Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

.История Земли описывает наиболее важные события и основные этапы развития планеты Земля с момента её образо

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.11.2024

1.История Земли описывает наиболее важные события и основные этапы развития планеты Земля с момента её образования и до наших дней. Почти все отрасли естествознания внесли свой вклад в понимание основных событий прошлого Земли. Возраст Земли составляет примерно треть возраста Вселенной. В этот промежуток времени произошло огромное количество биологических и геологических изменений.Земля образовалась около 4,54 млрд лет назад путем аккреции из протопланетного диска, дискообразной массы газа, пыли, оставшихся от образования Солнца, которая и дала начало Солнечной системе. Вулканическая дегазация создала первичную атмосферу, но в ней почти не было кислорода и она была бы токсичной для людей и современной жизни в целом. Бо́льшая часть Земли была расплавленной из-за активного вулканизма и частых столкновений с другими космическими объектами. Одно из таких крупных столкновений, как полагается, привело к наклону земной оси и формированию Луны. Со временем такие космические бомбардировки прекратились, что позволило планете остыть и образовать твёрдую кору. Доставленная на планету кометами и астероидами вода cконденсировалась в облака и океаны. Земля стала, наконец, гостеприимной для жизни, а самые ранние её формы обогатили атмосферу кислородом. По крайней мере, первый миллиард лет жизнь на Земле существовала в малых и микроскопических формах. Около 580 миллионов лет назад возникла сложная многоклеточная жизнь, а во время кембрийского периода она пережила процесс быстрой диверсификации в большинство основных типов. Около шести миллионов лет назад от гоминидов отделилась линия гоминини, что привело к появлению шимпанзе (наших ближайших родственников), и в дальнейшем к современному человеку.
С момента её формирования на нашей планете постоянно происходят биологические и геологические изменения. Организмы непрерывно развиваются, принимают новые формы или вымирают в ответ на постоянно меняющуюся планету. Процесс тектоники плит играет важную роль в формировании океанов и континентов Земли, а также жизни, которой они дают убежище. Биосфера, в свою очередь, оказала значительное влияние на атмосферу и другие абиотические условия на планете, такие, как образование озонового слоя, распространение кислорода, а также создание почвы. Хотя люди не способны воспринимать это в связи с их относительно коротким периодом жизни, эти изменения продолжаются и будут продолжаться в течение следующих нескольких миллиардов лет.
2.Изучение внутреннего строения Земли производится различными методами. Геологические методы, основанные на изучении естественных обнажений горных пород, разрезов шахт и рудников, кернов глубоких буровых скважин, дают возможность судить о строении приповерхностной части земной коры. Глубина известных пробуренных скважин достигает 7,5-9,5 км, и только одна в мире опытная скважина, заложенная на Кольском полуострове, уже достигла глубины более 12 км при проектной глубине до 15 км. В вулканических областях по продуктам извержения вулканов можно судить о составе вещества на глубинах 50-100 км. В целом же глубинное внутреннее строение Земли изучается главным образом геофизическими методами: сейсмическим, гравиметрическим, магнитометрическим и др. Одним из важнейших методов является сейсмический (греч. <сейсмос> - трясение) метод, основанный на изучении естественных землетрясений и <искусственных землетрясений>, вызываемых взрывами или ударными вибрационными воздействиями на земную кору.