куски известняка, подаваемого в мельницу диаметром 7 м, должны иметь размер 350 – 450, мела – 500 – 800мм. Основные преимущества мельниц самоизмельчения состоят в простоте конструкции и обслуживания, низкой скорости вращения рабочих органов, малых удельных затратах электроэнергии на измельчение, отсутствие мелющих тел, совмещение процессов дробления и помола в одном аппарате, высокой производительности (до 500 т/ч). Мельницы самоизмельчения предназначены для сухого размола (мельница «Аэрофол»). Создание такого агрегата позволило перерабатывать сырье влажностью 20 – 22 % по сухому способу. Большой диаметр загрузочных цапф позволяет пропускать значительный объем горячих газов, поэтому можно использовать газы относительно невысокой температуры (отходящие газы вращающихся печей).

1.2.5 Переработка, транспортирование и хранение порошков

Свойства порошкообразных материалов. Порошкообразные материалы – энергонасыщенные системы, способные к саморегулированию своих свойств и взаимодействию с внешней средой. Их активность проявляется в аутогезии и адгезии. Аутогезия – это связь между соприкасающимися частицами, которая препятствует их разъединению; адгезия характеризует взаимодействие частиц с поверхностью твердых макроскопических тел (стенок трубопроводов, силосов - емкости из нержавеющей стали для хранения, и перегрузки сыпучих материалов и т.д.). Аутогезионные свойства в значительной мере обуславливает поведение порошкообразных материалов при их переработке. Аутогезионное взаимодействие порошков влечет за собой ряд осложнений в ходе технологических процессов. Усложняется выгрузка силосов (цемента, сырьевых смесей и др.) вследствие сводообразования и зависания материала на стенках. Пылеулавливающее оборудование забивается пылью, поэтому приходится усложнять его конструкцию, повышать расход энергии на очистку. Образование агломератов затрудняет получение однородной смеси при перемешивании порошков.Транспортирование порошков. Для перемещения сухих сыпучих материалов применяют различные типы транспортных систем: механический – винтовые конвейеры и элеваторы и пневматический – пневмокамерные и пневмовинтовые насосы, аэрожелоба. Механические транспортные системы целесообразно использовать для перемещения небольшого объема материалов на незначительные расстояния. Но сложность конструкции и обилие движущихся агрегатов осложняют работу механических транспортных систем, снижают коэффициент их использования.

В настоящее время транспортирование порошков в пределах завода осуществляют в основном пневматическим способом при помощи винтовых и камерных насосов. Основные преимущества этого способа – возможность перемещения на большие расстояния, отсутствие пыли, простота и надежность эксплуатации. Аэрационный желоб (рис. 4) разделен по высоте на две части специальной воздухонепроницаемой перегородкой. Нижний лоток служит воздуховодом, куда нагнетается сжатый воздух, а в верхний лоток (транспортный) поступает порошок, насыщенный воздухом. Аэрожелоба просты по конструкции, монтажу и эксплуатации; износоустойчивы; исключают потери от распыления и обеспечивают нормальные условия работы обслуживающего персонала. Но они применимы лишь для дальности транспортирования до 40 м.

 

цемент сырье измельчение сухой

Гомогенизация и хранение порошкообразных материалов. Для получения однородных порошков с высокой подвижностью необходимо препятствовать образованию аутогезионных контактов и разрушать их в случае возникновения. Гомогенизация портландцементных сырьевых смесей осуществляется перемешиванием. Чем выше интенсивность перемешивания, тем меньше его длительность, меньше размеры агрегатов и больше их производительность. Перемешивание сухой шихты организовано в силосах с пневматическим перемешиванием. Предпочтительны силосы с плоским основанием, так как в них воздух распределяется более равномерно. Размеры силоса зависят от способа гомогенизации, мощности цеха, а также особенностей технологического процесса.

Сжатый воздух, подаваемый в силосы через воздухопроницаемое днище, насыщает материал и переводит его в псевдотекучее состоянии. Днище выкладывают специальными коробами, состоящими из металлического корпуса и пористой аэроплитки. Аэроплитки изготавливают из керамики, металлокерамических сплавов, текстиля и др. Проходя тонкими струями через поры в плитках, воздух попадает внутрь силоса, при движении вверх увлекает за собой частички муки. Место поднятого струей воздуха материала занимает неарированная шихта, находящаяся рядом с этой зоной. Таким образом, весь порошок, находящийся в силосе, приходит в движение и перемешивается. При перемешивании порошков в силосе расходуется много сжатого воздуха и, следовательно, электроэнергии. Недостаток силосов такого типа – недостаточная степень гомогенизации при больших количествах смеси, значительная потребность в объемах сжатого воздуха.

Более эффективным и экономичным является применение двухъярусных силосов. Исходные сырьевые смеси различного состава поступают в несколько силосов верхнего яруса, а затем после уточнения состава перемешиваются в заданном соотношении в более крупных силосах нижнего яруса. Двухъярусное расположение силосов позволяет не только сократить производственные площади и расходы на строительство, но и использовать эффект гравитационного перемешивания. Когда материал выгружают из силоса верхнего яруса в силос нижнего яруса, скорость его перемещения выше в центре силоса и постепенно уменьшается в направлении к периферии, что заставляет горизонтальные слои материала разного уровня перемещаться к центру, где они одновременно извлекаются.

