Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Электрические цепи переменного тока

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2024

Электрические цепи переменного тока

4.1   Основные понятия. Представление синусоидальных функций векторами
4.2   Пассивные элементы электрической цепи
4.3   Сдвиг фаз между током и напряжением. Понятие двухполюсника
4.4   Векторные диаграммы
4.5   Электрические цепи однофазного переменного тока
4.6   Мощность цепи переменного тока
4.7   Преобразование энергии в электрической цепи
4.8   Источники электрической энергии. Внешняя характеристика
4.9   Треугольники напряжений, токов, сопротивлений и проводимостей
4.10 Последовательное и параллельное соединения.
         Эквивалентные параметры

4.11 Явление резонанса
4.12 Электрические LC-фильтры
4.13 Электрические RC-фильтры
4.14 Символический метод расчета
4.15 Трехфазные цепи переменного тока
4.16 Расчет трехфазных цепей
4.17 Несинусоидальные периодические ЭДС и токи

Основные понятия. Представление синусоидальных функций векторами

Электрические цепи, в которых действуют изменяющиеся во времени синусоидальные токи и напряжения называются цепями переменного тока.

Любая синусоидальная функция времени a(t) может быть однозначно задана тремя параметрами: амплитудой, частотой и начальной фазой. Ее значение в любой момент времени t определяется выражением вида

a(t) = a = Amsin(wt+ya), где

(1)

Am - максимальное значение функции или ее амплитуда;

w - угловая частота или скорость изменения аргумента функции, выраженная в [радиан/с];

ya- начальная фаза (аргумент функции в момент времени, принятый за начало отсчета, т.е. при t = 0) в [радиан].

Аргумент синусоидальной функции wt+ya , называется фазой или фазовым углом. Он определяет значение функции a(t) в любой момент времени.

Кроме угловых величин, аргумент синусоидальных функций можно представить также через временные величины, используя связь угловой частоты с частотой f [Гц=1/с] или с периодом T=1/f [с] в виде w =2p f =2p /T. Тогда wt+ya = 2p(t+yaT/2p)/T. Этому представлению соответствуют верхние обозначения оси абсцисс на рис. 1.

В электрических цепях переменного тока синусоидальными функциями времени являются ток, падение напряжения и ЭДС

i = Imsin(wt+yi) ; u = Umsin(wt+yu) ; e = Emsin(wt+ye) .

Для этих величин принят ряд соглашений по обозначениям, имеющим нормативную силу.

Мгновенные значения токов, напряжений и ЭДС следует обозначать строчными буквами в виде i , u и e .

Максимальное значение или амплитуда обозначается соответствующей прописной буквой с индексом m (Im, Um, Em).

Помимо этих величин в цепях переменного тока широко используют т.н. действующие значения. Понятие действующего значения определяется из условия равенства теплового эффекты переменного и постоянного токов. Пусть через некоторый участок электрической цепи с сопротивлением r протекает переменный ток i. Тогда по закону Джоуля-Ленца на этом участке за время T, соответствующее периоду тока i, будет выделено количество тепла равное

.

Обозначим через I некоторый постоянный ток, при протекании которого по тому же участку цепи за время T выделится такое же количество тепла. Тогда с учетом того, что i = Imsin(wt+yi) получим:

,

(2)

т.е. величина постоянного тока эквивалентного переменному току по количеству выделяемого тепла называется действующим или среднеквадратичным значением переменного тока. Как следует из выражения (2), действующее и амплитудное значения синусоидального тока связаны между собой постоянным коэффициентом.

По аналогии с током действующие значения вводятся для напряжений и ЭДС

.

(3)

Действующие значения обозначаются прописными буквами без индекса.

Кроме действующих значений для синусоидальных величин иногда используются также средние значения. Под средним значением любой величины за интервал времени от t1 до t2 понимается

.

Но интеграл от синусоидальной функции за период равен нулю, поэтому для определения среднего значения используют интервал времени в половину периода. Тогда для тока получим:

.

(4)

Для напряжений и ЭДС средние значения определятся аналогично

.

(5)

ЗАДАЧА

Описание электромагнитных процессов в цепях переменного тока с помощью синусоидальных функций времени возможно только для простейших случаев. Уже при смешанном соединении элементов выражения получаются настолько сложными, что решение их крайне затруднительно.

Задача существенно упрощается, если синусоидальные функции времени представить в виде векторов. Из курса математики известно, что синусоидальная функция времени a(t) = Amsin(wt+ya) является проекцией на ось ординат вектора длиной Am, вращающегося с угловой частотой w . Причем, положение этого вектора в начальный момент времени t = 0 должно составлять угол ya с осью абсцисс (рис. 2 а) и б)).

Если изобразить таким образом несколько векторов, соответствующих функциям с одинаковыми угловыми частотами, то они будут вращаться синхронно, сохраняя взаимное положение. Поэтому при исследовании соотношений синусоидальных функций можно считать векторы неподвижными и изобразить в положении, соответствующем любому произвольному моменту времени. Очевидно, что самое простое построение получится, если принять t = 0, т.е. построить векторы так, чтобы их углы с осью абсцисс соответствовали начальным фазам.

Для построения изображающих векторов можно использовать любую координатную систему на плоскости, однако наиболее удобной для проведения расчетов является комплексная плоскость (рис. 2 в)). В этом случае изображающий вектор Am сопоставляется с комплексным числом и его можно определить четырьмя различными способами или формами записи:

  1.  алгебраическая форма - Am = p + jq соответствует записи комплексного числа в виде вещественной p = ReA и мнимой q = ImA составляющих (в отличие от математики, в электротехнике буквой i обозначают ток, поэтому мнимую единицу принято записывать символом j);
  2.  тригонометрическая форма - Am = Am(cosy a+jsin y a) является результатом записи вещественной и мнимой составляющих через модуль Am и аргумент комплексного числа y a в виде p= Amcosy a и q= Amsiny a ;
  3.  показательная форма - Am = Am e jy a получается применением к тригонометрической форме формулы Эйлера cosy a+jsin y a = e jy a ;
  4.  полярная форма - Am = Am Ð y a является краткой записью модуля и аргумента комплексного числа и не может использоваться для математических операций с комплексными числами.

Между различными формами записи комплексных чисел или изображающих векторов существуют очевидные соотношения, которые для наглядности сведены в таблицу.

Таблица 1.

Формы записи

Am = p + jq

Am=Am(cosya+jsinya)

Am = Am e jy a

Am = p + jq 

-

p= Amcosy a

q= Amsiny a

p= Amcosy a

q= Amsiny a

Am =Am(cosya+jsinya)

-

Am = Am

y a = y a

Am = Am e jy a

Am = Am

y a = y a

-

Комплексное число Am называется комплексной амплитудой. Пользуясь тем, что амплитудные и действующие значения связаны между собой константой, можно ввести понятие комплексного действующего значения A , как вектора, модуль которого равен действующему значению соответствующей величины. Мнимая составляющая этого вектора, если его привести во вращение, не является исходной синусоидальной функцией, но для расчетов комплексные действующие значения имеют большое значение.

Замена синусоидальных функций a(t) комплексными числами и изображающими их векторами A позволяет перейти от тригонометрических функций времени к алгебраическим. При этом исходные синусоидальные функции времени можно считать оригиналами, а комплексные числа и векторы их изображениями или символами. Поэтому метод расчета электрических цепей, использующий такое представление функций называется символическим.

Любой математической операции в области оригиналов будет соответствовать некоторая операция в области изображений. Без доказательства сведем в таблицу основные математические операции над оригиналами и изображениями, представляя последние в двух формах: аналитической и графической, т.е. в виде аналитических выражений и соответствующих операций с векторами.

Таблица 2.

Оригинал

Изображение

a(t)=Amsin(w t+y a)

A=p+jq=Ae jya

C× a(t)=С× Amsin(w t+y a)

C× A=C(p+jq)=C× Ae jya

b(t)=a1(t)+a2(t)

B=A1+A2=

=(p1+p2)+j(q1+q2)

b(t)=a1(t)-a2(t)

B=A1- A2=

=(p1- p2)+j(q1- q2)

b(t)=a1(t)× a2(t)

b(t)=[a(t)]n

B=An= Ane jnya

B=jw A= w × Ae j(y a+p /2)

Таким образом, умножение на константу оригинала соответствует умножению на эту константу модуля изображения, а в графической форме - изменению длины вектора.

Сложение оригиналов соответствует операции сложения комплексных чисел изображений или сложению изображающих векторов. Для операции сложения комплексных чисел удобнее использовать алгебраическую форму. Вектора можно складывать по правилу параллелограмма или пристраивая к концу вектора одного слагаемого вектор другого.

Вычитание векторов также можно производить двумя способами. Можно сложить уменьшаемое с противоположно направленным вектором вычитаемого или построить вектор разности между концами векторов.

Операции умножения оригиналов соответствует умножение комплексных чисел изображений или построение вектора произведения, модуль которого равен произведению модулей сомножителей, а аргумент - сумме аргументов сомножителей. Умножение комплексных чисел нужно производить в показательной форме.

Взятию производной или интеграла от синусоидальной функции времени в области изображений соответствует умножение или деление на jw комплексного числа изображения исходной функции. На комплексной плоскости это соответствует изменению длины исходного вектора и поворот его на 90° в положительную или отрицательную сторону.

При операциях с комплексными числами и изображающими их векторами большую роль играют числа, модуль которых равен единице. Они называются операторами поворота. Как следует из таблицы 2, при умножении комплексных чисел модули их перемножаются, а аргументы складываются. На комплексной плоскости сложению аргументов соответствует операция поворота вектора множимого на угол равный аргументу множителя. Если модуль множителя равен единице, то результирующий вектор не изменит своей длины, а просто повернется относительно исходного положения на соответствующий угол.

Наиболее распространенными операторами поворота являются числа 1, j , -1 и -j . Результаты умножения произвольного комплексного числа A на эти числа показаны в таблице 3.

E

E× A

1

ej0

Ae jy 

j

ejp /2

Ae j(y +p /2)

-1

ejp 

Ae j(y ± p )

-j

e- jp /2

Ae j(y - p /2)

Для исследования взаимных отношений различных величин, векторы токов, напряжений и ЭДС строятся совместно на одной комплексной плоскости и такая совокупность векторов называется векторной диаграммой.

Пассивные элементы электрической цепи

Электрическая цепь переменного тока, так же как и цепь постоянного тока, содержит проводники, по которым перемещаются электрические заряды. Количество зарядов, проходящих через сечение проводника в единицу времени называется величиной электрического тока. Она зависит от физических свойств и геометрических размеров проводника, а также от разности потенциалов. Связь между этими величинами называется законом Ома.

Закон Ома справедлив всегда, поэтому для любого проводящего участка электрической цепи в любой момент времени можно написать

u = ir = i/g или i = u/r = ug ,

(1)

где u и i - падение напряжения и ток, а r = 1/g и g = 1/r - постоянные коэффициенты, называемые сопротивлением и проводимостью данного участка.

Величина сопротивления определяется коэффициентом, зависящим от свойств проводящей среды и называемым удельным сопротивлением r , а также длиной l и площадью поперечного сечения s участка, в виде r = r l/s. Сопротивление измеряют в омах [Ом] , а обратную ему величину проводимость g в сименсах [См].

Пусть ток в цепи с сопротивлением r изменяется по закону ir = Imsin(wt+yi). Тогда в соответствии с выражением (1) падение напряжения в ней будет

ur = rir = rImsin(wt+yi) = Umsin(wt+yu) .

(2)

Отсюда следует, что начальные фазы тока и напряжения на этом участке одинаковы yi = yu , а амплитуда напряжения равна Um = rIm. Временные диаграммы, соответствующие выражению (2) приведены на рис. 1 а). Там же показано изображение сопротивления на электрических схемах с условно положительными направлениями тока и напряжения.

Амплитудные и действующие значения синусоидальных величин связаны между собой постоянным коэффициентом, поэтому для действующих значений тока и напряжения на сопротивлении можно написать U = rI или I = U/r = gU .

Синусоидальные функции выражения (2) можно заменить комплексными числами

(3)

и изобразить их на векторной диаграмме рис. 1б) с соответствующим представлением на схеме.

Падение напряжения, вызванное протеканием тока, возникает на всех участках электрической цепи. Однако при расчетах его принято изображать отдельным элементом называемым сопротивлением или резистором.

ЗАДАЧА 1 

В электрических цепях с синусоидальными переменными токами и напряжениями помимо статических явлений, свойственных цепям постоянного тока, появляются динамические эффекты, т.е. эффекты связанные с изменением этих величин во времени.

Так на любом участке электрической цепи, по которому протекает переменный ток будет действовать ЭДС самоиндукции eL, наводимая изменяющимся во времени магнитным потоком и равная

.

(4)

Магнитный поток обязательно охватывает все участки электрической цепи, следовательно, при переменном токе на всех участках будет возникать дополнительное падение напряжения

,

(5)

где величина xL=w L , имеющая размерность сопротивления, называется индуктивным сопротивлением. Амплитуда напряжения, возникающего за счет ЭДС самоиндукции, равна Um=xLIm , а его начальная фаза y u = y i +p /2 больше начальной фазы протекающего тока на p /2, т.е. напряжение опережает по фазе ток на 90° . Временные диаграммы, соответствующие выражению (5), приведены на рис. 2 а).

Из выражения для амплитуды падения напряжения на индуктивности можно определить его действующее значение UL=xLIL или действующее значение тока IL=UL/xL=bLIL, где bL=1/xL называется индуктивной проводимостью.

Индуктивное сопротивление по сути своей является распределенным параметром, т.к. магнитный поток существует везде, где протекает электрический ток, и на всех участках электрической цепи будет наводиться ЭДС самоиндукции, пропорциональная соответствующему индуктивному сопротивлению. Однако на практике индуктивность всей цепи или отдельного участка считают сосредоточенной в отдельном элементе, изображаемом на схемах в виде рис. 2 а).

