Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Реферат Метаморфизм и метаморфические горные породы

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024

Метаморфизм и метаморфические горные породы

Метаморфизм – это процесс преобразования горных пород под воздействием эндогенных факторов при сохранении твердого состояния.

Процессу метаморфизма подвергаются все группы пород – магматические, осадочные и метаморфические, если они попадают в новые условия.

Главными факторами метаморфизма являются: температура, давление и химически активные вещества – растворы и газы. Рассмотрим их роль.

Температура – влияет на: процессы минералообразования, скорость химических реакций, степень перекристаллизации пород. В условиях повышения температуры происходят такие эндотермические реакции как дегидратация и декарбонатизация. Например:

Al4[Si4O10] (OH)8→2Al2O[SiO4]+4H2O+2SiO2

каолинит андалузит

CaCO3+SiO2 → CaSiO3+CO2

кальцит волластонит

Повышение температуры ведет к образованию более высокотемпературных минеральных видов лишенных воды. Принимая во внимание, что метаморфизм протекает при сохранении породами твердого состояния, можно считать, что температурный диапазон определяется нижним температурным пределом в 300–400о, а верхний – в 900–1000о, т.е. температурой плавления наиболее распространенных горных пород.

Давление в эндогенных условиях может быть всесторонним и направленным.

Всестороннее давление определяется воздействием нагрузки вышележащих толщ, бокового давления соседних блоков и нижележащих слоев Земли. Поскольку величина двух последних (бокового и нижележащего) практически постоянна, то при рассмотрении процесса метаморфизма, учитывают воздействие давления вышележащих толщ или литостатического. Оно зависит от плотности вышележащих пород и от глубины. Так давление на глубине 10 км ~2700 атм, а на глубине 20 км 5400 атм. Экспериментальные исследования показали, что давление при метаморфизме может достигать 25000 атм. Это объясняют тем, что кроме литостатического давления в процессе участвует и другой тип давления. Этот тип давления называют парциальным и связывают его возникновение с действием воды и газов, возникающих при дегидратации и декарбонатизации.

Увеличение давления способствует: образованию минералов с более плотной структурой и тем самым к уменьшению общего молекулярного объема и увеличению плотности, повышению температуры плавления минералов.

Следствием этого является образование пород с однородной массивной текстурой.

Направленное давление (или стресс) возникает в глубинах и причиной его возникновения, как правило, является перемещение крупных блоков пород в земной коре. Это может быть движение магмы или застывающего интрузивного тела. В толщах пород могут возникнуть трещины различной мощности и длины; и вдоль этих трещин блоки пород могут перемещаться друг относительно друга, что также приводит к возникновению однонаправленного давления. Результатом такого одностороннего воздействия является изменение и упорядоченность ориентировки минералов в породе – своей длинной осью или плоскостью спайности они располагаются перпендикулярно направлению давления.

Кроме того, при перемещении блоков пород происходит их локальное дробление и перетирание до глинистого состояния в пределах плоскости их перемещения. Возникают новые породы, которые состоят из обломков исходных пород, глинистого материала (или глинка трения) сцементированных минералами и минеральными агрегатами образовавшихся из растворов, циркулирующих в это время по трещинам и зонам дробления.

Химически активные вещества – это вода и углекислый газ. Они содержатся в порах и межзерновом пространстве практически всех горных пород. В меньшем количестве, по сравнению с ними, в породах присутствуют: сероводород, фтороводородная и соляная кислота, азот.

Источники химически активных веществ – процессы дегазации в мантии, охлаждение магмы, процессы дегидратации осадочных пород.

В газово-жидком состоянии химически активные вещества двигаются из областей с высокими температурами и давлением (и сами являясь носителями высоких to и P) в зоны с низким давлением и при этом:

активно участвуют в преобразовании минералов и горных пород;

повышают поровое давление газов, которое снижает растворимость минералов.

Геологами было отмечено, что при наличии высоких температур и давления метаморфические процессы происходят слабо, если отсутствует движение химически активных веществ.

Рассмотренные факторы метаморфизма, как правило, проявляются совместно. В тоже время, в разных геологических условиях каждый из факторов может быть главным, а другие играть подчиненную роль. По этим признакам, а также по масштабу проявления процесса выделяют типы метаморфизма.

Типы метаморфизма

По масштабу проявления выделяют региональный и локальный типы. По проявлению отдельных факторов выделяют:

1. Изохимический (когда в результате образования новых минералов не изменяется валовый химический состав пород) и аллохимический или метасоматический (когда происходит привнос одних элементов и вынос других, т.е. изменяется валовый химический состав вновь образованных пород).