Аутогезионные свойства порошков особенно наглядно проявляются при хранении в силосах. Этому способствует давление вышележащих слоев материала на нижележащие и наличие в воздухе паров воды. Для ослабления аутогезионного взаимодействия порошков рекомендуется воздух, подаваемый для их перемешивания, предварительно подогревать до температуры, превышающей температуру порошка на 15 – 20 0С. Это позволяет предотвратить адсорбцию влаги материалом.

Разгружают силосы пневматическим способом при помощи разгрузочных устройств, расположенных сбоку или под днищем силоса, 15-20 %которого выкладывают аэроплитками. Под них подают обезвоженный воздух под давлением. Проходя через поры в аэроплитках, воздух разрыхляет порошок и дает ему возможность стекать под уклон к разгрузочным механизмам.

1.2.6 Тепловая обработка сырья в производстве портландцемента

Физико-химические основы обжига портландцементного клинкера. Образованию портландцементного клинкера предшествует ряд физико-химических процессов, в результате которых клинкер приобретает сложные минералогический состав и микрокристаллическую структуру. Эти процессы протекают в определенных температурных границах — технологических зонах печи. В основном обжиговом агрегате — вращающейся печи — при мокром способе производства цемента по ходу движения материала выделяют зоны: I - испарения,II—подогрева и дегидратации, III— декарбонизации, IV— экзотермических реакций, V— спекания, VI— охлаждения. При сухом способе производства – эта зона отсутствует. Подготовительные зоны I – II занимают 50...60 % длины печи, зона декарбонизации — 20...25, зона экзотермических реакций — 7...10, зона спекания — 10...15 и зона охлаждения — 2...4 % длины печи. На рис. 5 показано распределение температур материла и газового потока по зонам вращающейся печи.

Рис. 5. Распределение температуры материала и газового потока по зонам вращающейся печи: 1 – материал; 2 – газовый поток; I…VI – зоны печи

В зоне подогрева при температуре 200...650 °С выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента. Обезвоживание и распад на оксиды водных алюмосиликатов кальция приводит к образованию ряда промежуточных соединений, заметно влияющих в дальнейшем на скорость связывания СаО.

В зоне декарбонизации при температуре 900... 1200 0 С происходит диссоциация карбонатов кальция и магния с образованием свободных СаО и МgО. Одновременно продолжается распад глинистых минералов.В зоне экзотермических реакций при температуре 1200 – 1300 0 С завершается процесс твердофазового спекания материала. В результате образуются минералы 3CaO*Al2O3 ; 4CaO*Al2O3*Fe2O3 и 2CaO*SiO2. Однако в смеси остается некоторое количество свободной извести, необходимое для насыщения двухкальциевого силиката до трехкальциевого (алита).

В зоне спекания при температуре 1300 – 14500 С происходит частичное плавление материала, начинающееся в поверхностных слоях зерен, а затем постепенно распространяющееся к их центру. Время полного усвоения оксида кальция и образования алита в зоне спекания составляет 20 – 30 минут.

В зоне охлаждения температура клинкера понижается с 1300 до 1100 – 1000 0 С. Часть жидкой фазы при этом кристаллизуется с выделением кристаллов клинкерных минералов, а часть затвердевает в виде стекла. Границы зон во вращающейся печи достаточны условны и нестабильны. Меняя режим работы печи, можно смещать границы и протяженность зон и тем самым регулировать процесс обжига.

Аппараты для тепловой обработки. Они работают по принципу как противотока, так и прямотока. С точки зрения расходы теплоты прямоток выгоднее, чем противоток, так как в последнем случае выше температура отходящего материала и больше потери теплоты. Тем не менее, чаще применяют противоток, что связано с большей разностью температуры теплоносителя и материала в таких аппаратах и соответственно большей скоростью теплообмена, что позволяет сократить длительность обжига. Тепловыми агрегатами в производстве клинкера являются вращающиеся печи. Они представляют собой стальной барабан, который состоит из обечаек (открытый цилиндрический или конический элемент конструкции), соединенных сваркой или клепками, и имеет внутреннюю футеровку из огнеупорного материала (рис. 6). Профиль печей может быть как строго цилиндрическим, так и сложным с расширенными зонами. Расширение определенной зоны производят для увеличения продолжительности пребывания в ней обжигаемого материала. Печь, установленная под углом 3 - 40 к горизонту, вращается с частотой 0,5 – 1,5 мин-1. Вращающиеся печи в основном работают по принципу противотока. Сырье поступает в печь с верхнего (холодного) конца, а со стороны нижнего (горячего) конца вдувается топливно-воздушная смесь, сгорающая на протяжении 20 - 30 м длины печи. Горячие газы, перемещаясь со скоростью 2 - 13 м/с навстречу материалу, нагревают последний до требуемой температуры. Длительность пребывания материала в печи зависит от ее частоты вращения и угла наклона, составляя, например, в печи размером 5× 185 м, 2 - 4 часа. Занятое материалом сечение во вращающихся печах составляет лишь 7 - 15 % объема, что является следствием высокого термического сопротивления движущегося слоя и объясняется как малой теплопроводностью частиц обжигаемого материала, так и слабым перемешиванием их в слое.

Рис. 6. Вращающаяся печь размером 5×185 м:

1 – дымосос; 2 – питатель для подачи шлама; 3 – барабан; 4 – привод; 5 – вентилятор с форсункой для вдувания топлива; 6 – колосниковый охладитель.