Выражение (5) можно представить через символические комплексные числа в виде:

,

(6)

где ZL=jxL=xLe jp /2 - комплексное индуктивное сопротивление.

Векторная диаграмма и схема замещения для выражения (6) приведены на рис. 2 б).

Из выражения (6) можно определить комплексное значение тока через падение напряжения

,

(7)

где YL=1/ZL=1/jxL= - jbL =bLe - jp /2 - комплексная индуктивная проводимость.

ЗАДАЧА 2

Из курса физики известно, что заряд уединенного проводящего тела q пропорционален его потенциалу u, т.е. q = Cu . Коэффициент пропорциональности C между зарядом и потенциалом называется емкостью и при неизменных геометрических размерах и свойствах среды является константой. Емкость измеряется в фарадах [Ф] . Фарада является слишком крупной величиной, поэтому для практических целей пользуются ее десятичными долями: микро-, нано- и пикофарадами (10-6, 10-9 и 10-12 Ф).

Если за бесконечно малый промежуток времени dt заряд тела изменился на величину dq , то изменение потенциала за этот же интервал времени составит du=dq/C или dq=Cdu . Отнесем изменение заряда к промежутку времени, за который оно произошло. Тогда с учетом того, что электрический ток есть скорость изменения заряда, т.е. i=dq/dt, получим

.

(8)

Пусть напряжение на емкости изменяется во времени по синусоидальному закону uС = Umsin(wt+yu). Тогда из выражения (8) ток в емкости определится в виде

.

(9)

Произведение bC= wC имеет размерность проводимости [1/Ом=См] и называется емкостной проводимостью. Отсюда амплитуда тока Im=bCUm , а его начальная фаза y i = y u + p /2 . Таким образом, ток в емкости опережает падение напряжения на ней на 90° . Временные диаграммы, соответствующие этим соотношениям тока и напряжения на емкости приведены на рис. 3 а).

Пользуясь связью между амплитудными и действующими значениями, для действующих значений тока и падения напряжения на емкости можно записать IС=bCUС или UC=IC/bC=xCIC , где величина xC=1/bC называется емкостным сопротивлением.

При описании электромагнитных процессов в электрических цепях часто требуется выражение для мгновенного значения напряжения на емкости. Его можно получить из выражения (8) в виде

.

(10)

Из выражения (8) следует, что всякое изменение потенциалов в электрической цепи будет вызывать появление токов, приводящих к перераспределению зарядов. Причем, под токами в этом процессе следует понимать как токи проводимости, так и токи смещения, возникающие между всеми участках цепи. Поэтому емкостная проводимость, как и емкость, является распределенным параметром, но для расчетов ее, аналогично индуктивности, представляют сосредоточенной в отдельном элементе, который изображается на схеме в виде рис. 3 а).

Связь между напряжением и током в емкости можно представить также комплексными числами и соответствующими векторами (рис. 3 б)) в виде

,

(11)

где YC=jbC=bCe jp /2 - комплексная емкостная проводимость.

Отсюда можно также определить комплексное падение напряжения на емкости

,

(12)

где ZC=1/YC=1/jbC= - jxC = xCe - jp /2 - комплексное емкостное сопротивление.

Сдвиг фаз между током и напряжением. Понятие двухполюсника

Рассмотрим электрическую цепь состоящую из последовательно включенных сопротивления r, индуктивности L и емкости C (рис. 1 а)).

Протекающий ток i создает на всех элементах цепи падения напряжения, сумма которых равна напряжению на входе u. Для синусоидальных функций времени это можно записать в виде выражения

.

(1)

Пусть ток в цепи равен i = Imsin(wt+yi). Подставим это выражение в (1) и получим:

.

(2)

Очевидно, что определить из выражения (2) амплитуду и начальную фазу напряжения u сложно. Поэтому перейдем в выражении (1) от оригиналов величин к их символическим изображениям комплексными числами или векторами.

.

(3)

Формально выражение (3) совпадает с записью закона Ома для цепи постоянного тока. Отличие заключается в том, что все величины входящие в него являются комплексными числами изображающими реальные функции времени. Поэтому его можно назвать законом Ома в области изображений.

Графически выражение (3) можно представить векторной диаграммой рис. 1 б). Здесь вектор входного напряжения U складывается из трех составляющих. Вектор падения напряжения на резистивном сопротивлении rI совпадает по направлению с током I , т.к. отличается от него только вещественным коэффициентом r . Вторая составляющая jxLI перпендикулярна вектору тока I и опережает его по фазе на 90°. Это связано с умножением на оператор поворота j вектора xLI , совпадающего по направлению с током. Третий вектор -jxСI отстает по фазе от тока на 90° , т.к. образуется из него умножением на оператор поворота -j .

Величина Z = r+j(xL- xC) = r+jx = Ze jj в выражении (3), имеющая размерность сопротивления, называется комплексным сопротивлением. Его вещественная часть r называется резистивным сопротивлением, а мнимая x = xL- xC - реактивным сопротивлением. Из выражения (3) следует, что комплексное сопротивление является отношением комплексного падения напряжения к комплексному току

,

(4)

поэтому его модуль Z можно определить через отношение модулей напряжения и тока Z=U/I или через резистивную и реактивную составляющую . Модуль комплексного сопротивления называется полным сопротивлением.

Аргумент комплексного сопротивления j есть разность начальных фаз напряжения и тока, но его можно также определить по вещественной и мнимой составляющим комплексного сопротивления как j = arctg(X/R). Следовательно, сдвиг фаз между напряжением и током определяется только параметрами нагрузки и не зависит от параметров тока и напряжения в цепи. Из выражения (4) необходимо следует, что положительные значения j соответствуют отставанию тока по фазе, а отрицательные - опережению.

Таким образом, изображение напряжения на входе цепи можно представить через комплексное сопротивление в виде

.

(5)

Теперь можно вернуться к определению оригинала напряжения u на входе цепи рис. 1 а) преобразованием изображения (5) -

.

(6)

Из выражения (3) можно представить комплексное сопротивление суммой трех величин в виде

Z=r+jxL- jxC=Zr+ZL+ZC

(7)

и изобразить эти соотношения на векторной диаграмме (рис. 1 в)). Векторная диаграмма сопротивлений подобна векторной диаграмме напряжений, т.к. комплексное сопротивление Z аналитически можно получить делением комплексного напряжения U на комплексный ток I . Графически это соответствует повороту векторной диаграммы напряжений на угол -y i и изменению ее масштаба на 1/I.

Соотношение между напряжением и током в электрической цепи можно выразить также величиной обратной сопротивлению

.

(8)

Величина Y называется комплексной проводимостью. Ее модуль является величиной обратной модулю комплексного сопротивления, а аргумент всегда равен его аргументу, но имеет противоположный знак.

Вещественная составляющая комплексной проводимости называется резистивной проводимостью, а мнимая - реактивной проводимостью.

Между резистивными (R и G) и реактивными (X и B)составляющими комплексной проводимости и сопротивления существует очевидное соответствие, вытекающее из понятия комплексного числа.

.

(9)

Отсюда следует:

  •  резистивные и реактивные составляющие комплексного сопротивления и проводимости в общем случае не являются взаимно обратными величинами;
  •  резистивные и реактивные составляющие комплексного сопротивления и проводимости являются взаимно обратными величинами только в случае отсутствия второй составляющей;
  •  реактивные составляющие комплексного сопротивления и проводимости всегда противоположного знака.

Векторные диаграммы

В цепях переменного тока все токи и напряжения являются синусоидальными функциями времени. Поэтому аналитические зависимости в виде уравнений не дают представления о реальных соотношениях величин. При переходе от оригиналов функций и параметров к их изображениям в виде комплексных чисел задача анализа несущественно упрощается, т.к., в отличие от цепей постоянного тока, где все величины однозначно характеризуются одним числом, в области изображений каждая величина определяется двумя числами, каждое из которых в общем случае недостаточно для полной оценки состояния цепи. Помочь в анализе соотношений между величинами и параметрами электрический цепи может их геометрическое представление в виде векторной диаграммы.

Из курса математики известно, что любое комплексное число может быть изображено в виде точки на плоскости с ортогональной системой координат, в которой на оси абсцисс откладывается вещественная составляющая, а на оси ординат мнимая. Такое изображение соответствует алгебраической форме записи комплексного числа. Если начало координат соединить отрезком прямой с точкой изображающей комплексное число, то длина этого отрезка и его угол с вещественной осью также могут служить изображением комплексного числа. Причем, для однозначного определения угла нужно задать положительное направление отрезка, т.е. определить его как радиус-вектор или просто вектор.

Векторной диаграммой называется совокупность векторов на комплексной плоскости, соответствующая комплексным величинам и/или параметрам электрической цепи и их связям.

Векторные диаграммы могут быть точными и качественными. Точные диаграммы строятся с соблюдением масштабов всех величин по результатам численного анализа. Они предназначены в основном для проверки расчетов. Качественные векторные диаграммы строятся с учетом взаимных связей между величинами и обычно предшествуют расчету или заменяют его. В качественных диаграммах масштаб изображения и конкретные значения величин несущественны, важно только, чтобы в них были правильно отражены все связи между величинами, соответствующие связям и параметрам элементов электрической цепи. Качественные диаграммы являются важнейшим инструментом анализа цепей переменного тока.

В цепях переменного тока одной из самых распространенных задач является анализ поведения цепи при изменении в широких пределах какой-либо величины или параметра.

Пусть, например, требуется исследовать изменение тока в цепи, представленной на рис. 1 а), при постоянном напряжении на входе и изменении резистивного сопротивления в пределах 0 > R > µ .

Падение напряжения на входе уравновешивается суммой падений напряжения на R и L, т.е. u = uR+uL = Ri + Ldi/dt или для изображений

U = UR + UL = RI + jw LI = RI + jXLI.

(1)

Из выражения (1) следует, что

  •  векторы UR и UL всегда перпендикулярны друг другу, т.к. каждый из них представляет собой вектор тока I, умноженный на соответствующую константу (R или XL), а в падении напряжения UL присутствует в качестве множителя оператор поворота на 90° - j;
  •  сумма векторов UR и UL постоянная и равна вектору U .

Для упрощения построений, не ограничивая в то же время общности рассуждений, совместим вектор U с вещественной осью (рис. 1 б)). Тогда в соответствии с условиями (1) при любых значениях R векторы UR и UL будут составлять с вектором U прямоугольные треугольники. Как известно, любой треугольник может быть вписан в окружность, причем дуги, на которые опираются углы вписанного треугольника равны двойному значению угла. Так как во всех векторных треугольниках угол между UR и UL равен 90° , то все они опираются на дугу в 180° , т.е. на диаметр, которым является постоянный вектор входного напряжения U. Следовательно, все треугольники векторов UR , UL и U вписываются в одну и ту же полуокружность, которая является геометрическим местом точек перемещения конца вектора UR при всех изменениях значения R.

Векторная диаграмма, в которой при вариации параметров геометрическим местом точек перемещения конца какого-либо вектора является окружность или полуокружность, называется круговой диаграммой.

Так как векторы UR и UL связаны с вектором тока I постоянными коэффициентами, то из круговой диаграммы вектора UR можно получить векторную диаграмму тока и она также будет круговой. Для получения вектора I, в соответствии с выражением (1), достаточно разделить все элементы треугольников UR , UL и U на R или jXL. При этом мы получим подобный треугольник, одним из катетов которого будет I. Однако деление на R нецелесообразно, т.к. эта величина переменная и для сохранения масштаба треугольников следует произвести деление на jXL. В результате диаметр полуокружности станет равным U/XL и она вследствие деления на оператор поворота j повернется относительно начала координат на угол - 90° (рис. 1 в)). Полученная полуокружность и будет круговой диаграммой вектора входного тока I. Из нее можно заключить, что при R = 0 вектор тока отстает от напряжения на 90° и по модулю равен U/XL. При R ® µ модуль и аргумент вектора тока стремятся к нулю.

Другой важной разновидностью векторных диаграмм являются линейные диаграммы.

Линейной диаграммой называется векторная диаграмма, в которой геометрическим местом точек конца какого-либо вектора при вариации параметра является прямая линия.

Примером такой диаграммы может служить диаграмма входного тока I пассивного двухполюсника при постоянном напряжении на входе U=const и изменении его реактивной проводимости в пределах - µ > B > +µ , если активная составляющая проводимости G остается постоянной. Примером электрической цепи с такой вариацией реактивной проводимости является параллельный резонансный контур при вариации частоты 0 < w <µ .

Действительно, активная составляющая тока любого двухполюсника равна Iа=GU, а реактивная Iр=jBU, т.е. эти составляющие всегда перпендикулярны друг другу или, иначе говоря, находятся в квадратуре, т.к. являются производными от одного и того же вектора U, но Iр содержит оператор поворота на 90° - j. Входной ток представляет собой сумму активной и реактивной составляющих I = Iа+ Iр, причем, активная составляющая отличается от вектора U постоянным вещественным множителем G, поэтому всегда совпадает с ним по фазе (рис. 2 б)) и имеет постоянный модуль. Вектор реактивной составляющей имеет переменный модуль - µ < | Iр| < + µ и Iа ^ Iр , следовательно, он будет располагаться на прямой проходящей через начало координат перпендикулярно вектору U . Поэтому суммарный вектор входного тока I при изменении реактивной проводимости будет скользить своим концом по линии перпендикулярной векторам Iа и U и проходящей через конец вектора Iа.

Для качественного анализа электромагнитных процессов в электрической цепи переменного тока можно строить векторные диаграммы, пользуясь только принципиальной схемой.

Построим качественную векторную диаграмму для цепи рис. 3.

Построение всегда можно начинать с произвольно выбранной величины, но т.к. операции суммирования векторов производятся проще, чем операции разложения на составляющие, то лучше в качестве начального вектора выбирать напряжение или ток элемента цепи, расположенного как можно дальше от входа. Тогда входные величины будут получены постепенным сложением векторов.