2. Динамометаморфизм – (синоним катакластический или дислокационный) происходит в условиях преобладания фактора направленного давления (стресса).

3. Термальный – (или контактово-термальный) происходит как правило за счет тепла остывающего магматического расплава на контакте интрузивных тел с вмещающими их породами. При этом наблюдается температурная зональность – вблизи контакта с интрузивным телом образуются высокотемпературные минеральные ассоциации, а по мере удаления от контакта они сменяются низкотемпературными минералами. Такой тип метаморфизма наблюдается вблизи интрузий ультраосновного и основного составов, температура которых достигает 1200о. Такие магмы практически не сопровождаются выделением химически активных веществ, поэтому метаморфизм пород – изохимический.

Магмы среднего и кислого составов при остывании выделяют флюиды или газово-жидкие химически активные вещества в нагретом состоянии. При таком воздействии на горные породы происходит метасоматоз – это процесс метаморфизма горных пород, при котором решающим фактором является привнос и вынос химических компонентов. Следствием этого является изменение химического и минерального состава конечных продуктов процесса. Рассмотрим эти процессы на примере внедрения гранитной магмы в осадочную толщу, которая представлена слоями песчаников, алевролитов и известняков (плакат). Из приведенного примера видно, что кроме основных факторов метасоматоза, важное значение имеет состав исходной породы, который влияет на состав вновь образованной породы.

Рассмотренные нами типы метаморфизма, как правило, охватывают небольшие участки линейной или линзовидной формы. Поэтому их рассматривают как результат локального метаморфизма.

4. Региональный метаморфизм – происходит в крупных блоках земной коры с участием всех основных факторов (т.е. температуры, давления и химически активных веществ). Температурный диапазон от 300о до 10000, диапазон изменения давления от 2–5 тыс.атм. до 25000 атм.

Если процесс метаморфизма идет с нарастанием значений температуры и давления, то минералообразование идет от низкотемпературных к высокотемпературным минеральным ассоциациям. Такой метаморфизм называют прогрессивным. Если же процесс идет при понижении значений давления и температуры и образовании низкотемпературных минералов, то такой метаморфизм называют регрессивным.

В разных термодинамических условиях образуются соответствующие им минеральные ассоциации, которые в этих условиях находятся в физико-химическом равновесии, т.е. стабильны. Опираясь на это явление, геологи ввели понятие метаморфическая фация. Это такие физико-химические условия, в которых образуются породы, минеральный состав которых находится в физико-химическом равновесии. Отсюда следует, что минеральный состав пород есть функция химического состава и физических условий метаморфизма.

В зависимости от интервала температур и давления выделяют фации низких и высоких давлений и низких, средних и высоких температур. Но как правило, название фациям даются по названию минеральных ассоциаций или пород в целом, соответствующих данной фации. Итак, основные группы фаций:

Низкие t0 и P-фация зеленых сланцевминеральные ассоциации: хлорит, серицит, кварц, серпентин породы: различные сланцы и серпентинит.

Средние t0 и P-амфиболитовая фация минералы: амфиболы, гранаты, биотит породы: амфиболиты и гнейсы.

Высокие t0 и P – гранулитовая фация минералы: полевой шпат, гранаты, пироксен породы: гнейсы, эклогиты, гранулиты.

В пограничной зоне высоких температур и давлений породы могут частично плавиться – этот процесс называется – ультраметаморфизм. При этом наблюдается в сохранившихся метаморфических породах жилоподобные и пятнистые участки кварц-полевошпатового агрегата. Такие породы называются мигматиты.

Минеральный состав метаморфических горных пород весьма разнообразен. Следует однако, иметь в виду, что он зависит: а) от химического состава исходной породы; б) типа метаморфизма и в) от метаморфической фации. Среди наиболее распространенных минералов – это слюды, пироксены, амфиболы, карбонаты, кварц, полевые шпаты и гранат. Кроме того, есть минералы, которые образуются только при метаморфических процессах и являются его индикаторами. Это – тальк, серпентин, актинолит и др.

Условия образования отражаются в структурах и текстурах метаморфических пород. Как правило, метаморфические породы полностью раскристаллизованы. Среди структур типичными являются: кристаллобластические (перекристаллизация с одновременным ростом кристаллов), реликтовая (наряду с новообразованными минералами присутствуют остатки минералов первичной породы) и катакластические.

Текстуры отражают условия, при которых осуществлялось заполнение объема это сланцеватые, гнейсовые, массивные и пятнистые.

Классификация метаморфических пород проводится по таким признакам как масштаб проявления и тип метаморфизма.

Наиболее распространенными породами локального метаморфизма являются: тектонические брекчии и милониты; мраморы и роговики; скарны, грейзены, березиты и листвениты (при метасоматозе).