Факел пламени и горячие газы нагревают как поверхностный слой материала, так и футеровку печи. Футеровка, в свою очередь, отдает получаемую теплоту материалу лучеиспусканием, а также путем непосредственного контакта. При каждом обороте печи в процессе соприкосновения с газовым потоком температура поверхности футеровки повышается, а при контакте с материалом понижается. Таким образом, материал воспринимает теплоту лишь в двух случаях: либо когда соприкасается с нагретой поверхностью футеровки, либо когда находится на поверхности слоя. Производительность вращающейся печи зависит от объема внутренней части, утла наклона печи к горизонту и частоты вращения, температуры и скорости движения газов, качества сырья и ряда других факторов.

Важное преимущество вращающихся печей — их технологическая универсальность, обусловленная возможностью использовать сырьевые материалы различных видов.

Теплообменные устройства.Эффективное использование теплоты во вращающихся печах возможно только при установке системы внутрипечных и запечных теплообменных устройств. Внутрипечные теплообменные устройства имеют развитую поверхность, которая либо всё время покрыта материалом, непосредственно соприкасающимся с газами, либо работает как регенератор, воспринимаю теплоту от газов и передавая ее материалу. Эти устройства увеличивают поверхность теплообмена между газами и материалами также потому, что, уменьшая скорость движения материала, повышают коэффициент заполнения печи. В результате установки внутрипечных теплообменных устройств кроме основной задачи – снижения расходов теплоты – можно решить и ряд других задач: интенсифицировать процесс перемешивания, снизить пылевынос. Это позволяет улучшить работу печи и повысить её производительность.

В России для обжига сухих сырьевых смесей в основном используют печи с циклонными теплообменниками. В основу их конструкции положен принцип теплообмена между отходящими газами и сырьевой мукой во взвешенном состоянии (рис. 7).

Рис. 7. Схема циклонных теплообменников к вращающейся печи:

1 – дымовая труба; 2 – циклонные теплообменники; 3 – винтовой питатель; 4 – скребковый конвейер; 5 – расходный бункер сырьевой муки; 6 – ковшовый элеватор; 7 – течка; 8 – переходная головка; 9 – вращающаяся печь; 10 – пылеуловители; 11 – дымосос.

Уменьшение размера частиц обжигаемого материала, значительное увеличение его поверхности и максимальное использование этой поверхности для контакта с теплоносителем интенсифицируют теплообмен. Сырьевая мука в системе циклонных теплообменников движется навстречу отходящих из вращающейся печи газов температурой 900 – 11000С. Средняя скорость движения газов в газоходах составляет 15 – 20 м/с, что значительно выше скорости движения частиц сырьевой муки. Поэтому поступающая в газоход между верхними I и II ступенями циклонов сырьевая мука увлекается потоком газов в циклонный теплообменник I ступени. Поскольку диаметр циклона намного больше диаметра газохода, скорость газового потока резко снижается, и частицы выпадают из него. Осевший в циклоне материал через затвор – мигалку поступает в газоход, соединяющий II и III ступени, а из него выносится газами в циклон II ступени. В дальнейшем материал движется в газоходах и циклонах III и IV ступеней. Таким образом, сырьевая мука опускается вниз, проходя последовательно циклоны и газоходы всех ступеней, начиная относительно холодной (I) и кончая горячей (IV). При этом процесс теплообмена на 80 % осуществляется в газоходах и только 20 % приходится на долю циклонов.

Время пребывания сырьевой муки в циклонных теплообменниках не превышает 25...30 с. Несмотря на это, сырьевая мука не только успевает нагреться до температуры 700...800 °С, но полностью дегидратируется и на 25...35 % декарбонизируется.

Недостатки печей этого типа — высокий расход электроэнергии и относительно низкая стойкость футеровки. Кроме того, они чувствительны к изменению режима работы печи и колебаниям состава сырья. После прохождения циклонных теплообменников сырьевая мука температурой 720 - 750 °С поступает в декарбонизатор - аппарат для удаления из воды свободной угольной кислоты путём продувания этой воды воздухом (рис. 8). Частицы сырьевой муки и растленное топливо диспергируются и перемешиваются. Теплота, выделяющаяся при сгорании топлива, передается частицам сырьевой муки, которые нагреваются до 920 - 970 °С. Материал в системе циклонный теплообменник — декарбонизатор находится лишь 70 - 75 с и за это время декарбонизируется на 85 - 95 %. Установка декарбонизатора позволяет повысить съем клинкера с 1 м3 внутреннего объема печи в 2,5 - 3 раза. Кроме того, в декарбонизаторе можно сжигать низкокачественное топливо и бытовые отходы. Размеры установки невелики, и она может использоваться не только при строительстве новых заводов, но и при модернизации действующих печей. Эксплуатируемые в России печи с циклонными теплообменниками и декарбонизаторами размером 4,5 х 80 м имеют производительность 3000 т/сутки при удельном расходе теплоты 3,46 МДж/кг клинкера.

Рис. 8. Вращающаяся печь с циклонным теплообменником и декарбонизатолром:

1 – дымосос; 2 – электрофильтр; 3 – циклонный теплообменник; 4 – декарбонизатор;5 – вращающаяся печь 4,5 × 80 м; 6 – установка контроля температуры корпуса; 7 – колосниковый холодильник; 8 – установка для олаждения и увлажнения отходящих печных газов.