Пусть вектор тока I5 расположен так, как это показано на рис. 3. Ток I5 протекает в емкости C2, подключенной к узлам b и c цепи. Поэтому Ubc=UC2. Но падение напряжения на емкости отстает от тока в ней на 90° , следовательно, Ubc нужно расположить на луче перпендикулярном вектору I5 и смещенном в сторону отставания, т.е. по часовой стрелке.

Между узлами b и c помимо емкости C2 включена ветвь, содержащая резистор r и индуктивность L. Ток в активно-резистивном двухполюснике отстает от напряжения на некоторый угол j , конкретное значение которого определяется отношением индуктивного сопротивления w L к резистивному r. Поэтому конец вектора тока I4 в r-L ветви рис. 3 может находиться в любой точке сектора комплексной плоскости в 90° , ограниченного лучом совпадающим по направлению с Ubc и перпендикулярным ему лучом, смещенным в сторону отставания. Зададим произвольно точку конца вектора I4 в этом секторе. Тогда падение напряжения на резисторе r должно совпадать по направлению с I4, а падение напряжение на индуктивности L - опережать I4 на 90°, причем в сумме Ur и UL должны быть равны Ubc. Построение векторов Ur и UL, удовлетворяющих этим условиям, проще всего произвести проектированием конца вектора Ubc на направление вектора I4. Тогда вектор, совпадающий с I4 по направлению, будет Ur, а перпендикулярный ему - UL.

Уравнение Кирхгофа для узла b цепи можно записать в виде I3 = I4 + I5, поэтому сложение векторов I4 и I5 по правилу параллелограмма даст нам вектор тока I3, протекающего в резисторе R рис. 3. Падение напряжения на нем UR = Uab, как у любого резистора, будет совпадать по фазе с током, следовательно, его можно построить на луче совпадающем по направлению с I3.

По второму закону Кирхгофа разность потенциалов Uac можно представить суммой Uac = Uab+ Ubc = U. Соответственно, вектор входного напряжения U получается сложением по правилу параллелограмма векторов Uab и Ubc рис. 3. Но Uac= UС1. Следовательно, ток в емкости C1 должен опережать напряжение Uac на 90° , поэтому его нужно построить на луче перпендикулярном Uac и смещенном в сторону опережения.

Для узла a цепи справедливо I1 = I2 + I3. В соответствии с этим равенством входной ток I1 получен геометрическим суммированием векторов I2 и I3.

Электрические цепи однофазного переменного тока

1. Основные определения

     Переменным называется электрический ток, величина и направление которого изменяются во времени.
     Область применения переменного тока  намного шире,  чем  постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния. Но физические процессы, происходящие в цепях переменного тока, сложнее, чем в цепях постоянного тока из-за наличия переменных магнитных и электрических полей.
        Значение переменного тока в рассматриваемый момент времени называют мгновенным значением и обозначают строчной буквой
i.
      Мгновенный ток называется периодическим, если значения его повторяются через одинаковые промежутки времени

     Наименьший промежуток времени, через который значения переменного тока повторяются, называется периодом.
     Период
синусоидальными.
         Мгновенное значение синусоидального тока определяется по формуле

          где - максимальное, или , значение тока.
         Аргумент синусоидальной функции называют фазой; величину φ, равную фазе в момент времени t = 0, называют начальной фазой. Фаза измеряется в радианах или градусах. Величину, обратную периоду, называют частотой. Частота f измеряется в герцах.

        В Западном полушарии и в Японии используется переменный ток частотой 60 Гц, в Восточном полушарии - частотой .
       Величину называют круговой, или угловой, частотой. Угловая частота измеряется в рад/c.
         Если у синусоидальных токов начальные фазы при одинаковых частотах одинаковы, говорят, что эти токи совпадают по фазе. Если неодинаковы по фазе, говорят, что токи сдвинуты по фазе. Сдвиг фаз двух синусоидальных токов измеряется разностью начальных фаз

β 

ω

    Мгновенное синусоидальное напряжение (ток, ЭДС) является мнимой частью соответствующей комплексной функции времени.

ω

         Условие возникновения резонанса: , отсюда резонансная частота равна

      .

         Из формулы следует, что режима резонанса можно добиться следующими способами:

  1.  изменением частоты;
  2.  изменением индуктивности;
  3.  изменением емкости.

  Коэффициент  мощности  является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности.
      Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 6.18).

     Из треугольника мощностей получим ряд формул:

,      ,

             Рис.5.18
                                                                ,      .
     При анализе электрических цепей символическим методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока.
     Для цепи, имеющей индуктивный характер (R-L цепи)

,

       где   
      - комплекс напряжения;
      - комплекс тока;
      - сопряженный комплекс тока;
      - сдвиг по фазе между напряжением и током.
     , ток как в R-L цепи, напряжение опережает по фазе ток.

     Вещественной частью полной комплексной мощности является активная мощность.
     Мнимой частью комплексной мощности - реактивная мощность.
     Для цепи, имеющей емкостной характер (R-С цепи), . Ток опережает по фазе напряжение.

.

     Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, - положительна, а в цепи с емкостным характером - отрицательна.

11. Баланс мощностей

     Для схемы на рис.5.19 запишем уравнение по второму закону Кирхгофа. Умножим левую и правую части уравнения на сопряженный комплекс тока

       где    - результирующее реактивное сопротивление;
               I
2- квадрат модуля тока.

     где    - полная комплексная, активная и реактивная мощности источника питания.

     где - активная и реактивная мощности, потребляемые элементами схемы.

     Получим уравнение

     .      (5.24)

Рис. 5.19

     Два комплексных числа равны, если равны по отдельности их вещественные и мнимые части, следовательно уравнение (6.24) распадается на два:

 .     (5.25)

    Полученные равенства выражают законы сохранения активных и реактивных мощностей.

12. Согласованный режим работы электрической цепи.
Согласование нагрузки с источником

     В схеме на рис. 6.20
      - полное, активное и реактивное сопротивления источника ЭДС,
      - полное, активное и реактивное сопротивления нагрузки.
   Активная мощность может выделяться только в активных сопротивлениях цепи переменного тока.
     Активная мощность, выделяемая в нагрузке,

.     (5.26)

     Активная мощность, развиваемая генератором

.
Коэффициент полезного действия для данной схемы:

                    .
                 Рис. 5.20

     Из формулы (5.26) видно, что выделяемая в нагрузке мощность будет максимальной, когда знаменатель минимален. Последнее имеет место при , т.е. при . Это означает, что реактивные сопротивления источника и нагрузки должны быть одинаковы по модулю и иметь разнородный характер. При индуктивном характере реактивного сопротивления источника реактивное сопротивление нагрузки должно быть емкостным и наоборот.

.     (5.27)

   Установим условие,  при котором  от источника к нагрузке будет передаваться наибольшая мощность.

.

     отсюда .

     От источника к нагрузке передается наибольшая мощность, когда

.      .     (5.28)

     Величина наибольшей мощности

.

   Режим передачи наибольшей мощности от источника к нагрузке называется согласованным режимом, а подбор сопротивлений согласно равенствам (6.28) - согласованием нагрузки с источником.

     В согласованном режиме

.

     Половина мощности теряется внутри источника. Поэтому согласованный режим не используется в силовых энергетических цепях. Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке.

Мощность цепи переменного тока

Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна

,

(1)

где u и i - мгновенные значения напряжения и тока.

Величины тока и напряжения, входящие в выражение (1), являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной и для ее оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.

.

(2)

Пусть u=Umsinw t и Imsin(wt-j ), тогда средняя мощность будет равна

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cosj называется коэффициентом мощности.

Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз j между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в ± 90° средняя мощность равна нулю. Максимальные значения напряжения и тока любой электрической машины определяются ее конструкцией, а максимальная мощность, которую они могут развивать - произведением этих величин. Если электрическая цепь построена нерационально, т.е. сдвиг фаз j имеет значительную величину, то источник электрической энергии и нагрузка не могут работать на полную мощность. Поэтому в любой системе источник-нагрузка существует т.н.

"проблема cosj " , которая заключается в требовании возможного приближения cos j к единице.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cosj = U(I cosj ) = UIа = I(U cosj ) = IUа .

(4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

P = I2R = U2/R .

(5)

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].

Выделим подинтегральную функцию выражения (3)

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosj равной средней или активной мощности.

При cosj = 1 (j = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

(7)

Временные диаграммы, соответствующие этому случаю приведены на рис. 1 а).

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cosj = 0 (j = ± p /2) , т.е. для чисто реактивной цепи

(8)

Временные диаграммы, соответствующие чисто индуктивной и чисто емкостной нагрузке приведены на рис. 1 б) и г). Из выражений (8) и временных диаграмм следует, что мощность колеблется относительно оси абсцисс с двойной частотой, изменяя свой знак каждые четверть периода. Это означает, что в течение четверти периода (p > 0) энергия поступает в электрическую цепь от источника и запасается в магнитном или электрическом поле, а в течение следующей четверти (p < 0) она целиком возвращается из цепи в источник. Так как площади, ограниченные участками с положительной мощностью и с отрицательной одинаковы, то средняя мощность отдаваемая источником нагрузке равна нулю и в цепи не происходит преобразования энергии. 

В общем случае произвольной нагрузки 1 > cosj > 0 ( 1< |j | < p /2) и

(8)

Как следует из временных диаграмм рис. 1 в), большую часть периода мощность потребляется нагрузкой (p > 0), но существуют также интервалы времени, когда энергия запасенная в магнитных и электрических полях нагрузки возвращается в источник. Участки с положительным значением p независимо от характера реактивной составляющей нагрузки всегда больше участков с отрицательным значением, поэтому средняя мощность P положительна. Это означает, что в электрической цепи преобладает процесс преобразования электрической энергии в тепло или механическую работу.

Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

ui=uri+uLi+uCi

(9)

Пусть напряжение и ток на входе равны u=Umsinwt и Imsin(wt-j ). Тогда падения напряжения на элементах будут ur= rImsin(wt-j ), uL= w LImsin(wt-j +p /2) = xLImsin(wt-j +p /2), uC= Imsin(wt-j -p /2)/(w C) = xCImsin(wt-j -p /2). Подставляя эти выражения в (9), получим

(10)

Уравнение (10) в левой и правой частях имеет постоянную и переменную составляющие. Постоянная составляющая представляет собой активную или среднюю мощность. Второе слагаемое в правой части это переменная составляющая активной мощности с амплитудой равной P = UIcosj . Третье слагаемое правой части также является переменной составляющей мгновенной мощности, но эта составляющая находится в квадратуре с переменной составляющей активной мощности и имеет амплитуду Q = UIsinj . Эту величину называют реактивной мощностью. Она равна среднему за четверть периода значению энергии, которой источник обменивается с магнитным и электрическим полями нагрузки. Реактивная мощность не преобразуется в тепло или другие виды энергии, т.к. ее среднее значение за период равно нулю.

Реактивную мощность также можно представить через реактивные составляющие тока или напряжения

Q = UI sinj = U(I sinj ) = UIр = I(U sinj ) = IUр .

(11)

В отличие от всегда положительной активной мощности, реактивная мощность положительна при j > 0 и отрицательна при j < 0 .

Из условия равенства переменных составляющих левой и правой частей уравнения (10) можно найти связь между P, Q и S = UI в виде

(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом j , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cosj = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа = I2R = UаI = U2/R = U2G ;

Q = UIр = I2X = UрI = U2/X = U2B ;

S = UI = I2Z = U2/Z = U2Y.

(13)

Треугольник мощностей можно описать также с помощью комплексных чисел и изобразить векторами на комплексной плоскости в виде

,

(14)

где S - комплексная полная мощность, - сопряженный комплексный ток.

Пользуясь представлением активной и реактивной составляющих мощности через активные и реактивные составляющие токов и напряжений (выражения (4) и (11)), треугольник мощностей можно построить в двух вариантах (рис. 3 а) и б)). В первом случае активная и реактивная составляющие полной мощности выражаются через активную и реактивную составляющие напряжения U и треугольник мощностей получается изменением масштаба треугольника напряжений (рис. 3 а)). Во втором случае (рис. 3 б)), построение выполнено с помощью активной и реактивной составляющих тока I.

Очевидно, что все виды мощности имеют одинаковую размерность, поэтому для их отличия от активной мощности, измеряемой в ваттах [Вт], для полной мощности введена единица, называемая вольт-амперы [ВА], а для реактивной мощности - вольт-амперы реактивные [ВАр]

Выражение для активной мощности P = UIcosj позволяет определить коэффициент мощности с помощью ваттметра, вольтметра и амперметра.

Для этого на вход цепи включают приборы по схеме рис. 4 и по их показаниям определяют коэффициент мощности в виде

,

где W, V и A - показания соответственно ваттметра, вольтметра и амперметра действующих значений. Из этого выражения можно также определить угол сдвига фаз j между током и напряжением на входе двухполюсника.

Преобразование энергии в электрической цепи
Мгновенная, активная, реактивная и полная мощности синусоидального тока

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

.

(2)

 

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за . (3)

 

.

Среднее за период значение мгновенной мощности называется активной мощностью , из (3) получим:

, т.е. на входе пассивного двухполюсника теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

1. Резистор (идеальное активное сопротивление).

, поэтому мощность

2. Катушка индуктивности (идеальная индуктивность)

. Поэтому в соответствии с (3) можно записать , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

3. Конденсатор (идеальная  емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

) и отрицательна при опережающем токе (емкостная нагрузка- , так как .

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

(6)

 

Активная, реактивная и полная мощности связаны следующим соотношением:

равен косинусу угла сдвига между током и напряжением. Итак,

, а , 

(9)

 

где .