Очаги землетрясений располагаются на различных глубинах от приповерхностных (около 10 км) до самых глубоких (до 700 км), прослеженных в разломных зонах по окраинам Тихого океана. Возникающие в очаге сейсмические волны как бы просвечивают Землю и дают представление о той среде, через которую они проходят. В очаге (или фокусе) возникают два главных типа волн:1) самые быстрые продольные Р-волны (т.е. первичные-primary); 2) более медленные поперечные S-волны (т.е. вторичные - secondary). При распространении Р-волн горные породы испытывают сжатие и растяжение (смещение частиц среды вдоль направления волны). Р-волны проходят в твердых и жидких телах земных недр. Поперечные S-волны распространяются только в твердых телах, и с их распространением связаны колебания горных пород под прямым углом к направлению распространения волны (рис. 1.3). При прохождении поперечных волн упругие породы подвергаются деформации сдвига и кручения. Кроме того, выделяются поверхностные L-волны (т.е. длинные - long), которые отличаются сложными синусоидальными колебаниями вдоль или около земной поверхности. Регистрация прихода сейсмических волн производится на специальных сейсмических станциях, оборудованных записывающими приборами - сейсмографами, расположенными на разных расстояниях от очага. Такое расположение сейсмостанций позволяет судить о скорости распространения колебаний на разных глубинах, поскольку к более отдаленным станциям приходят волны, прошедшие через более глубокие слои Земли. Запись сейсмографом прихода волн называется сейсмограммой. Реальные скорости сейсмических воли зависят от упругих свойств и плотности горных пород, через которые они проходят. Изменения скорости сейсмических волн отчетливо показывают на неоднородность и расслоенность Земли. О различных слоях и состоянии веществ, их слагающих, указывают преломленные и отраженные волны от их граничных поверхностей (рис. 1.4). На основании скорости распространения сейсмических волн австралийский сейсмолог К. Буллен разделил Землю на ряд зон, дал им буквенные обозначения в определенных усредненных интервалах глубин, которые используются с некоторыми уточнениями до настоящего времени (рис. 1.5). Выделяют три главные области Земли:1. Земная кора (слой А) -верхняя оболочка Земли, мощность которой изменяется от 6-7 км под глубокими частями океанов до 35-40 км под равнинными платформенными территориями континентов, до 50-70(75) км под горными сооружениями (наибольшие под Гималаями и Андами).2. Мантия Земли, распространяющаяся до глубин 2900 км. В ее пределах по сейсмическим данным выделяются: верхняя мантия - слой В глубиной до 400 км и С - до 800-1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия - слой D до глубины 2700 с переходным слоем D1 - от 2700 до 2900 км.3. Ядро Земли, подразделяемое: на внешнее ядро - слой Е в пределах глубин 2900-4980 км; переходную оболочку - слой F - от 4980 до 5120 км и внутреннее ядро - слой G до 6971 км.По имеющимся данным выделены несколько разделов первого порядка, в которых скорость сейсмических волн резко изменяется (табл. 1.1).Как видно из данных таблицы, земная кора отделяется от слоя В верхней мантии достаточно резкой граничной скоростью. В 1909 г. югославский сейсмолог А. Мохоровичич при изучении балканских землетрясений впервые установил наличие этого раздела, носящего теперь его имя и принятого за нижнюю границу земной коры. Часто эту границу сокращенно называют границей Мохо или М. Второй резкий раздел совпадает с переходом от нижней мантии к внешнему ядру, где наблюдается скачкообразное падение скорости продольных волн с 13,6 до 8,1 км/с, а поперечные волны гасятся. Внезапное резкое уменьшение скорости продольных волн и исчезновение поперечных волн во внешнем ядре свидетельствуют о необычайном состоянии вещества, отличающемся от твердой мантии.