Футеровка печи. Для защиты корпуса от воздействия высокой температуры печи изнутри футеруют огнеупорными материалами, выполняющими одновременно роль изоляции, предотвращающей чрезмерные потери теплоты в окружающую среду. Футеровка должна иметь определенные свойства: химическую устойчивость к обжигаемому материалу, огнеупорность, термостойкость, теплопроводность, механическую прочность, сопротивление истиранию, упругость. Так как футеровки различных зон печи работают а неодинаковых температурных условиях, то их выкладывают из различных огнеупоров. В особо тяжелых условиях находится футеровка зоны спекания – наиболее высокотемпературной зоны вращающейся печи. Наиболее совершенный вид огнеупора для такой зоны является периклазохромитовые кирпичи с пониженным содержанием хромита. Средняя стойкость в цементной промышленности данной футеровки составляет около 230 суток.

Срок службы футеровки увеличивают рядом технологических приемов: строгое соблюдение режима обжига клинкера; равномерное питание сыреем и топливом; постоянство химического состава, тонкости помола и влажности сырья; постоянство состава, влажности и тонкости помола твердого топлива. Эти факторы обеспечивают стабильность режима работы печи, уменьшают колебания температуры в футеровке и деформации корпуса.

Главное условие надежной эксплуатации футеровки – создание и сохранение защитного слоя обмазки на её рабочей поверхности. Клинкерный расплав взаимодействует с материалом футеровки, налипает на неё, образуя слой обмазки толщиной до 200 мм. Процесс образования обмазки и её свойства зависят от температуры плавления, количества и состава жидкой фазы и режима работы печи. Обмазка предохраняет футеровку от разрушения, снижая температуру поверхности кирпича и уменьшая возникающие в нем напряжения, защищает кирпич от колебаний температуры внутри печи, а также от химического и механического воздействия обжигаемого материала.

Интенсификация процессов обжига.

Печные агрегаты – самое энергоемкое оборудование. В производстве цемента на их долю приходится около 80 % затрат тепловой и электрической энергии. Добиваясь снижения этих затрат, конструкции печей непрерывно совершенствуют, изыскиваю пути интенсификации процессов обжига. Проблема интенсификации работы вращающихся печей включает в основном две задачи: изыскание наиболее рациональных приемов снижения удельного расхода теплоты на обжиг клинкера и повышение тепловой мощности печи. На производительность печи влияет целый ряд факторов. Во- первых, факторы, которые приводят к изменению удельного расхода теплоты на обжиг клинкера: состав и структура сырья, его влажность и реакционная способность и др. Во-вторых, производительность печи повышается, если увеличивается поверхность соприкосновения газов с материалом, возрастает скорость движения газового потока, сжигание топлива производится с минимальным избытком воздуха. Все мероприятия, способствующие увеличению полезно используемой теплоты сгорания топлива, ускоряет процесс клинкерообразования. К ним относятся установка внутрипечных и запечных теплообменных устройств, снижение влажности шлама за счет обезвоживания в концентраторах или путем введения разжижителей шлама и др.

Тепловая мощность печи – важнейшая конструктивная характеристика, определяющая её производительность. Увеличение количества сжигаемого топлива в том же объеме топочного пространства – один из путей повышения производительности печи. Эффективным средством интенсификации процесса и производительности печи является повышение температуры нагреваемого материала.

Эффективное средство интенсификации процесса обжига – сжигание части топлива в зоне декарбонизации непосредственно в слое материала. Снизить удельный расход теплоты на обжиг клинкера можно введением в сырьевую смесь минерализаторов. Они позволяют ускорить твердофазовые реакции, снизить температуру появления жидкой фазы и улучшить ее свойства, повысить качество продукции. Важный резерв интенсификации процесса обжига – утилизация пыли, улавлиемой из отходящих газов. Тонкодисперсная, частично прокаленная пыль близка по составу сырьевой смеси. Возврат пыли в печь способствует росту производительности агрегата, сокращению расхода сырья, топлива, электроэнергии. Расход топлива можно снизить путем совершенствования технологической схемы, конструктивных решений декарбонизаторов, холодильников и вспомогательного оборудования.

Охлаждение обожженных материалов.

Выходящий из вращающейся печи материал имеет температуру около 10000С. Возвращение в печь теплоты материала может существенно снизить расход топлива. Это достигается охлаждением материала воздухом, подаваемым затем в печь для горения топлива. Режим охлаждения влияет как на дальнейший технологический процесс, так и на свойства готового продукта. Размол горячих материалов приводит к снижению производительности мельниц и росту удельного расхода энергии. Особенно чувствителен к охлаждению портландцементный клинкер. Быстроохлажденные клинкера легче размалываются и в определенной мере повышают качество цемента. Поэтому необходимо, чтобы процесс охлаждения клинкера был наиболее полным и протекал быстро, особенно в начальной стадии. Чем полнее охлаждение клинкера, тем меньше потери теплоты.

Широко распространены три типа охладителей: барабанные, рекуператорные и колосниковые. При производстве портландцементного клинкера в современных вращающихся печах используют колосниковые переталкивающие охладители (Рис. 9). Горизонтальная решетка с подвижными колосниками приводится в действие от кривошипного механизма. Форма колосников такова, что при движении вперед клинкер ссыпается на следующий ряд колосников; при движении в обратном направлении он скользит по колосникам. Ввиду того что одни колосники движутся, а другие нет, осуществляется постоянное перемешивание клинкера. Камера охладителя разделена на две части. Клинкер с обреза вращающейся печи в горловине охладителя подвергают воздействию «острого дутья» (10...12 кПа), которое обеспечивает равномерное распределение клинкера по ширине колосников и быстрое начальное его охлаждение. Этот горячий воздух температурой 450 0 С засасывается в печь, где используется для горения топлива в качестве вторичного воздуха. Во вторую часть подрешеточного пространства охладителя также поступает холодный воздух, который подвергается за счет частичного уже охлажденного клинкера и может быть использован для сушки сырья. На разгрузочном конце охладителя устанавливают молотковую дробилку, предназначенную для дробления крупных кусков клинкера ( «свара» ).