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению

Если параллельно такой нагрузке , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. . На этом основано применение конденсаторов для повышения до значения на активную составляющие. Ток через конденсатор :

(11)

,

но емкость:

(14)

 

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

 ,

(16)

 

где знак “+” относится к индуктивным элементам .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

Источники электрической энергии. Внешняя характеристика

В цепях переменного тока, также как в цепях постоянного, должны действовать источники электрической энергии. Отличие этих источников заключается лишь в том, что создаваемые ими ЭДС или токи являются синусоидальными функциями времени.

Источники делятся на идеальные и реальные. У идеальных источников отсутствует внутреннее сопротивление или проводимость. Создаваемые ими ЭДС или ток определяются только параметрами источника. В электрической цепи с идеальными источниками величина тока через источник ЭДС или напряжение на источнике тока определяются нагрузкой

На электрических схемах они изображаются точно также как источники постоянного тока, но стрелки в условном обозначении указывают направление принятое за положительное.

Реальные источники электрической энергии имеют внутреннее сопротивление Z или проводимость Y (рис. 1). Однако на переменном токе эти величины в общем случае являются комплексными.

Также как на постоянном токе, реальный источник может быть представлен двумя эквивалентными схемами с источником ЭДС или с источником тока. Внутреннее сопротивление, проводимость и параметры источников связаны между собой отношениями

Y = 1/Z ; J = E/Z ; E = J/Y,

(1)

формально идентичными соответствующим выражениям для источников постоянного тока. ЭДС и ток внутренних источников соответствуют напряжению на выходе в режиме холостого хода и току в режиме короткого замыкания.

ЗАДАЧА 1

Для источников переменного тока невозможно построить вольтамперную характеристику. Ее роль играет внешняя характеристика, т.е зависимость действующего значения напряжения на выходе источника от величины действующего значения тока в нагрузке, при постоянном значении угла сдвига фаз в нагрузке jн.

Рассмотрим электрическую цепь, состоящую из реального источника и нагрузки общего вида (рис. 2). Ток в нагрузке по закону Ома можно определить из выражения

.

(2)

Отсюда, падение напряжения в нагрузке

,

(3)

где - комплексное относительное сопротивление нагрузки.

Падение напряжения в нагрузке можно представить в относительных единицах, если выбрать в качестве базовой величины ЭДС источника. Тогда комплексное относительное напряжение в нагрузке из выражения (3) будет -

.

(4)

Ток в цепи также можно представить в относительных единицах, если в качестве базовой величины выбрать ток короткого замыкания источника Iкз=E/Zs . Отсюда комплексный относительный ток -

.

(5)

Модуль комплексного относительного тока или просто относительный ток можно получить, определив модуль знаменателя выражения (5) из выражения для комплексного относительного сопротивления, в виде

.

(6)

Из выражения (2) с учетом (6) относительное напряжение в нагрузке будет

.

(7)

Выражения (6) и (7) позволяют построить внешнюю характеристику источника электрической энергии в относительных единицах, если в них принять в качестве переменной модуль комплексного относительного сопротивления нагрузки z , при условии постоянства его аргумента d .

Внешние характеристики для относительного сопротивления нагрузки, изменяющегося в пределах 0 < z <µ , при четырех значениях разности углов j нагрузки и внутреннего сопротивления источника построены на рис. 3. Использование относительных единиц позволяет анализировать закономерности функций безотносительно конкретных значений параметров. Любой источник электрической энергии в режиме холостого хода имеет выходное напряжение равное ЭДС внутреннего источника, а в режиме короткого замыкания, ток на выходе равен току внутреннего источника тока. Любой реальный источник обладает также конечным значением внутреннего сопротивления, что позволяет соотнести его с сопротивлением нагрузки и получить для нагрузочного сопротивления, изменяющегося в диапазоне от нуля до бесконечности, изменение относительного сопротивления z в том же диапазоне. Поэтому выбор указанных значений в качестве базовых для относительных единиц позволяет распространить выводы из анализа внешних характеристик на любой реальный источник при всех возможных вариантах нагрузки.

Из выражений (6) и (7) следует, что при определенных условиях относительное напряжение нагрузки и ток могут иметь значение больше единицы. Это означает, что в нагрузке может протекать ток больше тока короткого замыкания источника и существовать напряжение больше ЭДС источника. Определим эти условия.

Для относительного тока i условие i > 1.0 сводится к условию , а для относительного напряжения u - к условию - . Отсюда для тока и напряжения получим соответственно условия

и

(8)

  .

(9)

Так как 0 < z <µ , то соотношения (8) и (9) будут выполняться только для |d | >p /2, если же это условие выполнено, то всегда найдутся такие значения z , при которых эти выражения будут справедливыми. Это означает, что внешняя характеристика будет иметь участки, на которых напряжение в нагрузке превышает ЭДС источника и ток в нагрузке превышает ток короткого замыкания.

Аргумент комплексного относительного сопротивления d представляет разность j н- j s Но т.к. обе величины по абсолютному значению меньше p /2, то условие |d | > p /2 может быть выполнено только, если реактивные составляющие комплексных сопротивлений нагрузки и источника имеют противоположные знаки.

Таким образом, из выражений (8) и (9) можно определить диапазоны относительных сопротивлений, при которых относительный ток и напряжение будут больше единицы в виде

0 < z < - 2cosd и

(10)

.

(11)

Если z одновременно находится в диапазонах, определяемых выражениями (10) и (11), то внешняя характеристика имеет участок, на котором обе относительные величины (ток и напряжение) больше единицы. Для этого границы обоих диапазонов должны перекрываться. Определим значение d, для предельного состояния, когда границы диапазонов совпадают, т.е. 2cosd = 1/(2cosd). Отсюда d = 3p /2.

Рассмотрим вопрос о полной или кажущейся мощности в нагрузке. Эта величина не имеет такого физического смысла как активная и реактивная мощность, но с ее помощью можно оценить предельно возможную мощность устройства. Полная мощность представляет собой произведение тока и напряжения, поэтому из выражений (6) и(7) ее можно записать в относительных единицах в виде

.

(12)

Проверим выражение (12) на наличие экстремума. Для этого возьмем производную ds /dz и приравняем ее нулю. Экстремум существует, является максимумом и соответствует z = 1.0 . Подставив это значение относительного сопротивления в (7), получим уравнение геометрического места точек экстремума на плоскости внешней характеристики - u = i , т.е. все точки максимальной полной мощности располагаются на линии, проходящей через начало координат под углом 45° .

Значение максимальной полной мощности из (12) получается подстановкой z = 1.0 -

.

(13)

Из выражения (13) следует, что максимальная полная мощность минимальна и равна 1/4, когда аргументы комплексных сопротивлений нагрузки и источника одинаковы. По мере роста разности j н- j s мощность быстро растет и стремится к бесконечности, когда j н = - j s = ± p /2. Физически это объясняется тем, что в этих условиях Zs+Zн= 0 и ток возрастает до бесконечно большого значения (см. выражение (2)). Реально такой режим в системе источник-нагрузка невозможен, однако на практике относительная полная мощность может быть существенно больше единицы.

Из проведенного анализа внешних характеристик реальных источников электрической энергии можно сделать следующие выводы:

  •  внешние характеристики источника переменного тока в общем случае нелинейны; исключением является характеристика, соответствующая равенству аргументов комплексного сопротивления нагрузки jн и внутреннего комплексного сопротивления источника js (d =0);
  •  если реактивные составляющие комплексного сопротивления нагрузки и комплексного сопротивления источника питания различны по характеру, то в системе источник-нагрузка возможны режимы, когда напряжение на нагрузке превышает ЭДС источника и ток нагрузки превышает ток короткого замыкания;
  •  если |j н- j s| > p /2, то существуют диапазоны нагрузок, в пределах которых падение напряжения на нагрузке превышает ЭДС источника или ток в нагрузке превышает ток короткого замыкания;
  •  если |j н- j s| > 3p /2, то существует диапазон нагрузок, в пределах которого одновременно падение напряжения на нагрузке превышает ЭДС источника и ток в нагрузке превышает ток короткого замыкания;
  •  максимальная полная мощность в нагрузке соответствует условию равенства модуля ее комплексного сопротивления модулю внутреннего сопротивления источника;
  •  значение максимальной полной мощности определяется только разностью |j н- j s|.

Треугольники напряжений, токов, сопротивлений и проводимостей

Как известно, любая электрическая цепь состоит или может быть представлена в виде двухполюсников. Пассивный двухполюсник однозначно определяется значениями тока и напряжения на входе или их отношением.

Пусть через некоторый двухполюсник протекает переменный ток и существует падение напряжения. Изобразим ток и напряжение на входе двухполюсника векторами на комплексной плоскости I и U (рис. 1).

Проектируя вектор U на направление вектора I (рис. 1 а)), получим вектор, модуль которого равен Uа=Ucosj , где j - разность начальных фаз напряжения и тока на входе двухполюсника, причем, направление вектора Uа совпадает с направлением вектора тока, поэтому его запись в показательной форме будет иметь вид

,

(1)

где y i - начальная фаза тока на входе двухполюсника.

Перпендикуляр, опущенный из конца вектора U на направление вектора тока, имеет длину Usinj и может рассматриваться как некоторый вектор Uр , сумма которого с вектором Uа равна U (рис. 1 а)). Его также можно записать в показательной форме в виде

.

(2)

Оператор поворота j в выражении (2) учитывает перпендикулярное положение вектора Uр по отношению к I и условие Uа + Uр = U.

Так как по построению векторы Uа и Uр в сумме равны U, то из выражений (1) и (2) вектор напряжения на входе двухполюсника можно представить как

.

(3)

Разделим выражение (3) на модуль вектора тока

.

(4)

Выражение (4) соответствует представлению на комплексной плоскости вектора Z, равного комплексному сопротивлению двухполюсника и развернутого относительно вещественной оси на угол yi. При этом вектор Zejj e jy i=Zej(y u- y i+y i)= Ze jy u образует с вещественной осью комплексной плоскости угол yu , т.е. оказывается совпадающим по направлению с вектором U.

Сравнивая вещественные и мнимые части выражений (3) и (4), можно представить модули составляющих вектора U в виде

,

(5)

т.е. модуль составляющей Uа , называемой активной или резистивной составляющей напряжения на входе двухполюсника, представляет собой падение напряжения на резистивной составляющей его комплексного сопротивления при токе I . Аналогично, модуль вектора Uр , называемого реактивной составляющей входного напряжения, является падением напряжения на реактивной составляющей комплексного сопротивления.

Рассмотренным соотношениям величин соответствует представление двухполюсника последовательным соединением резистора R и реактивного сопротивления X, представленным на рис. 1 а).

Таким образом, вектор падения напряжения на входе двухполюсника может быть представлен двумя составляющими, одна из которых является его проекцией на направление вектора входного тока и называется активной (резистивной) составляющей или активным падением напряжения. Активная составляющая соответствует падению напряжения на резистивном сопротивлении последовательной эквивалентной схемы двухполюсника. Вторая составляющая перпендикулярна вектору тока и соответствует падению напряжения на реактивном сопротивлении последовательной эквивалентной схемы.

Прямоугольные треугольники U UаUр и ZRX (рис. 1 а)) подобны и называются соответственно треугольниками напряжений и сопротивлений.

 ЗАДАЧА 1

 Спроектируем теперь вектор тока I на направление вектора падения напряжения U (рис. 1 б)). Длина проекции будет равна Iа=Icosj , а длина проектирующего перпендикуляра - Iр=Isinj . Представим эти отрезки векторами с учетом того, что Iа совпадает с направлением вектора падения напряжения на входе двухполюсника, а в сумме эти два вектора должны быть равны I . Тогда в показательной форме -

(6)

(7)

Множитель - j является оператором поворота отрезка Iр на 90° в направлении отставания, чтобы обеспечивалось условие Iа + Iр = I .

Представим теперь вектор тока через полученные составляющие

.

(8)

Разделим выражение (8) на модуль вектора U -

.

(9)

Таким образом, из прямоугольного треугольника, составленного из векторов Iа, Iр и I и описанного выражением (8), делением на постоянную величину U всех его сторон мы получили подобный треугольник, описываемый выражением (9). Стороны нового треугольника имеют размерность проводимости и связаны с составляющими вектора тока законом Ома

.

(10)

Следовательно, активную и реактивную составляющую вектора тока можно представить, в виде токов, протекающих через активную (резистивную) проводимость G и реактивную проводимость B эквивалентной параллельной схемы двухполюсника (рис. 1 б)).

Прямоугольные треугольники I IаIр и YGB (рис. 1 б)) подобны и называются соответственно треугольниками токов и проводимостей. Очевидно, что треугольники токов и проводимостей подобны треугольникам напряжений и сопротивлений, т.к. имеют одинаковые углы.

Обобщая понятия составляющих векторов тока и напряжения на входе двухполюсника, можно сделать следующие выводы:

  •  активная (резистивная) и реактивная составляющие вектора напряжения на входе двухполюсника соответствуют падениям напряжения на резистивном и реактивном сопротивлениях последовательной эквивалентной схемы (схемы R-X);
  •  активная (резистивная) и реактивная составляющие вектора тока на входе двухполюсника соответствуют токам, протекающим через резистивную и реактивную проводимости параллельной эквивалентной схемы (схемы G-B);
  •  понятиями активной и реактивной составляющих тока и напряжения можно пользоваться, не связывая их с какой-либо эквивалентной схемой двухполюсника, т.к. из подобия треугольников напряжений, токов, сопротивлений и проводимостей следует взаимно однозначная связь этих величин.

Последовательное и параллельное соединения
Эквивалентные параметры

В последовательное соединение в цепях переменного тока кроме резисторов могут входить реактивные элементы - индуктивности и емкости.

Пользуясь понятием потенциала, падение напряжения на последовательном соединении (рис. 1) можно представить суммой падений напряжений на отдельных элементах

(1)

Последовательное соединение не содержит узлов, поэтому по всем его элементам протекает одинаковый ток. Пусть этот ток равен i=Imsinwt, тогда, с учетом выражений для падения напряжения на реактивных элементах, выражение (1) преобразуется к виду

(2)

Таким образом, в последовательном соединении все резисторы, индуктивности и емкости можно заменить эквивалентными элементами R, L и C , причем

.