Полезные ископаемые, сформированные в процессе метаморфизма разнообразны по составу и подразделяются на: метаморфизованные и метаморфические.

К метаморфизованным относят такие, которые в результате метаморфических процессов из рассеянных в породе минералов образуют промышленные скопления с тем же минеральным составом. Например, в докембрийских железистых кварцитах в результате метаморфизма образуются месторождения железных руд, состоящих из магнетита и гематита.

К метаморфическим относят такие, которые состоят из новообразованных минералов. Например – месторождения талька, хризотил-асбеста, флогопита, корунда, графита и др.

Основные факторы метаморфизма

Основными факторами метаморфизма являются температура, давление и флюид.

С ростом температуры происходят метаморфические реакции с разложением водосодержащих фаз (хлориты, слюды, амфиболы). С ростом давления происходят реакции с уменьшением объема фаз. При температурах более 600 С начинается частичное плавление некоторых пород, образуются расплавы, которые уходят на верхние горизонты, оставляя тугоплавкий остаток – рестит.

Флюидом называются летучие компоненты метаморфических систем. Это первую очередь вода и углекислый газ. Реже роль могут играть кислород, водород, углеводороды, соединения галогенов и некоторые другие. В присутствии флюида область устойчивости многих фаз (особенно содержащих эти летучие компоненты) изменяются. В их присутствии плавление горных пород начинается при значительно более низких температурах.

Фации метаморфизма

Метаморфические породы очень разнообразны. В качестве породообразующих минералов в них установлено более 20 минералов. Породы близкого состава, но образовавшиеся в различных термодинамических условиях, могут иметь совершенно разный минеральный состав. Первыми исследователями метаморфических комплексов было установлено, что можно выделить несколько характерных, широко распространенных ассоциаций, которые образовались в разных термодинамических условиях. Первое деление метаморфических пород по термодинамическим условиям образования сделал Эскола. В породах базальтового состава он выделил зеленые сланцы, эпидотовые породы, амфиболиты, гранулиты и эклогиты. Последующие исследования показали логичность и содержательность такого деления.

В дальнейшем началось интенсивное экспериментальное изучение минеральных реакций, и усилиями многих исследователей была составлена схема фаций метаморфизма – Р-Т диаграмма, на которой показаны полу – устойчивости отдельных минералов и минеральных ассоциаций. Схема фаций стала одним из основных инструментов анализа метаморфических комплектов. Геологи, определив минеральный состав породы, соотносили её с какой либо фацией, и по появлению и исчезновению минералов составляли карты изоград – линий равных температур. В практически современном варианте схема фаций метаморфизма была опубликована группой ученых под руководством В.С. Соболева в Сибирском отделении АН

Одна из последних классификаций метаморфизма приведена в таблице:

Тип метаморфизма

Факторы метаморфизма

Метаморфизм погружения

Увеличение давления, циркуляция водных растворов

Метаморфизм нагревания

Рост температуры

Метаморфизм гидратации

Взаимодействие горных пород с водными растворами

Дислокационный метаморфизм

Тектонические деформации

Ударный метаморфизм

Падение крупных метеоритов, мощные эндогенные взрывы (?)

Формы залегания метаморфических пород

Так как исходным материалом метаморфических горных пород являются осадочные и магматические породы, их формы залегания должны совпадать с формами залегания этих пород. Так на основе осадочных пород сохраняется пластовая форма залегания, а на основе магматических – форма интрузий или покровов. Этим иногда пользуются, чтобы определить их происхождение. Так, если метаморфическая порода происходит от осадочной, ей дают приставку пара – (например, парагнейсы), а если она образовалась за счёт магматической породы, то ставится приставка орто – (например, ортогнейсы).

Состав метаморфических пород

Химический состав метаморфических горных пород разнообразен и зависит в первую очередь от состава исходных. Однако состав может отличаться от состава исходных пород, так как в процессе метаморфизма происходят изменения под влиянием привносимых водными растворами веществ и метасоматических процессов.

Минеральный состав метаморфических пород также разнообразен, они могут состоять из одного минерала, например кварца (кварцит) или кальцита (мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами, пироксенами и амфиболами. Наряду с ними присутствуют типично метаморфические минералы: гранаты, андалузит, дистен, силлиманит, кордиерит, скаполит и некоторые другие. Характерны, особенно для слабометаморфизованных пород тальк, хлориты, актинолит, эпидот, цоизит, карбонаты.

Физико – химические условия образования метаморфических пород, определённые методами геобаротермометрии весьма высокие. Они колеблются от 100–300 °C до 1000–1500 °C и от первых десятков баров до 20–30 кбаров

Текстуры метаморфических пород

Текстура пород, как пространственная характеристика свойств породы, отражает способ заполнения пространства.