Рис. 9. Схема колосникового охладителя клинкера типа « Волга»:

1 – вращающаяся печь; 2 – приемная шахта; 3 – колосниковая решетка; 4 – привод; 5 – окно для сброса избытка отработанного воздуха в атмосферу; 6 – грохот; 7 – молотковая дробилка; 8 – скребковый конвейер; 9 – окна для общего дутья; 10 – вентилятор общего дутья; 11 – вентилятор острого дутья.

Поскольку в колосниковом охладителе воздух просасывается через слой материала, значительно увеличивается поверхность теплообмена и интенсифицируется процесс охлаждения. Скорость охлаждения регулируют изменением скорости движения решетки, толщины слоя материала и количества воздуха.

Преимущества колосниковых охладителей – высокие скорость и степень охлаждения (до 40 – 60 0 С), хороший КПД, малый удельный расход электроэнергии ( 9 – 11 МДж/т клинкера ). Основной недостаток – невыгодный с точки зрения рекуперации принцип теплообмена, так как воздух движется не противотоком к материалу, а перпендикулярно ему. Большое количество теплоты теряется при выбросе избыточного воздуха в атмосферу. К недостаткам колосниковых охладителей также относятся сложность эксплуатации и ремонт, меньшая надежность работы, большие капиталовложения.

Глава 2. Технология производства портландцемента

2.1 Вещественный состав портландцемента

Портландцементом ГОСТ 10178 - 76 называется гидравлическое вяжущее вещество, твердеющее в воде и на воздухе и представляющее собой продукт тонкого помола клинкера, получаемого в результате обжига до спекания искусственной сырьевой смеси, состав которой обеспечивает преобладающее содержание в клинкере силикатов кальция (70 - 80 %). Обычный силикатный цемент, или портландцемент, получаемый совместным тонким измельчением клинкера и гипса, представляет собой зеленовато-серый порошок, который при смешивании с водой затвердевает на воздухе (или в воде) в камнеподобную массу. Гипс вводят в состав портландцемента для регулирования сроков схватывания. Он замедляет начало схватывания и повышает прочность цементного камня в ранние сроки. Наряду с обычным портландцементом (без добавок), обозначаемым индексом ПЦ Д0, выпускают два вида портландцемента с минеральными добавками, обозначаемые индексами ПЦ Д5 и ПЦ Д20. В первый допускается вводить дополнительно до 5 % активных минеральных добавок, а во второй свыше 5, но не более 10 % добавок осадочного происхождения (трепел, опока), или до 20 % добавок вулканического происхождения, глиежей, гранулированных доменных и электротермофосфорных шлаков. Соотношение клинкера, гипса и добавок характеризует вещественный состав портландцемента. Качество клинкера зависит от химического и минералогического состава. Химический состав характеризуется содержанием различных оксидов, а минералогический – количественным соотношением минералов, образующихся в процессе обжига. Портландцементный клинкер состоит в основном из, % по массе: СаО-64...67; SiO2- 21...25; А1203 - 4...8; Fе203 — 2...4. Кроме того, в составе клинкера могут присутствовать MgO, ТiO2, щелочи и др.

Важнейшие оксиды, входящие в состав клинкера (СаО, SiO2 , А1203 и Fе203), взаимодействуют в процессе обжига, образуя клинкерные минералы. Портландцементный клинкер состоит из ряда кристаллических фаз, отличающихся друг от друга химическим составом. Основные минералы клинкера: алит - 3СаО • SiO2 (сокращенная запись С3S); белит — 2СаО • SiO2 (С2S); трехкальциевый алюминат 3 СаО • А1203 (C3А) ; алюмоферриты кальция переменного состава от 8 СаО • 3 А1203 • Fе2О3 до 2СаО • Fе203(С8A3F...C2F).

Минералогический состав клинкера влияет на технологию производства портландцемента и его свойства. Знание минералогического состава клинкера позволяет прогнозировать свойства портландцемента: скорость набора прочности при различных условиях твердения, стойкость в пресных и минерализованных водах, тепловыделение при твердении и др. Это дает в соответствии с видом сооружения и условиями его эксплуатации подбирать нужный цемент.

Алит – важнейший материал клинкера, основной носитель его вяжущих свойств. Он обусловливает возможность быстрого твердения цемента и достижения им высокой прочности.

Белит взаимодействует с водой значительно медленнее алита и в начальные сроки твердения обладает низкой прочностью. Но со временем белит набирает прочность и не уступает алиту по прочностным показателям.

Трехкальциевый алюминат быстро гидратируется, активно участвует в процессах схватывания, но вклад егов конечную прочность цементного камня сравнительно невелик. При увеличении содержания алюмоферритов кальция цементы твердеют медленно, но достигают высокой прочности. Регулирование минералогического состава обеспечивает получение цементов с заданными свойствами.

2.2 Технологическая схема производства портландцемента сухим способом

Цементное производство в укрупненном виде состоит из следующих основных переделов:

·  Добыча, первичное измельчение сырья в карьерах и доставка его на

 площадку цементного завода, складирование;

·  измельчение и усреднение (гомогенизация) измельченной смеси, подготовка её к обжигу;

·  теплохимическая обработка сырья с получением клинкера — исходного материала для переработки в цемент, охлаждение клинкера;

·  помол клинкера с добавками на цемент (количество и состав добавок зависят от химического и минералогического состава исходного сырья и клинкера, требуемого сорта цемента);

·  подача цемента на склад, хранение, упаковка и отгрузка.