(3)

Из выражений (3) следует, что эквивалентные сопротивление и индуктивность больше наибольшего из значений параметров элементов, входящих в соединение, а эквивалентная емкость - меньше наименьшего из значений. Иначе говоря, последовательное подключение в цепь сопротивления или индуктивности увеличивает их эквивалентные значения, а последовательное подключение емкости - уменьшает.

Рассмотренные выше преобразования последовательного соединения не затрагивали входящих в него источников ЭДС. Это связано с тем, что во временной области ЭДС являются синусоидальными функциями с различными начальными фазами. Поэтому их преобразование лучше провести, перейдя к изображениям комплексными числами и векторами.

Как известно, операции суммирования в области оригиналов соответствует суммирование и в области изображений. Отсюда

,

(4)

где E и e - изображение и оригинал эквивалентного источника ЭДС, т.е. любое количество последовательно соединенных источников ЭДС можно заменить одним эквивалентным, значение ЭДС которого равно алгебраической сумме ЭДС, входящих в соединение.

После того, как резисторы, индуктивности, емкости и ЭДС заменены эквивалентными параметрами и элементами можно определить комплексное сопротивление пассивных элементов

.

(5)

Мнимая часть комплексного сопротивления Z может быть положительной или отрицательной в зависимости от того какое сопротивление больше, индуктивное xLили емкостное xC . При положительном значении реактивной составляющей комплексного сопротивления X, соединение L-C можно представить индуктивностью L', реактивное сопротивление которой xL' равно X . Отсюда значение эквивалентной индуктивности

,

(6)

где L и C - значения эквивалентной индуктивности и емкости, определенные из выражений (3). В случае X<0 , реактивные элементы, входящие в последовательное соединение можно представить эквивалентной емкостью

.

(7)

Таким образом, в случае заданного значения частоты последовательное соединение можно представить последовательным соединением резистора, реактивного элемента и источника ЭДС, параметры которых определяются по выражениям (3), (4), (6) и (7). Резистор, реактивный элемент и источник ЭДС являются минимальным набором элементов, с помощью которых можно представить последовательное соединение. При наличии в цепи реактивных элементов обоих типов (индуктивности и емкости) в минимальном наборе элементов (минимальной эквивалентной схеме) будет присутствовать только один из них.

При отсутствии каких-либо элементов в исходной схеме, например резисторов или источников ЭДС, будут отсутствовать и соответствующие компоненты эквивалентного представления.

ЗАДАЧА 1

Перейдем теперь к рассмотрению параллельного соединения элементов цепей переменного тока.

В параллельное соединение (рис. 2) могут входить резистивные и реактивные элементы, а также источники тока.

Источники ЭДС не могут соединяться параллельно, т.к. , если два источника e1 и e2 подключены к узлам a и b, то uab= e1 и uab= e2 , что возможно только при e1 = e2.

Общий ток, протекающий через соединение в целом, представляет собой сумму токов, протекающих через отдельные элементы. Поэтому можно написать

(8)

Все элементы соединения подключены к двум узлам, разность потенциалов которых является падением напряжения на каждом элементе. Пусть это напряжение u равно Umsinw t. Тогда

(9)

Из выражения (9) следует, что в параллельном соединении все резисторы, индуктивности и емкости можно заменить эквивалентными элементами R , L и C , значения которых определяются выражениями

(10)

Из этих выражений следует, что параллельное подключение резистора или индуктивности уменьшает их эквивалентные значения, а параллельное подключение емкости - увеличивает эквивалентную емкость. Эквивалентное сопротивление R и индуктивность L всегда меньше наименьшего из параметров элементов, образующих соединение. В то время как эквивалентная емкость C - больше, чем самая большая емкость параллельного соединения.

Для определения тока эквивалентного источника воспользуемся представлением токов комплексными числами аналогично тому, как это было сделано для ЭДС последовательного соединения

(11)

т.е. путем перехода к изображениям в виде комплексных чисел, а зетам обратного перехода во временную область можно получить параметры эквивалентного источника тока J, заменяющего собой все источники входящие в соединение.

Комплексная проводимость соединения может быть выражена через эквивалентные параметры следующим образом

.

(12)

В зависимости от соотношения значений емкостной и индуктивной проводимостей bL и bC , реактивная составляющая комплексной проводимости B может быть положительной или отрицательной. В первом случае, параллельное соединение L-C можно представить емкостью C', проводимость которой равна B. Во втором случае, реактивную проводимость можно создать эквивалентной индуктивностью L'. Значения L' и C' можно определить как

.

(13)

Следовательно, при заданной частоте параллельное соединение, также как и последовательное, можно представить минимальным набором элементов, включающим параллельно соединенные резистор, реактивный элемент и источник тока. Тип реактивного элемента (индуктивность или емкость) определяется знаком эквивалентной реактивной проводимости.

Следует особо подчеркнуть, что выражения (3) и (10) не содержат частоты w в качестве параметра. Поэтому они справедливы всегда и применяются как для расчетов, так и при операциях с реальными объектами. Например, две соединенные последовательно катушки индуктивности в 40 и 60 мГн можно заменить одной с индуктивностью в 100 мГн. В то же время, переход к одному реактивному элементу (выражения (6), (7) и (13)) возможен только для конкретного значения частоты и применяется чаще всего в расчетных задачах.

Явление резонанса

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением.

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z]=0 или Im[Y]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

Для определения условий возникновения режима резонанса в электрической цепи нужно:

  •  найти ее комплексное сопротивление или проводимость;
  •  выделить мнимую часть и приравнять нулю.

Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

Уравнение Im[Z]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

В электрических цепях резонанс может рассматриваться в задачах:

  •  анализа этого явления при вариации параметров цепи;
  •  синтеза цепи с заданными резонансными параметрами.

Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром. Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

.

(1)

Условием резонанса из выражения (1) будет

.

(2)

Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление xL = w L равно емкостному xC = 1/(w C) . Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L, C и w , а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

.

(3)

Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

  •  изменением индуктивности L при постоянных значениях C и w ;
  •  изменением емкости C при постоянных значениях L и w ;
  •  изменением частоты w при постоянных значениях L и C.

Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Zmin = R , j = 0 , т.е. полное сопротивление при резонансе соответствует минимальному значению.

Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю xC ® µ , xL ® 0 , и j ® - 90° (рис. 1 б)). При бесконечном увеличении частоты - xL ® µ , xC ® 0 , а j ® 90° . Равенство сопротивлений xL и xC наступает в режиме резонанса при частоте w0 .

Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i=Imsinw t. Падение напряжения на входе уравновешивается суммой напряжений на элементах

.

(4)

Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

,

(5)

а при резонансной частоте

,

(6)

где - величина, имеющая размерность сопротивления и называемая волновым или характеристическим сопротивлением контура.

Следовательно, при

резонансе

  •  напряжение на резисторе равно напряжению на входе контура;
  •  напряжения на реактивных элементах одинаковы и пропорциональны волновому сопротивлению контура;
  •  соотношение напряжения на входе контура (на резисторе) и напряжений на реактивных элементах определяется соотношением резистивного и волнового сопротивлений.

Отношение волнового сопротивления к резистивному r /R = Q, называется добротностью контура, а величина обратная D=1/Q - затуханием. Таким образом, добротность числено равна отношению напряжения на реактивном элементе контура к напряжению на резисторе или на входе в режиме резонанса. Добротность может составлять несколько десятков единиц и во столько же раз напряжение на реактивных элементах контура будет превышать входное. Поэтому резонанс в последовательном контуре называется резонансом напряжений.

Рассмотрим зависимости напряжений и тока в контуре от частоты. Для возможности обобщенного анализа перейдем в выражениях (5) к относительным единицам, разделив их на входное напряжение при резонансе U=RI0

,

(7)

где i =I/I0, u k=Uk/U, v = w /w 0 - соответственно ток, напряжение и частота в относительных единицах, в которых в качестве базовых величин приняты ток I0, напряжение на входе U и частота w 0 в режиме резонанса.

Абсолютный и относительный ток в контуре равен

.

(8)

 

Из выражений (7) и (8) следует, что характер изменения всех величин при изменении частоты зависит только от добротности контура. Графическое представление их при Q=2 приведено на рис. 3 в логарифмическом (а) и линейном (б) масштабах оси абсцисс.

На рис. 3 кривые A(v), B(v) и C(v) соответствуют напряжению на индуктивности, емкости и резисторе или току в контуре. Кривые A(v)=uL(v) и B(v)=uC(v) имеют максимумы, напряжения в которых определяются выражением

, (9)

а относительные частоты максимумов равны

(10)

При увеличении добротности Q ® µ Amax = Bmax ® Q, а v 1 ® 1.0 и v 2 ® 1.0.

С уменьшением добротности максимумы кривых u L(v ) и u С(v ) смещаются от резонансной частоты, а при Q2 < 1/2 исчезают, и кривые относительных напряжений становятся монотонными.

Напряжение на резисторе и ток в контуре имеют при резонансной частоте максимум равный 1,0. Если на оси ординат отложить абсолютные значения тока или напряжения на резисторе, то для различных значений добротности они будут иметь вид, показанный на рис. 4. В целом они дают представление о характере изменения величин, но удобнее делать сопоставление в относительных единицах.

На рис. 5 представлены кривые рис. 4 в относительных единицах. Здесь видно, что увеличение добротности влияет на скорость изменения тока при изменении частоты.

Можно показать, что разность относительных частот, соответствующих значениям относительного тока , равна затуханию контура D=1/Q =v 2- v 1.

Перейдем теперь к анализу зависимости фазового сдвига между током и напряжением на входе контура от частоты. Из выражения (1) угол j равен

.

(11)

Как и следовало ожидать, значение j определяется добротностью контура. Графически эта зависимость для двух значений добротности показана на рис. 6 .

При уменьшении частоты значение фазового сдвига стремится к значению - 90° , а при увеличении к +90° , проходя через нулевое значение при частоте резонанса. Скорость изменения функции j (v ) определяется добротностью контура.

Последовательный резонансный контур может питаться также от источника электрической энергии, обладающего свойствами источника тока, т.е. обеспечивающего постоянный ток в нагрузке. Выражения (5) остаются справедливыми и в этом случае, но ток в них будет константой. Поэтому постоянным будет падение напряжения на резисторе UR = RI = const. Разделив все напряжения на это базовое значение, получим представление их в относительных единицах в виде

.

(12)

В выражении (12) добротность также есть отношение волнового сопротивления к резистивному Q=r /R .

Общее относительное падение напряжения на входе контура является гипотенузой прямоугольного треугольника напряжений, поэтому

.

(13)

Функции uL(v ) и uС(v ) монотонны, а u(v ) имеет минимум u =1.0 при резонансной частоте, когда uL(v ) - uС(v ) = 0. В случае стремления относительной частоты к бесконечности и к нулю, напряжения на одном из реактивных элементов стремится к бесконечности. При резонансной частоте они одинаковы и их отношение ко входному напряжению равно добротности.

Графическое представление функций u L(v )=A(v ), u С(v )=B(v ) и u(v )=С(v ) при добротности Q=2 дано на рис. 7 в логарифмическом (а) и линейном (б) масштабах оси частот.

Для функции u (v )=С(v ) можно показать, что разность относительных частот v 1 и v 2 , соответствующих значениям , равна затуханию контура D=1/Q=v 2- v 1.

Фазовые характеристики контура при питании от источника тока ничем не отличаются от характеристик режима питания от источника ЭДС (рис. 6).

Сопоставляя частотные характеристики при питании последовательного резонансного контура от источника тока с характеристиками при питании его от источника ЭДС, можно сделать следующие выводы:

  •  частотные характеристики напряжений и тока контура принципиально отличаются друг от друга, т.к. при питании от источника ЭДС сумма напряжений остается постоянной и происходит только их перераспределение между элементами, а при питании от источника тока падения напряжения на каждом элементе формируются независимо;
  •  режимы резонанса для обоих случаев полностью идентичны;
  •  фазовые частотные характеристики для обоих случаев также идентичны.

Режим резонанса можно создать также при параллельном соединении R, L и C (рис. 8а)). Такая цепь называется параллельным резонансным контуром. В этом случае условие резонанса удобнее сформулировать для мнимой части комплексной проводимости в виде

(14)

Следовательно, для параллельного контура возможны те же вариации параметров, что и для последовательного и выражения для них будут идентичными

.

(15)

При изменении частоты питания изменяется только мнимая составляющая вектора комплексной проводимости Y , поэтому его конец перемещается на комплексной плоскости по прямой параллельной мнимой оси и проходящей через точку G=1/R , соответствующую вещественной составляющей проводимости (рис. 8 б)). При частоте резонанса модуль вектора минимален, а при стремлении частоты к нулю и бесконечности, его значение стремится к бесконечности. При этом угол сдвига фаз между током и напряжением j на входе контура стремится к 90° при w ® 0 и к - 90° при w ® µ .

Для параллельного соединения токи в отдельных элементах можно представить через проводимости и общее падение напряжения U в виде

.

(16)

Пусть в режиме резонанса падение напряжения на входе контура равно U0, тогда токи в отдельных элементах будут

,

(17)

где - волновая или характеристическая проводимость контура. Как следует из выражений (17), при резонансе токи в реактивных элементах одинаковы, а входной ток равен току в резисторе R. Отношение Q=g/G называется добротностью, а величина обратная D=1/Q - затуханием параллельного резонансного контура. Таким образом, добротность равна отношению токов в реактивных элементах контура к току на входе или в резисторе. В электрических цепях добротность может достигать значений в несколько десятков единиц и во столько же раз токи в индуктивности и емкости будут превышать входной ток. Поэтому резонанс в параллельном контуре называется резонансом токов.