Сланцевая: большое распространение в метаморфических породах получили листоватые, чешуйчатые и пластинчатые минералы, что связано с их приспособлением к кристаллизации в условиях высоких давлений. Это выражается в сланцеватости горных пород, которая характеризуется тем, что породы распадаются на тонкие плитки и пластинки.

Полосчатая – чередование различных по минеральному составу полос, образующихся при наследовании текстур осадочных пород.

Пятнистая – наличие в породе пятен, отличающихся по цвету, составу, устойчивости к выветриванию.

Массивная – отсутствие ориентировки породообразующих минералов.

Плойчатая – когда под влиянием давления порода собрана в мелкие складки.

Миндалекаменная – представленная более или менее округлыми или овальными агрегатами среди сланцеватой массы породы.

Катакластическая – отличающаяся раздроблением и деформацией минералов.

Структуры метаморфических пород

Понятие «структура» не имеет строгого определения и носит интуитивный характер. Согласно практике геологических исследований «структура» больше характеризует размерные (крупно-, средне- или мелкообломочные) параметры слагающих породу зёрен.

Структуры метаморфических пород возникают в процессе перекристаллизации в твёрдом состоянии, или кристаллобластеза. Такие структуры называют кристаллобластовыми. По форме зёрен различают текстуры [1]:

гранобластовая (агрегат изометрических зёрен);

лепидобластовая (агрегат листоватых или чешуйчатых кристаллов);

нематобластовая (агрегат игольчатых или длиннопризматических кристаллов);

фибробластовая (агрегат волокнистых кристаллов).

По относительным размерам:

гомеобластовая (агрегат зёрен одинакового размера);

гетеробластовая (агрегат зёрен разных размеров);

порфиробластовая;

пойкилобластовая (наличие мелких вростков минералов в основной ткани породы);

ситовидная (обилие мелких вростков одного минерала в крупных кристаллах другого минерала).

Породы регионального метаморфизма

Здесь приведены породы образовавшиеся в результате регионального метаморфизма (от менее к более метаморфизованным).

Глинистые сланцы – представляют начальную стадию метаморфизма глинистых пород. Состоят преимущественно из гидрослюд, хлорита, иногда каолинита, реликтов других глинистых минералов (монтмориллонита, смешаннослойных минералов), кварца, полевых шпатов и других неглинистых минералов. В них хорошо выражена сланцеватость. Они легко раскалываются на плитки. Цвет сланцев: зелёный, серый, бурый до чёрного. Содержат углистое вещество, новообразования карбонатов и сульфидов железа.

Филлиты [греч. филлитес – листоватый] – плотная темная с шелковистым блеском сланцеватая порода, состоящая из кварца, серицита, иногда с примесью хлорита, биотита и альбита. Образуются при метаморфизме глинистых сланцев, но не содержат глинистых минералов. По степени метаморфизма переходная порода от глинистых к слюдяным сланцам.

Хлоритовые сланцы – Хлоритовые сланцы представляют собой сланцеватые или чешуйчатые породы, состоящие преимущественно из хлорита, а также актинолита, талька, слюды, эпидота, кварца и других минералов. Цвет их зелёный, на ощупь жирные, твердость небольшая. Часто содержат магнетит в виде хорошо образованных кристаллов (октаэдров).

Тальковые сланцы – агрегат листочков и чешуек талька сланцеватого строения, зеленоватого или белого цвета, мягок, обладает жирным блеском. Встречается изредка среди хлоритовых сланцев и филлитов в верхнеархейских (гуронских) образованиях, но иногда является результатом метаморфизации и более молодых осадочных и изверженных (оливиновых) горных пород. Как примесь присутствуют магнезит, хромит, актинолит, апатит, глинкит, турмалин. Часто к тальку в большом количестве примешиваются листочки и чешуйки хлорита, обусловливающие переход в тальково-хлористовый сланец.

Кристаллические сланцы – общее название обширной группы метаморфических пород, характеризующиеся средней (частично сильной) степенью метаморфизма. В отличие от гнейсов в кристаллических сланцах количественные взаимоотношения между кварцем, полевыми шпатами и тёмноцветными минералами могут быть разными.

