Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды. Следовательно, в каждой точке тела подлежат определению 15 величин: три компоненты смещений - u, v и w; шесть компонент напряжений - sx , sy , sz , txy , txz иtyz ; шесть компонент деформаций - ex , ey , ez , gxy , gxz , gyz .
Очевидно, что для решения задачи в общем случае необходимо 15 уравнений, связывающих искомые величины, которые выполнялись бы не только внутри заданного тела, но и на его границе.
Полученные выражения (10.2), (10.16), (10.18), (10.19) образуют такую систему. Для однозначного решения задачи необходимо задание условий на контуре тела - граничных условий. Эти условия могут быть заданы в виде заранее определенных компонент напряжений (статические граничные условия) или компонент перемещений (кинематические граничные условия) или же комбинации тех и других (смешанные граничные условия).
Если заданы граничные условия и требуется оценить напряженно-деформированное состояние заданного тела, то такая задача называетсяпрямой задачей теории упругости. Если же по заданным функциям напряженно-деформированное состояния рассматриваемого тела требуется найти граничные условия им соответствующие, то такая задача называется обратнойзадачей теории упругости.
Решение прямой задачи теории упругости можно вести разными способами. Если в качестве неизвестных принять функции перемещений - u, v и w, то полную система уравнений (10.2), (10.16), (10.18), (10.19) можно свести к следующим трем дифференциальным уравнениям относительно этих функций:
(10.21)
где - оператор Лапласа.
Уравнения (10.21) называются уравнениями Ляме. Граничные условия также необходимо выразить через перемещения. В итоге контурные напряжения запишутся через перемещения в следующем виде:
(10.22)
Если же в качестве неизвестных принять компоненты напряженного состояния в произвольной точке тела - sx , sy , sz , txy , txz и tyz , то к уравнениям равновесия (10.2) нужно присоединить уравнения совместности деформаций (10.17) и закон Гука (10.18-10.19). В результате совместного рассмотрения такой системы дифференциальных уравнений получаются так называемые уравнения Бельтрами:
(10.23)
где I1 - первый инвариант напряженного состояния в точке.
Произвольные постоянные, получаемые в результате интегрирования уравнений (10.23), находятся при учете граничных условий, выраженных в следующем виде:
где X, Y, Z - компоненты полного напряжения на границе.
Решение задач в перемещениях
Из уравнения (1.24) с помощью (1.15) имеем:
(1.40)
где
Дифференцируя (1.40) и внося производные в первое уравнение (1.2), имеем:
. (1.41)
Выражение в первой скобке может быть записано так:
.
Аналогично можно преобразовать и другие два уравнения (1.2), но можно и сразу написать результат, сделав круговую подстановку букв.
Итак, приходим к следующей системе основных уравнений метода перемещений теории упругости:
. (1.42)
Эти уравнения носят название уравнений Ляме. Они являются синтезом статического, геометрического и физического обследований задачи.
Поверхностные условия также можно преобразовать, выразив напряжения через перемещения.
Подставив в первое уравнение (1.4) на место напряжений выражения для них в форме (1.40), имеем:
. (1.43)
Уравнения (1.42) совместно с условиями на поверхности (1.43) позволяют перейти к решению задач теории упругости в перемещениях.
1.14 Решения задач в напряжениях
В противоположность приему, принятому в предыдущем разделе, когда во всех преобразованиях преследовали цель выразить неизвестные через перемещения, можно поставить другую: все выражать через напряжения. Сообщим окончательные результаты и ограничимся случаем статического равновесия тела при условии отсутствия объемных сил или их постоянства.
Трех условий равновесия (1.2) недостаточно, и надо обратиться к условиям неразрывности деформаций (1.17,а) и (1.17,б). Так как в последние входят деформации, их необходимо выразить через напряжения с помощью (1.24). Выполнив эту подстановку и пользуясь одновременно уравнениями равновесия (1.2), уравнения неразрывности преобразуют к следующему виду (уравнения Бельтрами):
, (1.44)
где .
Таким образом, для решения задачи придется проинтегрировать девять уравнений (1.2), (1.44), а входящие в общие решения этих уравнений произвольные функции определить из условий на поверхности (1.4).
Таким же преобразованием двух следующих уравнений (1.20) получим выражения для и , а решением трех последних уравнений (1.20) - выражения для . Итак:
. (1.24)
Из проекций элементарного параллелепипеда на две другие плоскости координат найдем выражение для относительной линейной деформации и относительных сдвигов и . В результате получим следующие шест зависимостей между относительными деформациями и перемещениями:
. (1.15)