Падение напряжения на входе контура U при питании его от источника, обладающего свойствами источника тока и формирующего ток с действующим значением I, будет равно

.

(18)

Отсюда, напряжение на входе в режиме резонанса U0 = I/G . Тогда ток в контуре - I=U0G. Перейдем к относительным единицам в выражениях (16) и (18), приняв в качестве базовых значений напряжение на входе при резонансе и ток контура, выраженный через это напряжение. Тогда получим

.

(18)

Выражения (18) полностью совпадают с выражениями (7) и (8) для частотных характеристик последовательного контура, если в них относительные токи и напряжения поменять местами. Следовательно, характеристики рис. 3 будут связаны с выражениями (18) следующим образом: A(v)=i С(v); B(v)=i L(v) и C(v)=i R(v)=u (v ). Для относительных токов i С , i L и i R справедливыми будут также все закономерности отмеченные для относительных напряжений последовательного контура.

Из выражения (14) рассмотренную выше качественно фазовую частотную характеристику можно представить аналитически в виде

т.е. она совпадает с характеристикой последовательного контура, но имеет противоположный знак.

Допустим теперь, что параллельный контур питается от источника со свойствами источника ЭДС. В режиме резонанса входной ток также будет равен току через резистор - I0=U/R=UG. Соотнесем все выражения (16) с этим током, приняв его за базовую величину. Тогда

.

(19)

Относительный входной ток i можно определить, пользуясь тем, что в треугольнике токов он является гипотенузой

.

(20)

Выражения (19) и (20) для относительных токов совпадают с выражениями (12) и (13) для относительных напряжений последовательного контура. Следовательно, на рис. 7 - i C(v )=A(v ), i L(v )=B(v ) и i R(v )= i (v )=C(v ).

Сравнивая частотные характеристики при питании параллельного резонансного контура от источника тока с характеристиками при питании его от источника ЭДС, можно сделать выводы аналогичные тем, которые были сделаны для последовательного контура:

  •  частотные характеристики токов и напряжения контура принципиально отличаются друг от друга, т.к. при питании от источника тока сумма токов остается постоянной и происходит только их перераспределение между элементами, а при питании от источника ЭДС токи в каждом элементе формируются независимо;
  •  режимы резонанса для обоих случаев полностью идентичны;
  •  фазовые частотные характеристики для обоих случаев также идентичны.

Параллельный резонансный контур может содержать резистивные сопротивления (рис. 10). В этом случае комплексные проводимости ветвей будут равны

Y1=G1+jB1; Y2=G2+jB1 ,

а общая проводимость

Y = Y1 + Y2= G1+G2+j(B1+B2) .

Условием резонанса будет:

Раскрывая выражение (23) через параметры цепи, получим

,

откуда резонансная частота w р -

,

(21)

где - резонансная частота в простейшем параллельном контуре (рис. 8 а)), а - волновое сопротивление простейшего параллельного контура.

Анализ выражения (21) показывает, что при разных резистивных сопротивлениях R1 ¹ R2 резонанс возможен только, если оба сопротивления одновременно больше или меньше r . В противном случае выражение под корнем отрицательно, резонансная частота мнимая и не имеет физического смысла.

Если R1 = R2, то w р = w 0, т.е. резонанс наступает при той же частоте, что и в простейшем контуре без потерь (рис. 8 а)).

Однако при этом условии возможен вариант, когда R1 = R2 = r . В этом случае подкоренное выражение в (21) становится неопределенным (0/0) и требуется его дополнительный анализ.

Ветви контура соединены параллельно и общее падение напряжения на них одинаково и равно сумме падений напряжения на элементах ветви. При любых изменениях частоты угол между напряжением на резисторе и реактивном элементе составляет 90° и т.к. сумма их постоянна и равна входному напряжению, то геометрическим местом точек конца вектора падения напряжения на резисторе будет полуокружность (рис. 11 а)). Причем, векторы ветви с индуктивностью будут вписываться в нижнюю полуокружность, а ветви с емкостью - в верхнюю. Входной ток I равен сумме токов ветвей I1 и I2 и резонанс наступает, если его направление совпадает с вектором входного напряжения U.

Разделим комплексные числа, соответствующие векторам напряжений рис. 11 а), на R = R1 = R2 = r и построим векторную диаграмму токов для режима резонанса (рис. 11 б)), т.е. так, чтобы сумма векторов I1 и I2 была равна U/R. Параллелограмм abcd имеет два противоположных прямых угла, поэтому два других угла j 1 + j 2 = p /2 . То, что сумма углов j 1 и j 2 равна 90° доказывается также и тем, что . Таким образом, при любой частоте векторы токов I1 и I2 образуют прямоугольник, вершины которого расположены на окружности, а диагональю является вектор U/R. Отсюда следует, что при всех частотах входной ток одинаков, совпадает по направлению с напряжением и полное сопротивление цепи чисто резистивное и равно r


Электрические LC-фильтры

Электрический фильтр - это четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Полоса пропускания или полоса прозрачности фильтра - Это диапазон частот, пропускаемых фильтром без затухания (с малым затуханием);

Полоса затухания или полоса задерживания (режекции) фильтра - это диапазон частот, пропускаемых с большим затуханием.

Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.

Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.

Для упрощения анализа будем считать, что фильтры составлены из идеальных катушек индуктивности и конденсаторов, т.е. элементов соответственно с нулевыми активными сопротивлением и проводимостью. Это допущение достаточно корректно при высоких частотах, когда индуктивные сопротивления катушек много больше их активных сопротивлений ( ).

Фильтрующие свойства четырехполюсников обусловлены возникающими в них резонансными режимами – резонансами токов и напряжений. Фильтры обычно собираются по симметричной Т- или П-образной схеме, т.е. при (см. лекцию №14). В этой связи при изучении фильтров будем использовать введенные в предыдущей лекции понятия коэффициентов затухания и фазы.

Классификация фильтров в зависимости от диапазона пропускаемых частот приведена в табл. 1.

 

Таблица 1. Классификация фильтров

Название фильтра

Диапазон пропускаемых частот

Низкочастотный фильтр (фильтр нижних частот)

Полосовой фильтр (полосно-пропускающий фильтр)

и

В соответствии с материалом, изложенным в предыдущей лекции, если фильтр имеет нагрузку, сопротивление которой при всех частотах равно характеристическому, то напряжения и соответственно токи на его входе и выходе связаны соотношением

.  ,

т.е. в соответствии с (1) и , которое указывает на отсутствие потерь в идеальном фильтре, а значит, идеальный фильтр должен быть реализован на основе идеальных катушек индуктивности и конденсаторов. Вне области пропускания (в полосе затухания) в идеальном случае и

Связь коэффициентов четырехполюсника с параметрами элементов Т-образной схемы замещения определяется соотношениями (см. лекцию № 14)

(2)

(4)

 

Из уравнений четырехполюсника, записанных с использованием гиперболических функций (см. лекцию № 14), вытекает, что

- вещественная переменная, а следовательно,

, то на основании (5)

: ,

которому удовлетворяют частоты, лежащие в диапазоне

(7)

Анализ соотношения (7) показывает, что с ростом частоты w в пределах, определяемых неравенством (6), характеристическое сопротивление фильтра уменьшается до нуля, оставаясь активным. Поскольку, при нагрузке фильтра сопротивлением, равным характеристическому, его входное сопротивление также будет равно , можно сделать заключение, что фильтр работает в режиме резонанса, что было отмечено ранее. При частотах, больших

На рис. 2 приведены качественные зависимости .

Следует отметить, что вне полосы пропускания . 

(8)

Так как вне полосы прозрачности .

В полосе задерживания коэффициент затухания . Существенным при этом является факт постепенного нарастания будет отличен от нуля.

Другим вариантом простейшего низкочастотного фильтра может служить четырехполюсник по схеме на рис. 1,б.

Схема простейшего высокочастотного фильтра приведена на рис. 3,а.

; (9)

(11)

Как и для рассмотренного выше случая, А – вещественная переменная. Поэтому на основании (9)

. (12)

Характеристическое сопротивление фильтра

изменяясь в пределах от нуля до в ограниченном диапазоне частот.

Вне области пропускания частот

(14)

при и и высокочастотного с полосой пропускания . Схема простейшего полосового фильтра

для него.

Урежекторного фильтра полоса прозрачности разделена на две части полосой затухания. Схема простейшего режекторного фильтра и качественные зависимости

В заключение необходимо отметить, что для улучшения характеристик фильтров всех типов их целесообразно выполнять в виде цепной схемы, представляющей собой каскадно включенные четырехполюсники. При обеспечении согласованного режима работы всех n звеньев схемы коэффициент затухания , что приближает фильтр к идеальному.

RC-фильтры

Благодаря тому что импеданс конденсатора, равный Zc = -j/ωС, зависит от частоты, с помощью конденсаторов и резисторов можно строить частотно-зависимые делители напряжения, которые будут пропускать только сигналы нужной частоты, а все остальные подавлять. В этом разделе вы познакомитесь с примерами простейших RС-фильтров, к которым мы будем неоднократно обращаться в дальнейшем.

Рис. 1.52. Фильтр высоких частот.

Фильтры высоких частот. На рис. 1.52 показан делитель напряжения, состоящий из конденсатора и резистора. Согласно закону Ома для комплексных величин,

I = Uвх/Zполн = Uвх/R - (j/ωC) = Uвх[R + j/ωC)]/R2 + 1/ω2C2.

(Окончательный результат получек после умножения числителя и знаменателя на комплексное число, сопряженное знаменателю.) Итак, напряжение на резисторе R равно

Uвых = IZR = IR = Uвх[R + (j/ωС)R]/R2+1/ω2C2.

Чаще всего нас интересует не фаза, а амплитуда Uвых:

Uвых = (UвыхUвых*)1/2 = UвхR/[R2 + (1/ω2C2)]1/2.

Сравните полученный результат с выражением для резистивного делителя:

Uвых = UвхR1/(R1 + R2).

Векторное представление импеданса RС - цепи (рис. 1.53) показано на рис. 1.54.

Рис. 1.53.

Рис. 1.54.

Итак, если не принимать во внимание сдвиг фаз, а рассматривать только модули комплексных амплитуд, то «отклик» схемы будет определяться следующим образом:

Uвых = UвхR/[R2 + (1/ω2C2)]1/2 = Uвх2πƒRC/[1 + (2πƒRC)]1/2.

График этой зависимости представлен на рис. 1.55. Такой же результат мы бы получили, если бы определили отношение модулей импедансов как в упражнении 1.17 и в примере перед этим упражнением; числитель представляет собой модуль импеданса нижнего плеча делителя R, а знаменатель - модуль импеданса последовательного соединения R и С.

Рис. 1.55. Частотная характеристика фильтра высоких частот.

Как вы видите, на высоких частотах выходное напряжение приблизительно равно входному (ω > 1/RC), а на низких частотах выходное напряжение уменьшается до нуля. Мы пришли к важному результату, запомните его. Подобная схема, по понятным причинам, называется фильтром высоких частот. На практике ее используют очень широко. Например, в осциллографе предусмотрена возможность связи по переменному току между исследуемой схемой и входом осциллографа. Эта связь обеспечивается с помощью фильтра высоких частот, имеющего перегиб характеристики в области 10 Гц (связь по переменному току используют для того, чтобы рассмотреть небольшой сигнал на фоне большого напряжения постоянного тока). Инженеры часто пользуются понятием «точки излома» -3 дБ для фильтра (или любой другой схемы, которая ведет себя как фильтр)! В случае простого RC - фильтра высоких частот точка излома -3 дБ определяется выражением:

ƒ3дб = 1/2πRC.

Обратите внимание, что конденсатор не пропускает ток (ƒ = 0). Самый распространенный пример использования конденсатора-это использование его в качестве блокирующего конденсатора постоянного тока. Если возникает необходимость обеспечить связь между усилителями, то почти всегда прибегают к помощи конденсатора. Например, у любого усилителя звуковой частоты высокого класса все входы имеют емкостную связь, так как заранее не известно, какой уровень постоянного тока будут иметь входные сигналы. Для обеспечения связи необходимо подобрать R и С таким образом, чтобы все нужные частоты (в данном случае 20 Гц - 20 кГц) поступали на вход без потерь (без деления на входе).

Рис. 1.56. а - Изменение реактивного сопротивления индуктивн остей и конденсаторов в зависимости от частоты. Все декады одинаковы и отличаются лишь масштабом. б - Увеличенное изображение одной декады из графика А. график построен для стандартных компонентов, имеющих точность 20%.

В качестве примера рассмотрим фильтр, показанный на рис. 1.57. Это фильтр высоких частот с точкой перегиба 3 дБ на частоте 15,9 кГц. Импеданс нагрузки, подключаемой к фильтру, должен быть значительно больше 1 кОм. иначе нагрузка будет искажать выходное напряжение фильтра. Источник сигнала должен обеспечивать возможность подключения нагрузки 1 кОм без значительной аттенюапии (потери амплитуды сигнала), иначе фильтр будет искажать выход источника сигнала.

Рис. 1.57. Рис. 1.58. Фильтр низких частот.

Фильтры низких частот. Если поменять местами R и С (рис. 1.58), то фильтр будет вести себя противоположным образом в отношении частоты. Можно показать, что Uвых = [1/1 + ω2R2С2)1/2] Uвх. График этой зависимости представлен на рис. 1.59. Такой фильтр называют фильтром низких частот. Точка -3 дБ на характеристике фильтра находится на частоте ƒ = 1/2πRC. Фильтры низких частот находят очень широкое применение. Например, их используют для устранения влияния близлежащих радио - и телевизионных станций (550 кГц - 800 МГц), на работу усилителей звуковых частот и других чувствительных электронных приборов.


Рис. 1.59 Частотная характеристика фильтра низких частот.

Упражнение 1.21. Докажите справедливость выражения для выходного напряжения фильтра низких частот.