Амфиболиты – метаморфическая горная порода, состоящая из амфибола, плагиоклаза и минералов примесей. Роговая обманка, содержащаяся в амфиболитах, отличается от амфиболов сложным составом и высоким содержанием глинозёма. В противоположность большинству метаморфических пород высоких ступеней регионального метаморфизма амфиболиты не всегда обладают хорошо выраженной сланцеватой текстурой. Структура амфиболитов гранобластовая (при склонности роговой обманки к образованию удлинённых по сланцеватости кристаллов), нематобластовая и даже фибробластовая. Амфиболиты могут образовываться как за счёт основных изверженных пород – габбро, диабазов, базальтов, туфов и др., так и за счёт осадочных пород мергелистого состава. Переходные разности к габбро называются габбро-амфиболитами и характеризуются реликтовыми (остаточными) габбровыми структурами. Амфиболиты, возникающие за счёт ультраосновных горных пород, отличаются обычно отсутствием плагиоклаза и состоят практически целиком из роговой обманки, богатой магнием (антофиллит, жедрит). Различают следующие виды амфиболитов: биотитовые, гранатовые, кварцевые, кианитовые, скаполитовые, цоизитовые, эпидотовые и др. амфиболиты.

Кварциты – зернистая горная порода, состоящая из зерен кварца, сцементированных более мелким кварцевым материалом. Образуется при метаморфизме кварцевых песчаников, порфиров. Встречаются в корах выветривания, образуясь при метасоматозе (гипергенные кварциты) с окислением медноколчеданных месторождений. Они служат поисковым признаком на медноколчеданные руды. Микрокварциты образуются из подводных гидротерм, выносящих в морскую воду кремнезём, при отсутствии других компонентов (железо, магний и др.).

Гнейсы – метаморфическая горная порода, характеризующаяся более или менее отчётливо выраженной параллельно-сланцеватой, часто тонкополосчатой текстурой с преобладающими гранобластовыми и порфиробластовыми структурами и состоящая из кварца, калиевого полевого шпата, плагиоклазов и цветных минералов. Выделяют: биотитовые, мусковитовые, двуслюдяные, амфиболовые, пироксеновые и др. гнейсы.

Метаморфические породы образовавшиеся при динамометаморфизме

Это породы, возникающие под действием динамометаморфизма и тектонических нарушений в зоне дробления. Дроблению и деформации подвергаются не только сама порода, но и минералы.

Катаклазиты – продукт дислокационного метаморфизма, не сопровождающегося явлениями перекристаллизации и минералообразования. Внутреннее строение характеризуется присутствием сильно деформированных, изогнутых, раздробленных зёрен минералов и часто наличием мелкогранулированной полиминеральной связующей массы (цемента).

Милониты – Тонкоперетёртая горная порода с отчётливо выраженной сланцеватой текстурой. Образуются в зонах дробления, особенно по плоскостям надвигов и сбросов. Разорванные блоки горных пород, перемещаясь, дробят, перетирают и одновременно сдавливают породы, вследствие чего она становится компактной и однородной. Для милинитов характерны полосчатые текстуры, расслоёность и флюидальность. От катаклазитов отличается большей степенью раздробленности и развитием параллельной текстуры.

Фации метаморфизма

При метаморфических преобразованиях происходят разнообразные химические реакции. Считается, что они осуществляются в твёрдом состоянии. В процессе этих реакций происходит образование новых или перекристаллизация старых минералов так, что для конкретного интервала температур и давлений этот набор минералов остаётся относительно постоянным. Определяющий набор минералов получил название «фация метаморфизма». Разделение метаморфических пород на фации началось ещё в XIX веке и связано с работами Г. Барроу (1893), А.А. Иностранцева (1877), Г.Ф. Бекера (1893) и других исследователей, и широко применялоссь в начале XX века (Ван-Хайз, 1904; В.М. Гольдшмидт, 1911; П. Эскола, 1920; Ц.Е. Тилли, 1925; и др.). Существенную роль в разработке физико-химической природы минеральных фаций сыграл Д.С. Коржинский (1899–1985).

Современные представления об основных минеральных фациях метаморфизма приведены в таблице.

Тип метаморфизма

Фации метаморфизма

Давление (МПа)

Температурный интервал (°C)

Примеры пород

Метаморфизм погружения

Цеолитовая

< (200–500)

< (200–300)

Метаграувакки, метавулканиты

Пренит-пумпелиитовая

200–500

200–300

Лавсонит-глауковановая (голубых сланцев)

400–800

300–400

Глаукофановые сланцы

Эклогитовая

>800

> (400–700)

Эклогиты

Контактовый метаморфизм

Альбит-эпидотовых роговиков

250–500

Роговики контактовые, скарны

Амфиболовых роговиков

450–670

Пироксеновых роговиков

630–800

Санидиновая

> (720–800)