Для производства цемента применяют мокрый, сухой и комбинированный способы.

Сухой способ производства. Принципиальная технологическая схема получения портландцемента сухим способом показана на рис. 10.

Рис. 10. Принципиальная технологическая схема получения портландцемента сухим способом

Измельчение материалов в мельницах может производиться при влажности сырья не более 1 %. В природе сырья с такой влажностью практически нет, поэтому обязательная операция сухого способа производства — сушка. Желательно совмещать процесс сушки с размолом сырьевых компонентов. Это эффективное решение нашло применение на большинстве новых заводов, работающих по сухому способу производства. В шаровой (трубной) мельнице совмещены процессы сушки, тонкого измельчения и перемешивания компонентов сырьевой смеси. Из мельницы сырьевая смесь выходит в виде тонкодисперсного порошка — сырьевой муки.

Возрастающие требования к экономии расхода топлива вынуждают перерабатывать по сухому способу материалы с все более высокой влажностью. С другой стороны такие материалы характеризуются пониженной плотностью и соответственно прочностью. Предварительное измельчение таких материалов целесообразно осуществлять в мельницах самоизмельчения « Аэрофол», позволяющих перерабатывать сырьё влажностью до 25 %. Однако полностью высушиться сырьё при этом не успевает, и в шаровой мельнице одновременно с доизмельчением крупных частиц и получением однородной сырьевой массы должна производиться её досушка.

Сырьевая мука подается в железобетонные силосы, где производится корректирование ее состава до заданных параметров и гомогенизация путем перемешивания при помощи сжатого воздуха. Далее готовая шихта поступает на обжиг во вращающиеся печи с запечными теплообменниками. Полученный клинкер охлаждают в охладителе и подают на склад, где создается его запас, обеспечивающий бесперебойную работу завода. Вместе с тем выдерживание клинкера на складе повышает качество цемента. На складе также хранят гипс и активные минеральные добавки. Эти компоненты предварительно должны быть подготовлены к помолу. Активные минеральные добавки высушивают до влажности не более 1 %, гипс подвергают дроблению. Совместный тонкий размол клинкера, гипса и активных минеральных добавок в шаровых (трубных) мельницах обеспечивает получение цемента высокого качества. Из мельниц цемент поступает в склады силосного типа. Отгружают цемент либо навалом( в автомобильных и железнодорожных цементовозах, специализированных судах), либо в таре – многослойных бумажных мешках.

Основное преимущество сухого способа производства – снижение расходов топлива. Также при сухом способе на 35 – 40 % уменьшается объем печных газов, что соответственно снижает стоимость обеспыливания и предоставляет большие возможности по использованию теплоты отходящих газов для сушки сырья. Важное достоинство сухого способа производства и более высокий съем клинкера с 1 м3 печного агрегата. Еще немаловажным фактором является то, что при обжиге по сухому способу значительно сокращается расход пресной воды.

В мировой цементной промышленности сухой способ производства занял ведущее место. В настоящее время доля сухого способа занимает в Японии, Германии и Испании 100 %, в других развитых странах – 70 – 95 %. В России доля сухого способа производства всего 13 %.

В приложении 1 изображена схема размещения оборудования технологической линии по производству цемента сухим способом производительностью 3000 т/сут. За исходное сырье приняты известняк и глина. Известняк проходит двухстадийное дробление в щековых, а затем в молотковых дробилках. Глина измельчается в валковых дробилках и сушится в сушильных барабанах. Каждый компонент сырьевой шихты, поступающий со склада, направляется в бункера 1, снабженные затворами и весовыми дозаторами 2, и далее к конвейерам 3, доставляющим их в загрузочную воронку мельницы 4.

В отделении для помола сырья установлены две сырьевые мельницы 4 размером 4,2×10 мм. При влажности шихты, не превышающей 8% , мельница работает с подводом сушильного горячего газа от запечных теплообменников. При большей влажности сырья устанавливают топочное устройство, из которого в мельницу дополнительно подают горячий газ.

Каждая мельница работает по схеме пневматической разгрузки с воздушно-проходным сепаратором 5. Крупка, отделенная сепаратором, возвращается в мельницу на домол, готовый продукт через циклоны 14, аэрожелобы и расходомер поступает в силосы 13 сухой сырьевой муки, оборудованные системой смесительной аэрации. Из силосов 13 сырьевая мука по аэрожелобам 15 и затем пневматическими подъемниками направляется в циклонный теплообменник (10, 11), где нагревается газами, выходящими из печи, до 700... 750 °С и частично (до 20%) декарбонизуется, после чего поступает во вращающуюся печь 12.

При нормальном режиме работы газы, отходящие из теплообменников 11, направляются дымососом 9 в сырьевые мельницы, из которых дымососом 6 подаются в электрофильтр 7 на обеспыливание и затем дымососом 8 — в дымовую трубу. Температура выходящих из мельницы газов около 50°С. Но если мельница не работает, то газы, выходящие из циклонного теплообменника с температурой 300...350°С, в газоходе охлаждаются распыленной водой до требуемой температуры.