Выход фильтра низких частот можно рассматривать в качестве самостоятельного источника сигналов. При использовании идеального источника напряжения переменного тока (с нулевым импедансом) фильтр со стороны выхода низких частот имеет сопротивление R (при расчетах полных сопротивлений идеальный источник сигналов можно заменить коротким замыканием, т.е. его нулевым импедансом для малого сигнала). В выходном импедансе фильтра преобладает емкостная составляюшая. и на высоких частотах он становится равным нулю. Для входного сигнала фильтр представляет собой нагрузку, состоящую на низких частотах из сопротивления R и сопротивления нагрузки, а на высоких частотах - нагрузку, равную просто сопротивлению R.

Рис. 1.60. Фазочастотная и амплитудно-частотная характеристики фильтра низких частот, изображенные в логарифмическом масштабе. В точке 3 дБ фазовый сдвиг составляет 45° и в пределах декады изменения частоты лежит в пределах 6° от асимптотическою значения.

На рис. 1.60 изображена также частотная характеристика фильтра низких частот, но в более общепринятом виде-для вертикальной и горизонтальной осей использован логарифмический масштаб. Можно считать, что по вертикальной оси откладываются децибелы, а по горизонтальной - октавы (или декады). На таком графике равные расстояния соответствуют равным отношениям величин. В виде графика изображен также фазовый сдвиг, при этом для вертикальной оси (градусы) использован линейный масштаб, а для оси частот-логарифмический. Такой график удобен для анализа частотной характеристики даже в случае значительной аттенюации (справа): целый ряд таких графиков представлен в гл. 5, посвященной изучению активных фильтров. Отметим, что при значительной аттенюации изображенная на графике кривая вырождается в прямую линию с наклоном -20 дБ/декада (инженеры предпочитают выражение « -6 дБ/октава»). Отметим также, что фазовый сдвиг плавно изменяется от 0° (на частотах ниже точки перегиба) до 90° (на частотах существенно выше точки перегиба), а в точке -3 дБ составляет 45°. Практическое правило для односекционных RС - фильтров говорит о том. что фазовый сдвиг составляет ≈6° от асимптот в точках 0.1ƒ3дБ и 10ƒ3дБ.

Упражнение 1.22. Докажите последнее утверждение.

Возникает интересный вопрос: можно ли сделать фильтр с какой-либо другой заданной амплитудной характеристикой и какой-либо другой заданной фазовой характеристикой. Пусть вас это не удивляет, но ответить можно только отрицательно - нельзя. Фазовая и амплитудная характеристики для всех возможных фильтров подчиняются законам причинной связи (т.е. характеристика является следствием определенных свойств, но не их причиной).

Частотные характеристики дифференцирующих и интегрирующих RС - цепей. Схема дифференцирующей RС - цепи, которую мы рассмотрели, имеет такой же вид, как и схема фильтра высоких частот, приведенная в настоящем разделе. Чем же считать такую схему, зависит от того, что вас больше интересует: преобразование сигналов во времени или частотная характеристика. Полученное ранее временное условие правильной работы схемы (Uвых « Uвх) можно сформулировать иначе, применительно к частотной характеристике: для того чтобы выходной сигнал был небольшим по сравнению с входным, частота должна быть значительно ниже, чем в точке -3 дБ. В этом легко убедиться. Допустим, что входной сигнал равен Uвх = sinωt. Воспользуемся уравнением, которое мы получили ранее для выхода дифференциатора:

Uвх = RC d/dt sinωt = ωRCcosωt.

Отсюда Uвых « Uвх, если ωRC « 1, т.е. RC « 1/ω. Если входной сигнал содержит некоторый диапазон частот, то условие должно выполняться для самых высоких частот входного диапазона.

Схема интегрирующей RC - цепи имеет такой же вид, как и схема фильтра низких частот: аналогично в хорошем интеграторе самые низкие частоты входного сигнала должны существенно превышать частоту в точке -ЗдБ.

Индуктивности и конденсаторы. Индуктивности, также как и конденсаторы, в сочетании с резисторами образуют схемы фильтров низких (или высоких) частот. Однако на практике RL - фильтры низких и высоких частот встречаются редко. Это связано с тем, что индуктивности более громоздки и дороги, а работают хуже, чем конденсаторы (их характеристики более существенно отличаются от идеальных). Если есть возможность выбора, то предпочтение лучше отдать конденсатору. Исключением из этой общей рекомендации являются ферритовые бусины (маленькие торроидальные сердечники) и дроссели в высокочастотных схемах. Несколько бусин нанизывают на провод, благодаря этому соединение, выполненное с помощью провода, становится в некоторой степени индуктивным; импеданс на высоких частотах увеличивается и предотвращает «колебания» в схеме, при этом в отличие от RС - фильтра активное сопротивление схемы не увеличивается. Радиочастотный дроссель - это катушка, состоящая из нескольких витков провода и ферритового сердечника и используемая с той же целью в радиочастотных схемах.

Символический метод расчета

Анализ электромагнитных процессов в электрических цепях переменного тока в общем случае возможен только с использованием представления токов, напряжений и параметров цепи комплексными числами. Это позволяет исключить тригонометрические функции из уравнений, описывающих электрическую цепь и сделать их линейными. Так как при этом все величины заменяются их изображениями или символами, то этот метод носит название символического.

Последовательность операций в символическом методе в общем случае следующая:

  •  преобразование всех величин и параметров электрической цепи в их изображения комплексными числами;
  •  преобразование исходной электрической цепи в символическую схему замещения, где все величины и параметры представлены изображениями;
  •  эквивалентные преобразования схемы замещения (если требуется);
  •  определение искомых величин в области изображений;
  •  преобразование искомых величин в оригиналы (если требуется).

Последняя операция не является обязательной, т.к. некоторые величины (амплитудные и действующие значения токов и напряжений, активные и реактивные составляющие и т.п.) не изменяются при обратном преобразовании.

Рассмотрим применение этого метода на примере цепи, изображенной на рис. 1 а).

Обозначим стрелками направления токов принятые за положительные. Тогда во временной области для этой цепи можно составить уравнения Кирхгофа в виде

(1)

Если в выражениях (1) заменить токи и ЭДС синусоидальными функциями времени, то решить эту систему уравнений будет весьма затруднительно.

Перейдем к изображениям параметров исходной схемы комплексными числами в виде: Z1 = jw L1; Z21 = R1; Z22 = - j/(w C); Z3 = R2; Z41 = R3; Z42 = jw L2; Z1 = R4 . Этим параметрам соответствует схема замещения рис. 1 б). Вторая и четвертая ветви этой схемы имеют по два элемента. Их можно преобразовать как последовательное соединение к виду Z2 = R1- j/(w C) и Z4 = R3+jw L2, но соединения R1-C и R3-L2 можно сразу представить одним комплексным числом, в котором вещественная часть соответствует резистивному сопротивлению, а реактивная - емкостному и индуктивному. В результате схема замещения будет такой, как показано на рис. 1 в).

Переход от оригиналов к изображениям является линейной операцией, поэтому все законы справедливые для области оригиналов будут справедливы и для изображений. Кроме того, в области изображений отсутствует параметр времени и все величины являются константами, аналогично цепям постоянного тока. Поэтому формально в расчетах по схеме замещения можно применять не только основные законы электрических цепей, такие как законы Ома и Кирхгофа, но и все производные от них методы, т.е. метод контурных токов, узловых потенциалов, наложения, эквивалентного генератора и др.

Для символической схемы замещения можно составить уравнения Кирхгофа в виде

(2)

Из этой системы уравнений можно найти, например, токи, представив ее в удобной для машинного анализа матричной форме записи

(3)

или в развернутой форме

(4)

Отсюда можно найти комплексные токи во всех ветвях, если известны параметры цепи и ЭДС источника. Пусть, например, e = 100sin(1000t-27° ) В; R1 = 20 Ом; R2 = 15 Ом; R3 = 30 Ом; R4 = 25 Ом; L1 = 10 мГн; L2 = 50 мГн; C = 50 мкФ. Тогда комплексные сопротивления и ЭДС будут Z1 = j10 Ом; Z2 = 20- j20 Ом; Z3 = 15 Ом; Z4 = 30+j50 Ом; Z5 = 25 Ом; Em = 100e- j27° .

После решения системы уравнений (2) получим: I1m = 5.96e- j40.4° А; I2m = 3.67e- j16° А; I3m = 3.03e- j70.5° А; I4m = 1.02e- j112.7° А; I5m = 2.38e- j53.7° А. В этих выражениях определены амплитуды и начальные фазы всех токов. Делением модулей токов на можно найти их действующие значения, а если требуется, то можно представить и синусоидальными функциями времени в виде: i1 = 4.67sin(1000t - 67.4° ) А; i2 = 2.87sin(1000t - 43° ) А; i3 = 2.37sin(1000t - 97° ) А; i4 = 0.8sin(1000t - 139° ) А; i5 = 1.86sin(1000t - 80° ) А.

Найдем теперь падение напряжения между узлами a и c цепи рис. 1 а), пользуясь эквивалентными преобразованиями и законом Ома. Схема замещения этой цепи приведена на рис. 1 в) и 2 а). Поэтапно преобразуя цепь Z4Ù Z5Þ Z45= Z4 Z5/( Z4+ Z5)=18.7+j5.65 Ом; Z45Ù Z3Þ Z345= Z45+ Z3=33.7+j5.65 Ом; Z345Ù Z2Þ Z2345= Z345 Z2/( Z345+ Z2)=16.3- j6.1 Ом (рис. 2 б)-г)), перейдем к цепи, представляющей собой один контур с последовательным соединением Z1-Z2345-E.

Ток в контуре рис. 2 г) равен I1m = Em/(Z1+Z2345)=100e- j27°/(16.3+j3.9) = 5.96e- j40.4° А. Как и следовало ожидать, ток I1m получился равным току рассчитанному по законам Кирхгофа. Отсюда искомая разность потенциалов Uacm= I1m Z2345=103.8e- j61° или в области оригиналов uac = 103.8sin(1000t - 61° ) В.

Следует обратить внимание на то, что в исследуемой цепи амплитуда падения напряжения между узлами a и c превышает амплитуду источника ЭДС. Объяснение этому явлению дано в анализе внешних характеристик источников питания переменного тока.

Трехфазные цепи

1. Основные определения

2. Соединение в звезду. Схема, определения

3. Соединение в треугольник. Схема, определения

4. Расчет трехфазной цепи, соединенной звездой

5. Мощность в трехфазных цепях

Основные определения

   Трехфазная  цепь  является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120o, создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.

   Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными.

     Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120o. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120o. Запишем мгновенные значения и комплексы действующих значений ЭДС.

     Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.

       Соответственно                

     На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы - последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу.
     Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.

Соединение в звезду. Схема, определения

     Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 1.



Рис. 1

     Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N' называют нейтральным (нулевым) проводом.
    Напряжения  между началами фаз  или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.
      Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах - линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

Iл = Iф.

ZN - сопротивление нейтрального провода.

     Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

     (1)

     На рис. 2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.



Рис. 2

       Из векторной диаграммы видно, что

       При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

Uл = √3 Uф

Соединение в треугольник. Схема, определения

       Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
        На рис. 3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Uл = Uф

       IA, IB, IC - линейные токи;

       Iab, Ibc, Ica- фазные токи.

       Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.



Рис. 3

       Линейный ток равен геометрической разности соответствующих фазных токов.
    На рис. 4  изображена  векторная  диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.



Рис. 4

       Из векторной диаграммы видно, что

,

Iл = √3 Iф при симметричной нагрузке.

     Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Расчет трехфазной цепи, соединенной звездой

       Трехфазную цепь,   соединенную звездой, удобнее всего рассчитать методом двух узлов.
       На рис. 5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (Z
A ≠ ZB ≠ ZC )

       Нейтральный провод имеет конечное сопротивление ZN .
       В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
       Это напряжение определяется по формуле (2).



                Рис.5

     (2)

       Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

     (3)

       Ток в нейтральном проводе

                 (4)

       Частные случаи.

    1.
Симметричная нагрузка.   Сопротивления фаз нагрузки   одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
       Узловое напряжение

,

потому что трехфазная система ЭДС симметрична,     .

        Напряжения фаз нагрузки и генератора одинаковы:

     Фазные токи  одинаковы по  величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

       В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

      На рис. 6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

       2.
Нагрузка несимметричная,   RA< RB = RC, но сопротивление нейтрального провода равно нулю:  ZN = 0. Напряжение смещения нейтрали



рис. 6

       Фазные напряжения нагрузки и генератора одинаковы

       Фазные токи определяются по формулам

      Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.

       На  рис.  7  приведена  векторная  диаграмма    трехфазной    цепи,    соединенной    звездой,    с нейтральным    проводом,    имеющим     нулевое     сопротивление,    нагрузкой   которой      являются   неодинаковые   по    величине    активные  сопротивления.




                    Рис. 7

       3. Нагрузка несимметричная, R
A< RB = RC, нейтральный провод отсутствует,


       В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:

      Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
    Из-за напряжения  смещения нейтрали фазные  напряжения нагрузки становятся неодинаковыми.
      Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.

       На рис. 8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
           
    Рис. 8

Мощность в трехфазных цепях

     Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками.
        Активная мощность трехфазной цепи равна сумме активных мощностей фаз

   (5)

       Формула (5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
        При симметричной нагрузке:

        При соединении в треугольник симметричной нагрузки

       При соединении в звезду

.

       В обоих случаях

Расчет трехфазных цепей

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

 

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если .

. Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига можно записать

.

Тогда на основании вышесказанного

.

 

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда»  необходимо определить линейные токи в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь .

Тогда для тока ,

и соответственно

. Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

;  .

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв Тогда

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что .

 

.