Региональный метаморфизм

Зелёных сланцев

200–900

300–600

Зелёные сланцы, хлорит-серицитовые сланцы

Эпидот-амфиболитовая

500–650

Амфиболиты, слюдяные сланцы

Амфиболитовая

550–800

Амфиболиты, биотитовые парагнейсы

Гранулитовая

> (700–800)

Гранулиты, гиперстеновые парагнейсы

Кианитовые сланцы

> 900

500–700

Кианитовые сланцы

Эклогитовая

Эклогиты

Температуры образования метаморфических горных пород

Температуры образования метаморфических пород всегда интересовали исследователей, поскольку ни позволяли понимать условия, а отсюда и историю механизма образовани этих пород. Ранее до разработки основных методов определения температур образования метаморфических минералов главным методом решения задачи были экспериментальные исследования, основанные на анализе различных диаграмм плавкости. На этих диаграммах устанавливались основные интервалы температур и давлений, в пределах которых выявлялась устойчивость тех или иных минеральных ассоциаций. Далее результаты экспериментов практически механически переносились на природные объекты. Параметры образования конкретных минералов не изучались, что является существенным недостатком подобных исследований.

В последующие годы появились новые методы определения температур образования минералов, к которым относились анализ расплавных включений, изотопные и геохимические геотермометры (см. Геобаротермометрия); эти методы позволили уточнить границы существования тех или иных минеральных ассоциаций в природных условиях и перекинуть мостик между экспериментальными исследованиями и природными явлениями.

В настоящее время все температурные измерения, выполненные с помощью упомянутых выше геотермометров, вызывают сомнение в связи с тем, что в теоретических разработках и методах их использования выявлены существенные методические ошибки.

Дальнейшие исследования привели к созданию новых типов изотопных геотермометров, позволивших определять температуру образования конкретных минералов. Некоторые результаты этих исследований приведены в таблице.

Породы

Регионы

Минералы

Qw

Bio

Il

Mt

Kf

Mus

Alb

Grn

Сланцы

Австрия

700*

330

Сланцы

Гренландия

700*

610

Сланцы

Гренландия

700*

594

Метапелит

Альпы

670

604

Метапелит

Альпы

740

Ортогнейс

Альпы

650

620

550

Гнейс

Альпы

700*

320

Минералы: Qw – кварц; Bio – биотит; Il – ильменит; Mt – магнетит; Kf – калиевый полевой шпат; Mus – мусковит; Alb – альбит; Grn – гранат. (*) – минерал взят в качестве эталона с указанной температурой.

Последовательность выделения минералов метаморфитов описывается рядом

(КВ, БИ) > (МТ, ИЛ) > ПЛ40 > МУ > ГР(?)

(ПЛ40 – плагиоклаз №40).

Приведённый ряд обладает следующими особенностями:

1. различие Т кристаллизации метаморфических пород, говорящее о возможной их разновозрастности;

2. для силикатов установлен парагенезис с водой, согласуясь со схемой выделения их из растворов;

(≡Si-O-Si≡) + H2O → 2 (≡Si-OH)

3. в образовании рудных минералов ни вода, ни СО2, ни СО участия не принимают. Эти минералы находятся в изотопном равновесии с рутилом в результате образования, например, по уравнению

6FeTiO3 + O2 → 2Fe3O4 + 6TiO2.

4. установлено влияние диффузии компоненты HDO в водосодержащих силикатах на формирование изотопного состава водорода.

] Механизм образования минералов в метаморфических породах

Под механизмом выделения минерала понимается химическая реакция, ведущая к кристаллизации этого минерала. Эти задачи являются одними из основных задач петрологии. Примеры подобных реакций приведены в работе Н.А. ЕлисееваОчень многие метаморфические минеральные ассоциации подтверждены в экспериментах. Однако в них поведение конкретного минерала не определено, а кроме того реальность этих уравнений в природных условиях не доказана. В обоих случаях наблюдается произвол в составлении уравнений образования минералов. Особенно же одиозны реакции с участием флюидных компонентов. Чаще всего все постулируемые уравнения являются «сочинением на вольную тему». Эти решения являются правдоподобными, но не доказанными. Это мифические решения. Примером не корректно написанной реакции является вывод В.И. Лучицкого[: описывая замещение роговой обманки (далее Amp), он приводит реакцию 5Amp + 7W → 2Ep + Chl + Act + Qw + … (Act – актинолит, W – вода) и пишет, что «Обыкновенно одновременно развивается эпидот Ep (более высокотемпературный) и хлорит Chl (более низкотемпературный)». Но если в окрестности одной точки минералы появляются при разных температурах, значит, они не одновременны. Следовательно, данная реакция должна быть разбита минимум на две реакции.

Примером другой подобной реакции является реакция (Федькин В.В., 1975)

8Stav + 12Qw = 4Grn + Chl + 30Kya.