Особенность процесса обжига состоит в том, что дегидратация сырья и частично декарбонизация перенесены в зону запечных теплообменников, вследствие чего печь получается короче по сравнению с печью соответствующей производительности, работающей по мокрому способу. Выданный печью клинкер проходит через охладитель 16, из которого пластинчатым конвейером 18 подается в силосы 19, а затем через дозаторы 20 по конвейеру 21 поступает вместе с добавками на помол в мельницы 22. Цемент из мельницы подается пневмокамерными насосами 23 в силосы 24 или в упаковочное отделение. Отработанные газы из охладителя 16 поступают в бункер 17.

2.3 Особые виды портландцемента

Для более полного удовлетворения специфических требований отдельных видов строительства промышленность выпускает особые виды портландцемента.

При получении портландцементов с заданными специальными свойствами используют следующие основные пути: 1) регулирование минерального состава и структуры цементного клинкера, оказывающих решающее влияние на строительно-технические свойства цемента; 2) регулирование тонкости помола и зернового состава цемента, влияющих на скорость твердения, прочность, тепловыделение и другие важнейшие свойства вяжущего; 3) изменение вещественного состава портландцемента введением в него активных минеральных и органических добавок, позволяющих направленно изменять свойства вяжущего, экономить клинкер и расход цемента в бетоне.

Виды цемента:

Быстротвердеющий портландцемент

Cульфатостойкий портландцемент

Цемент с поверхностно - активными добавками

Гидрофобизирующие добавки

Белые портландцементы

Цветные портландцементы

Тампонажные портландцементы

Пуццолановый портландцемент

Шлаковые цементы

Глиноземистый цемент

Расширяющиеся цементы

Быстротвердеющий портландцемент (БТЦ) .

Быстротвердеющий портландцемент (БТЦ) – это портландцемент с минеральными добавками, который отличается интенсивным нарастанием прочности в первый период твердения. Повышенная механическая прочность БТЦ достигается надлежащим подбором минералогического состава клинкерной марки БТЦ 400 и 500. Для этого вида цемента нормируется прочность не только в 28-суточном возрасте, но и в 3-суточном. Предел прочности при сжатии через 3-е суток должен быть не менее 20-25 МПа соответственно. БТЦ предназначен для изготовления железобетонных конструкций и изделий в заводских полигонных условиях, а также для скоростного строительства. Применение БТЦ дает возможность отказаться от тепловлажностной обработки бетона.

Cульфатостойкий портландцемент.

 Сульфатостойкость обеспечивается снижением содержания в клинкере алюминатов кальция, главным образом трехкальцевого алюмината 3CaO*Al2O3. Выпускают сульфатостойкий портландцемент, в который не допускается введение активных минеральных добавок и сульфатостойкий портландцемент с активными минеральными добавками. Активность данного цемента меньше, чем БТЦ марки 400 и 500.

Цемент с поверхностно - активными добавками (ПАВ).

Для улучшения некоторых свойств цемента допускается введение при помоле поверхностно-активных добавок (пластифицированных и гидрофобных) в количестве 0,3 от массы цемента в пересчете на сухое вещество. Абсорбируясь на зернах цемента, пластифицированные добавки образуют на них защитные пленки, устраняющие сцепление зерен цемента друг с другом. В результате растворы и бетоны на таком цементе приобретают повышенную подвижность и удобоукладываемость.

Белые портландцементы.

Отличаются от обычных цветом. Сырьем служат известняки и глины, содержащие минимальное количество красящих оксидов: железа, марганца, титана. Тонкость помола несколько выше, остаток носителя не больше 12%.

Цветные портландцементы.

Для получения цвета на помол клинкера вводят пигменты. Количество пигмента должно быть: минерального – не более 10%, органического – 0,3%.

Тампонажные портландцементы.

Предназначены для тампонирования нефтяных и газовых скважин с целью их изоляции от грунтовых вод. Тампонажным цементам предъявляются жесткие технические требования: высокая текучесть, независимость от температуры и давления, конкретные в зависимости от давления и температуры сроки схватывания, прочность затвердевшего цементного раствора в ранние сроки, обеспечивающая закрепление колонны труб в стволе скважины. Сроки схватывания не ранее 2 часов и не позднее 10 часов.

Пуццолановый портландцемент.

Получается местным помолом портландцементного клинкера нормированного минералогического состава, гипсов и активных минеральных добавок. При повышенных температурах весьма интесивно твердеет, а при автоклавной обработке прочность с бетоном на его основе через 6-8 часов превышает прочность бетона нормального твердения в 28-суточном возрасте. Недостатки: чувствителен к температурным условиям твердения, при 00 С полностью перестает твердеть, поэтому непригоден для зимних работ. Имеет пониженную воздухостойкость и морозостойкость. Выпускают марки 300 и 400. Предназначен для изготовления подземных и подводных конструкций зданий и сооружений. Не допускается его применение для сооружений, работающих в условиях попеременного замораживания и таяния, увлажнения и высыхания.

Шлакопортландцемент (ШПЦ).

Получается местным помолом портландцементого клинкера, гипса и гранулированного доменного шлака. Шлаки должны быть не менее 21% и не более 60%. Чем больше шлака, тем меньше активность цемента. Выпускают марки 300, 400, 500. По сравнению с портландцементом ШПЦ характеризуется замедленным нарастанием прочности в первые сроки, в дальнейшем скорость твердения повышается и к 6-12 месяцам его прочность приближается к прочности портландцемента. Используют при гидротехническом строительстве, в строительстве портовых сооружений. Не рекомендуется применять ШПЦ для конструкций, подвергающихся попеременному замораживанию и таянию, а также при пониженных температурах.