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

, и из (1) . При симметричной нагрузке , из (1) вытекает В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если

Тогда для напряжения смещения нейтрали будем иметь

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, . Тогда, поскольку при этом

Несинусоидальные периодические ЭДС и токи

Обычно анализ цепей переменного тока проводится в предположении, что действующие в них ЭДС и токи имеют синусоидальную форму. В большинстве случаев такое предположение оправдано, однако, на самом деле форма токов и напряжений в той или иной степени всегда несинусоидальна.

Искажение ЭДС и токов может возникать вследствие конструктивных особенностей генераторов переменного тока, приводящих к тому, что создаваемая ими ЭДС несинусоидальна, либо вследствие нелинейности элементов электрической цепи. Причем для появления искажений достаточно наличия в цепи только одного нелинейного элемента. Чаще всего обе эти причины присутствуют одновременно, но в зависимости от степени выраженности их воздействия на цепь пренебрегают одной из них или обеими сразу.

Из курса математики известно, что любую несинусоидальную периодическую функцию F(w t) удовлетворяющую условиям Дирихле, т.е. имеющую за полный период конечное число максимумов, минимумов и разрывов первого рода, можно представить в виде ряда Фурье

F(wt) = A0 + A1sin(wt+y 1) + A2sin(2wt+y 2) +¼ + Aksin(kwt+y k)+¼ =

A0 + B1sinwt + B2sin2wt +¼ + Bksinkwt+¼ 

¼ + C1coswt + C2cos2wt +¼ + Ckcoskwt +¼ =

A0+a1+a2+¼ + ak+¼ ,

(1)

где .

Первый член ряда A0 называется постоянной составляющей или нулевой гармоникой. Второй член A1sin(wt+y 1) имеет частоту равную частоте функции F(wt) и называется первой или основной гармонической составляющей (коротко - гармоникой). Остальные члены ряда вида Aksin(kwt+y k) имеют частоты в целое число раз k больше частоты основной гармоники и называются высшими гармоническим составляющими или гармониками. Каждая высшая гармоника в отдельности именуется по номеру k , т.е. вторая гармоника, третья гармоника и т.д.

Из выражения (1) следует, что каждую гармонику ряда Фурье можно представить в виде двух составляющих - синусной Bksinkwt и косинусной Ckcoskwt. Амплитуды этих составляющих Bk и Ck называются коэффициентами ряда Фурье.

Разложение в ряд Фурье всегда однозначно в отношении постоянной составляющей, а также амплитуд и частот гармонических составляющих. В то же время, начальные фазы гармоник изменяются при изменении момента времени, принятого за начало отсчета. Таким образом, ряд Фурье можно определить, задав номера, амплитуды и начальные фазы гармоник или номера и амплитуды синусной и косинусной составляющих гармоник. Совокупность амплитуд Ak и начальных фаз y k называются соответственно амплитудным и фазовым частотными спектрами, а совокупность коэффициентов Bk и Ck - частотным спектром функции. Спектры функций удобно изображать отрезками прямых линий, пропорциональных соответствующим величинам (рис. 1). На рис.1 показаны два варианта частотных спектров ряда Фурье u(t)=10+20sin(500t-p /6)+5sin(1500t+p /4)+7sin(2500t+2p /3).

Пусть wt = a . Тогда разложение в ряд функции F(a ), имеющей период 2p , будет

F(a ) = A0 + B1sina + B2sin2a +¼ + Bksinka +¼ 

¼ + C1cosa + C2cos2a +¼ + Ckcoska +¼ =

= A0 + A1sin(a +y1) + A2sin(2a +y2) +¼ + Aksin(ka +yk)+¼ .

Для этой функции коэффициенты ряда Фурье можно найти из выражений

.

(2)

Для основных типов периодических функций, имеющих прямоугольную, треугольную, трапецевидную и др. формы, выражения для коэффициентов ряда Фурье приводятся в справочниках. При отсутствии справочных данных или если требуются аналитические выражения можно воспользоваться выражениями (2). Однако на практике часто бывает достаточно получить численные значения коэффициентов ряда. Это позволяют сделать современные компьютерные средства обработки данных по значениям функции, заданной табличным способом, т.е. рядом абсцисс и ординат точек.

При проверке полученных результатов разложения в ряд, а также для предварительного исключения из расчетов и анализа коэффициентов, отсутствующих в разложении, полезно отметить некоторые связи между характером периодической функции и ее частотным спектром.

Так для кривых симметричных относительно оси абсцисс (рис. 2 а)), т.е. для кривых, соответствующих условию F(a) = - F(a +p) или F(a)+F(a +p)=0, в спектре ряда Фурье будут отсутствовать нулевая и все четные гармоники. Действительно, если сложить ряды для этих функций

F(a)+F(a +p)=A0 + A1sin(a +y1) + A2sin(2a +y2) +¼ + Aksin(ka +yk)+¼+ A0 - A1sin(a +y1) + A2sin(2a +y2) +¼ + Aksin(ka +yk)+¼=0 , то знаки у всех нечетных гармоник второго ряда будут отрицательными, т.к. при нечетных k sin(ka +kp ) = - sin(ka ). Поэтому сумма рядов равна

A0 + A2sin(a +y1) + A4sin(2a +y2) +¼ + A2ksin(2ka +yk)+¼=0,

что возможно только при нулевых значениях всех амплитуд.

Кривые симметричные относительно начала координат (рис. 2 б))обладают свойством F(a) = - F(- a) или F(a) +F(- a)=0. Складывая два ряда, соответствующих этим функциям получим

F(a ) +F(- a )= A0 + B1sina + B2sin2a +¼ + Bksinka +¼ 

¼ + C1cosa + C2cos2a +¼ + Ckcoska +¼+

+ A0 - B1sina - B2sin2a - ¼ - Bksinka +¼ 

¼ + C1cosa + C2cos2a +¼ + Ckcoska +¼=

=2( A0 +C1cosa + C2cos2a +¼ + Ckcoska +¼)=0 ,

следовательно, постоянная составляющая и все косинусные составляющие у этих функций будут равны нулю.

Если аналогичные выкладки проделать для приведенной на рис. 2 в) кривой, симметричной относительно оси ординат, т.е. F(a ) = F(- a ), то в ее разложении в ряд Фурье будут отсутствовать все синусные составляющие.

При несинусоидальных периодических токах и ЭДС в электрической цепи возможно ввести понятия действующих значений аналогично тому, как это было сделано для синусоидальных величин.

Действующее значение тока I определяется через мгновенные значения как

.

Если представить периодический несинусоидальный ток рядом Фурье, то

i= I0 + I1sin(a +y 1) + I2sin(2a +y 2) +¼ + Iksin(ka +y k)+¼ , а

.

Но , поэтому

(3)

Следовательно, действующее значение несинусоидального периодического тока равно корню квадратному из суммы квадратов постоянной составляющей и действующих значений всех гармоник.

Проведя аналогичные выкладки, можно получить выражения для действующих значений ЭДС и падения напряжения в виде

(4)

Определим теперь среднюю мощность P в цепи при несинусоидальных токах и напряжениях. Она всегда может быть выражена в виде

.

Подставляя в это выражение напряжение и ток, представленные рядами Фурье, получим

Но при p¹ q все слагаемые второй суммы тождественно равны нулю, поэтому средняя мощность равна

(5)

Из выражения (5) следует, что средняя или активная мощность в цепи с несинусоидальными токами и напряжениями равна сумме средних или активных мощностей отдельных гармоник.

По аналогии с цепями синусоидального тока можно ввести понятие полной или кажущейся мощности как произведение действующих значений тока и напряжения

S = UI,

тогда отношению P/(UI) можно придать смысл коэффициента мощности cosjэ.

Выражение формально справедливо для некоторой электрической цепи синусоидального тока, в которой протекает ток с действующим значением I и существует падение напряжения U. При этом в цепи выделяется активная мощность P. Следовательно, при изучении некоторых явлений несинусоидальные токи и напряжения, не содержащие постоянных составляющих, можно заменить эквивалентными им по действующему значению синусоидальными со сдвигом фаз между ними jэ, соответствующим коэффициенту мощности несинусоидальных величин. Кривые токов и напряжений в общем случае имеют различные спектры, поэтому для них не существует понятия угла сдвига фаз и jэ имеет смысл только для эквивалентных синусоид.

В отличие от выражения (5) для активной мощности в цепи несинусоидального тока, полученного из понятия средней за период величины, реактивную мощность определить таким образом невозможно. В цепях синусоидального тока она была определена через амплитуду или среднее за четверть периода значение одной из переменных составляющих мгновенной мощности. Поэтому для цепи несинусоидального тока ее можно определить только формально по аналогии с активной мощностью в виде

Q = U1I1sinj 1 + U2I2sinj 2 +¼ + UkIksinj k +¼ 

Без доказательства отметим, что в цепях несинусоидального тока нет прямой связи между активной, реактивной и полной мощностью в виде треугольника мощностей, т.е. .

Если все элементы электрической цепи с несинусоидальными токами и напряжениями линейны, т.е. параметры элементов не зависят от токов и падений напряжения, то анализ электромагнитных процессов в них можно проводить, используя разложение в ряды Фурье.

Расчет цепи при несинусоидальных токах проводится аналогично расчету при синусоидальных, но он должен выполняться отдельно для каждой гармоники, т.е. алгоритм расчета следующий:

  •  представить действующую в цепи ЭДС или ток рядом Фурье (если требуется);
  •  любыми методами расчета цепей синусоидального тока произвести расчет отдельно для каждой гармоники спектра;
  •  по полученному спектру искомых величин найти требуемые значения.

Пусть требуется найти активную мощность в цепи рис. 3, где приложенное напряжение равно u(t)=10+20sin(1000t- 30° )+5sin(3000t+45° ) В, а параметры элементов R = 20 Ом, C = 50 мкФ и L = 5 мГн.

Спектр приложенного напряжения содержит постоянную составляющую или нулевую гармонику, а также первую и третью гармоники.

Реактивные сопротивления цепи зависят от частоты. Для k-й гармоники их можно представить через сопротивления на частоте основной гармоники в виде

,

где xL1 = w 1L= 5 Ом и xC1 = 1/(w 1C) = 20 Ом - индуктивное и емкостное сопротивления на частоте основной гармоники. При расчете реактивных сопротивлений можно формально считать постоянную составляющую нулевой гармоникой. При этом xL0 = 0, а xC0 = µ , что соответствует отсутствию этих элементов и вполне согласуется с теорией цепей постоянного тока, где в статических режимах реактивных элементов нет.

Общее комплексное сопротивление цепи на частоте k-й гармоники будет

.

Подставляя в это выражение значения k = 0, 1, 3, получим значения общих комплексных сопротивлений на всех гармониках в виде Z0 = 20 Ом ; Z1 = 10- j5 Ом ; Z3 = 2+j9 Ом . Из этих выражений видно, что комплексные сопротивления на разных частотах могут иметь реактивную составляющую разного знака.

Отсюда комплексные значения токов - I0 = U0/Z0 = 10/20 = 0.5 А; I1 = U1/Z1 = 20e- j30° /(10- j5) = 1.78e- j3.4° А; I3 = U3/Z3 = 5e j45° /(2+j9) = 0.54e- j32.4° А.

Полученные комплексные значения составляющих спектра токов можно представить рядом Фурье в виде

i = 0.5+1.78sin(1000t- 3.4° )+0.54sin(1000t- 32.4° ) А.

Теперь можно определить активную мощность в цепи как

Как уже упоминалось выше, реальные источники электрической энергии в силу конструктивных особенностей формируют ЭДС и токи, отличающиеся от синусоидальных. Чаще всего эти величины симметричны, т.к. симметрична конструкция электромеханических генераторов, и не содержат четных гармоник.

Для оценки формы симметричных кривых используют коэффициенты формы kf , амплитуды kA и искажений kd.

Под коэффициентом формы понимают отношение действующего значения к среднему значению, взятому за положительную полуволну, т.е.

.

Для синусоидальных величин kf » 1.11.

Под коэффициентом амплитуды понимают отношение амплитудного значения к действующему kA = Um/U и для синусоиды это значение равно 1.414 (корень из 2).

Коэффициент искажений это отношение действующего значения основной гармоники к действующему значению всего спектра, т.е. kd = U1/U.

Поскольку идеальных синусоидальных величин практически не бывает, то в технике существует понятие практически синусоидальных кривых. Форма кривой считается практически синусоидальной, если все ее ординаты отличаются от ординат первой гармоники не более, чем на 5%. При этом количество контрольных точек должно быть не менее 12.




1. А. Погорельский «Чёрная курица или Подземные жители».html
2. Тема- Первинне спостереження
3. Методика и методология социального исся
4. МОСКОВСКИЙ ЭКОНОМИЧЕСКИЙ ИНСТИТУТ ОТЧЕТ о прохождении преддипломной практ.html
5. По результатам государственного квалификационного экзамена или аттестации государственным служащим прис.html
6. Понятие и условие договора 2.html
7. Лабораторная работа- Анализ и классификация возможных воздействий на психическое состояние гипноза
8. Об утверждении Правил размещения страховщиками средств страховых резервов.html
9. тема знаний о явлениях и процессах которая характеризуется свойственными ей объектами и предметами
10. по теме- Оценка эффективности деятельности врачатерапевта участкового
11. Физикомеханические Эстетические Применение материала в архитектуре и реставрационн
12. Суспензионная полимризация
13. это справедливо В СССР получали приблизительно одинаково но очень мало
14. Реферат- Цифровые фотоаппараты и видеокамеры во внеклассной работе со школьниками
15. Задание- 1. Выделите строку таблицы строку щелкнув на левом поле строки
16. ТЕМАТИКА Раздел 1 Пояснительная записка Программа разработана на основе Федерального государственного
17. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата педагогічних наук Кіро.html
18. ПРОИЗВОДСТВО СТАЛИ В ЭЛЕКТРИЧЕСКИХ ПЕЧАХ
19. то 67 разряда без прошлого и будущего
20. Необходимость государственного регулирования общественного развития