В этой реакции Grn и Chl образовуются при разных температурах. Эти результаты не учитывают новые данные по геохимии минералов, отражённые в таблице.

Многочисленные аналитические данные позволяют найти ответ на этот вопрос

Гранаты

Изотопных данных – ограниченное количество.

Геохимические данные. Это наиболее богатый по количеству анализов минерал. У нас нет выборок, в которых гранат или другой минерал одновременно подвергался бы изотопному и силикатному анализам. Во всех случаях рассчитаны химические реакции обмена элементами Ca, Mg, Fe и Mn между соединениями Grn – Ċ. В качестве Ċ взяты: Ca, Mg, Fe, Ca+2, Mg+2, Fe+2, CaO, MgO, FeO, Fe2O3, Al2O3, пироксены простые (например, MgSiO3) и двойные (например, CaMgSi2O6), биотиты, оливины (простые и двойные), кордиериты, силлиманиты (для пары Fe+3-Al+3), шпинели (в том числе магнетиты), корунд, гематит.

Все изученные гранаты (Grn) находятся в ассоциации преимущественно с биотитом (Bio), кордиеритом (Cor) и плагиоклазом (Pl).

По изотопным данным Bio образованы при Т ≈ 700 °C, плагиоклазы ≈ 500 °C. Температура выделения граната не достаточно ясна. По изотопным данным он выделяется при 300–450 °C; результаты анализа ГЖВ дают те же пределы. По официальной точке зрения – ≈ 700 °C, но она опирается во многом на геохимические термометры, в использовании которых имеются существенные ошибки. Bio и Grn выделяются в равновесии с водой. О Cor информации нет. По экспериментам (Л.Л. Перчука и др., 1983) при Т = 550–1000 °C при совместной кристаллизации ионный обмен между Grn и Cor отсутствует.

Основной версией является равновесие Grn с Cor, часто присутствующим в гнейсах в ассоциации с Grn. Тогда вероятное уравнение образования гранатов имеет вид

… = {Cor + [Grn]+ H2O]+ ….

Здесь скобки отражают: […] – изотопное; {…} – геохимическое равновесия.

Интересный материал по интерпретации полученных результатов приведен в работе Н.А. Елисеева. Переход пород фации зеленых сланцев в породы фации эпидотовых амфиболитов осуществляется на основе реакции

Chl + Qw → Grn + H2O

(Chl – хлорит). Но, объясняя изотопное равновесие граната с водой, эта реакция не отражает геохимическое равновесие минерала с другими компонентами гнейсов. Описывая происхождение гранатов, Н.А. Елисеев пишет ещё об одной реакций

Chl + QwCor + Ant + H2O

(Ant – антофиллит). Эти реакции протекают при разных Р-Т условиях. Но объединение их в средних областях Р-Т – условий приводит к искомой реакции образования минералов:


Chl
+ Qw → {Cor + [Grn] + H2O],

которая соответствует полученной выше схеме по изотопно-геохимическим данным.

Магнетиты

Изотопные данные. Изучен изотопный состав кислорода в акцессорных Mt и Il кислых метаморфитов (см. таблицу). Равновесие минералов с Н2О, СО2 и СО не подтверждается, зато выявлено равновесие с рутилом, соответствуя образованию системы Mt(Il) – Ru при разложении ферропсевдобрукита или ильменита (П.Я. Ярош, 1955; П.Р. Бусек, К. Келль, 1966; и т.д.) по реакции

FeTiO5 → [Il + Ru];

Однако, в магнетитовых месторождениях Кривого Рога (Украина) этот механизм не выявлен, возможно, из-за ошибок в определении изотопного состава кислорода минерала.

Возможно образование Mt за счёт разложения ильменита по реакции

3FeTiO3 + O-2 →[Fe3O4 + 3TiO2].

Тогда Mt находится в изотопном равновесии с рутилом (Ru). В этом случае Mt образуется при Тизот ≈ 450 °C. Такие Тизот(Mt) вполне возможны. Так на рудопроявлении р. Кюэричи жилообразные магнетит-гемоильменитовые руды образованы при Т = 430–570 °C (А.Н. Соляник и др., 1984). В метаморфических породах Il и Mt формируются в равновесии с Ru при Тизот = 400–500 °С. Если же рассматривать Il как продукт разложения ульвошпинели, то в ассоциации с Mt их Тизот = 458 °C. Магнетит не может быть образован за счёт разложения Il, поскольку в противном случае температуры образования (Тизот = 1100 −2000 °C) геологически не реальны.