Известковошлаковый цемент (ИШЦ).

Получается совместным помолом доменных шлаков с известью до 30%. Допускается добавка гипса 5% и портландцемента 10-20%. ИШЦ медленно схватывается и медленно твердеет. Прочность изделий на его основе по истечении времени может быть 5-20 МПа. Стоек в пресных и сульфатных водах, на воздухе его прочность снижается. Применяется в строительных растворах для кладки и штукатурки, а также для изготовления низкомарочных бетонов.

Глиноземистый цемент.

Это быстро твердеющие в воде и в воздухе высокопрочные вяжущие, получаемые путем обжига до спекания смеси материала, богатого глиноземом и оксидом кальция, и последующего тонкого помола продукта обжига. Глиноземистый цемент в отличие от обычного портландцемента не содержит ни гипса, ни минеральных добавок. Качество цемента тем выше, чем больше оксида алюминия. Важнейший минерал глиноземистого цемента алюминат кальция, обеспечивающий при нормальных сроках схватывания быстрое твердение цемента. Глиноземистый цемент быстро твердеет, но не быстро схватывается. Сроки схватывания глиноземистого цемента не ранее 30 мин и не позднее 12 часов. С увеличением тонкости помола цемента и повышением температуры воды сроки схватывания сокращаются. Они резко сокращаются также при добавке извести и портландцемента. Поэтому смешивать глиноземистый цемент с другими вяжущими нельзя. Выпускают три марки: 400, 500, 600. Максимальная прочность, выше на 50% от марочной, достигается к 1-му и 3-м годам твердения. Отличается высокой устойчивостью против сульфатных, хлористых, углекислых и других минерализированных вод. Однако, растворы щелочей разрушают цементный камень. Используют глиноземистый цемент при скоростном строительстве, аварийных работах, зимнем бетонировании. На его основе можно получать жаростойкие бетоны.

Расширяющиеся цементы.

Это цементы, растворы на основе которых дают приращение объема. Все эти цементы смешаны, состоят из основного вяжущего и расширяющей добавки. Расширение происходит в результате химической реакции между ними. Известно несколько реакций, вызывающих расширение, а именно гидратация кальция и образование гидросульфоалюмината кальция. Известно несколько видов расширяющихся цементов:

Водонепроницаемый расширяющийся цемент (ВРЦ).

ВРЦ получается на основе глиноземистого цемента и должен удовлетворять следующим требованиям: начало схватывания не ранее 4 мин, конец не позднее 10 мин. Применяют для омоноличивания сборных железобетонных конструкций, гидроизоляции стволов шахт, напорных водопроводных труб, заделки трещин в железобетонных сооружениях.

Гипсоглиноземистый расширяющийся цемент. Сроки схватывания: 10 мин – 4 часа. Расширение должно заканчиваться через трое суток. Применяется для гидроизоляции штукатурок, для заделки швов, для получения водонепроницаемых бетонов.

Расширяющийся портландцемент. Сроки схватывания: 30 мин – 12 часов. Применение перечислено выше.

Напрягающийся цемент.

Это цемент с большим содержанием алюминатной составляющей, что приводит к увеличению объема при твердении. В процессе расширения создает в арматуре предварительное напряжение. Сроки схватывания этих цементов: 30 мин – 4 часа. Прочность через сутки не менее 15 МПа, через 28 суток 50 МПа. Используется в сооружениях, где требуется повышенная газо-, паро- и водонепроницаемость.

Список литературы

1.  Бутт Ю.М., Тимашев В.В. - Портландцемент. М.: Стройиздат, 1974.- 341 с.

2.  Волженский А.В., Буров Ю.С., Колокольников В.С. Минеральные вяжущие вещества. М.: Стройиздат, 1979. – 358 с.

3.  Воробьев, В.А.; Комар А.Г. Строительные материалы: учеб. для вузов.- М., «Стройиздат» 1971. - 456 с.

4.  13. Колокольников В.С. - Производство цемента. М.: Высшая школа, 1967. – 548 с.

5.  Сулименко, Л.М. Технология минеральных вяжущих материалов и изделий на их основе: учеб. для вузов. – 4-е изд., перераб. и доп. – М.: Высш. шк., 2005. – 334 с.




1. Экономика Пакистана
2. ru Все книги автора Эта же книга в других форматах Приятного чтения Жан Расин Федра Phedre
3. Особенности летной эксплуатации вертолета Ми-8Т в горных условиях
4. Синдром Дресслера
5. Назовите две группы частей речи перечислите части речи в каждой из этих групп
6. Детский сад 142 Поволжский федеральный округ Саратов Ленинский район ул
7. РУСАЛОЧКА [2
8. і. Вчитель ~ носій певних знань ~ передавав їх підростаючому поколінню нових людей аби воно було освіченим і.html
9. Социология и другие гуманитарные науки Общество является объектом изучения целого ряда научных дисципл
10. Контрольная работа- Возмещение вреда
11.  ем отра
12. ЗАДАНИЕ по дисциплине Профессиональная этика Вариант 1
13. тематики А
14. Смеpть бандуpиста
15. Тема- Почерк особистість та характер людини План 1
16. электропривод. Функциональная схема электроприводов
17. Вариант 1 50 вопросов 1
18. однодневкой изначально оформленной на номиналов и брошенной ООО у которой были реальные учредители и дир
19. Лекция 10 Аппаратнонезависимый уровень управления виртуальной памятью Большинство ОС используют сегм
20. Философия Эпикура