В месторождения железорудной формации Biwabik (Сев. Миннесота) скарнового типа: по Синякову В.И. (1978), Дымкину А.М. и др. (1975) по результатам декрепитации Тобр(Mt) в скарнах колеблется в пределах 420–530 °C. Изучена пара магнетит-кварц. Полученные данные дают температуру образования Mt в 500–550 °C при условии равновесия его с СО2. Наиболее вероятным механизмом его образования является распад сидерита по схеме (Perry E.C., Bonnichsen B, 1966)

3FeCO3 + 0,5O2 → Fe3O4 + 3CO2.

В.Н. Загнитко и др. (1989), И.П. Луговая (1973), ссылаясь на эксперименты, приводят реакции, соответствующие изотопным соотношениям:

3FeCO3 → [Fe3O4 + 2CO2] + CO (безводные среды с удалением газа);

6FeCO3→ [2Fe3O4 + 5CO2] + C (медленное удаление газа, наименее вероятная реакция).

Изучены преимущественно магнетиты Украинского щита. При интерпретации учитывались термодинамические данные по пироксенам, оливинам, гранатам, карбонатам и другим соединениям, отмеченным при описании граната. Использованы определяющие отношения (Fe/Mg), (Fe/Mn), (Fe/Ca). Установлено, что исходное уравнение должно иметь вид

… = … + {Px + [Mt] + CO2] + ….

В литературе прямого упоминания о подобных реакциях нет. В работе Н.А. Елисеева (стр. 64)[5] при описании контактовых роговиков упоминается реакция


CaMg(CO
3)2 + 2SiO2 = CaMg(SiO3)2 + 2CO2.

Если вместо доломита взять анкерит Ca2Mg, Fe(CO3)4, брейнерит (Mg, Fe) CO3 или сидероплезит (Fe, Mg) CO3, то при метаморфизме карбонатов можем получить реакцию, например,

3Ca2MgFe(CO3)4+ 6SiO2 = 3CaCO3(?) +{3CaMg(SiO3)2(?) + [Fe3O4} + 8CO2] + CO.

О возможности протекания подобных реакций свидетельствует и состав природных карбонатов (И.П. Луговая, 1973): сидерит – FeCO3 – 98,4%; MnCO3-3,4%; MgCO3 – 0,7%; пистолизит – FeCO3 – 69,6%; MgCO3 – 27,3%; MnCO3 – 2,8%; сидероплезит – FeCO3 – 83, %; MgCO3 – 11,5%; MnCO3 – 4,4%. Недостатком реакции является неясность изотопной природы кальцита и пироксена.

Изучение Mt (из Н.М. Бондаревой, 1977, 1978) Одесско-Белоцерковской зоны показало, что для эталонной Т = 500 °C (магнитные свойства [Е.Б. Глевасский и др., 1970], декрепитация) рудный Mt термодинамически геохимически равновесен оливину (Ol) (по соотношению Fe+2, Ca, Mg, Mn) и корунду (Cor) (Fe+3-Al), образуя ассоциацию [Mt-Ol-Cor]. При этом давление оценивается в 1 кбар. По В.И. Михееву (1955) при Т = 1200 °C и Р = 1 атм Mg – хлорит разлагается на шпинель и Ol. Так как Mt – это шпинель, то выявленную ассоциацию Mt – Ol – Cor можно связать с разложением сильно железистого хлорита (лепто-, септохлорит) типа кроншдтетита, содержащего Fe+2 и Fe+3.




1. римская античность
2. История химического оружия
3. Озирис Греки приписывали изобретение вина Бахусу изобретение плуга Гере
4. Экологическая сертификация - органы и объекты
5. Загальні положення 1
6. тема управления финансами
7. Тема- Проблема периодизации психического развития Вопросы для подготовки и обсуждения- Суть проблем
8. Кредитно-расчетные отношения
9. Горе от ума это тонкая умная изящная и страстная комедия
10.  Философия и наука в творчестве В
11. На тему- Гай и его институция
12. Лекція 1. Сутнiсть органiзації виробництва.
13. Психология личности и группы для студентов заочного отделения Андреева Г
14. Розрахунок керованого випрямляча та системи імпульсно-фазового керування
15. на тему ОсеньDo you like riny wether Вам нравится дождливая погода Is it rining Идёт дождь No It is snowing
16. Экономика фирмы 2012 Теоретикометодологические основы экономической науки Общественное разделе
17. частица ~ волна квантового мира позволяет говорить об альфаизлучении и бетаизлучении
18. Затверджую Затверджую Директор Інженерно п
19. II ТЫСЯЧЕЛЕТИЕ НАШЕЙ ЭРЫ [0
20. Бизнес-план открытия нового магазина женской одежды в городе Невьянске