Эта граница названа именем Б. Гутенберга. Третий раздел совпадает с основанием слоя F и внутренним ядром Земли (слой G).

3.Земна́я кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, или сокращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы. Кора есть на Марсе и Венере, Луне и многих спутниках планет-гигантов. На Меркурии, хотя он и принадлежит к планетам земной группы, кора земного типа отсутствует. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической. Масса земной коры оценивается в 2,8·1019 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли.

Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.

Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 130—140 километров. Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.

4.Литосфе́ра (от греч. λίθος — камень и σφαίρα — шар, сфера) — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5—10 км, а гранитный слой полностью отсутствует.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и Al (лат. Aluminium — алюминий).
Мезосфе́ра (от греч. μεσο- — «средний» и σφαῖρα — «шар», «сфера») — слой атмосферы на высотах от 40—50 до 80—90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50°C) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80°C. Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном. Термин принят Географическим и геофизическим союзом в 1951 году.

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80 % азота и 20 % кислорода.Мезосфера отделяется от нижележащей стратосферы стратопаузой, а от вышележащей термосферы — мезопаузой. Мезопауза в основном совпадает с турбопаузой.

Метеоры начинают светиться и, как правило, полностью сгорают в мезосфере.

В мезосфере могут появляться серебристые облака. Астеносфера — (от др.-греч. ἀσθενής «бессильный» и σφαῖρα «шар») верхний пластичный слой верхней мантии планеты (пример: астеносфера Земли), называемый также слоем Гутенберга. Астеносфера выделяется по понижению скоростей сейсмических волн. Выше астеносферы залегает литосфера — твёрдая оболочка планеты. На Земле кровля астеносферы лежит на глубинах 80-100 км (под материками) и 50-70 км (иногда менее) (под океанами). Нижняя граница земной астеносферы — на глубине 250-300 км, нерезкая. Выделяется по геофизическим данным как слой пониженной скорости поперечных сейсмических волн и повышенной электропроводности.

5.Интрузивный магматизм (плутонизм)

Внедрение магмы в земную кору, ее раскристаллизация и остывание с образованием магматических интрузивных горных пород получило название интрузивного люгматиша, или плутонизма (Плутон — бог подземного царства в античной мифологии). Магма, продвигающаяся по трещинам в земной коре, не всегда достигает земной поверхности. Нередко она накапливается на некоторой глубине от поверхности Земли, постепенно остывает и затвердевает, образуя своеобразные интрузивные тела.

О составе и свойствах магмы мы можем судить по изливающейся лаве различных вулканов, а также по конечным продуктам извержения — магматическим горным породам. Известно, что последние характеризуются большим разнообразием: кислые и ультракислые, основные и ультраосновные породы. Имеются породы и со средним содержанием кремнезема, так называемые средние.

В составе изливающейся лавы содержание кремнезема меняется. Отсюда возникает вопрос: существует ли на глубине единая родоначальная магма, которая подвергается дифференциации, или существуют несколько разнообразных магм, из которых формируются кислые, средние, основные и ультраосновные горные породы? Ответ на этот вопрос до сих пор не найден. Некоторые ученые (В. Н. Лодочников, например) предполагают, что есть несколько магм, отвечающих по составу различным группам горных пород. Другие же считают (Ф. Ю. Левинсон-Лессинг, например), что существуют две магмы — кислая и основная. Большинство же исследователей полагают (Р. А. Дэли, Н. Л. Боуэн, А. Н. Заварицкий и др.), что имеется одна родоначальная магма основного базальтового состава. Несмотря на различные точки зрения в вопросе о первоначальном составе магмы, очевидно, что до своего застывания магма подвергается разделению по составу, или дифференциации. Это очень длительный процесс, проходящий миллионы и сотни миллионов лет. Принято выделять два типа дифференциации: магматическую и кристаллизационную. Магматическая дифференциация протекает в жидком состоянии и предшествует кристаллизационной дифференциации. Процесс магматической дифференциации вызывается ликвацией и ассимиляцией.
6.
Магма (др.-греч. μάγμα — месиво, густая мазь) представляет собой природный, чаще всего силикатный, раскаленный, жидкий расплав, воз­никающий в земной коре или в верхней мантии, на больших глубинах, и при остывании формирующий магматические горные породы. Излившаяся магма — это лава. В магме содержатся практически все химические элементы таблицы Менделеева, среди которых: Si, Al, Fe, Са, Mg, К, Ti, Na, а также различные летучие компоненты (оксиды углерода, сероводород, водород, фтор, хлор и др.) и парообразная вода. Летучие компоненты при кристаллизации магмы на глубине частично входят в состав различных минералов (амфиболов, слюд и прочих). В редких случаях отмечаются магматические расплавы несиликатного состава, например щёлочно-карбонатного (вулканы Восточной Африки) или сульфидного. По мере продвижения магмы вверх, количество летучих компонентов сокращается. Дегазированная магма, излившаяся на поверхность, называется лавой.ДИФФЕРЕНЦИАЦИЯ МАГМЫ (от лат. differentia — разность, различие * а. differentiation of magma; н. Magmaspaltung; ф. differenciation du magma; и. diferenciacion de magma) — процессы разделения и сегрегации жидких и кристаллизующихся магматических расплавов, приводящие к образованию разных по минеральному и химическому составу горных пород или пород с различными количественными соотношениями одних и тех же минералов.Основной механизм разделения магмы — кристаллизационная дифференциация магмы, т.е. разделение твёрдых кристаллических фаз магмы в процессе её кристаллизации, обусловленное перемещением и пространственным обособлением возникающих минеральных фаз под влиянием различных факторов (например, гравитационное осаждение выделившихся из расплава кристаллов или перемещение их конвекционными токами).Кристаллизационная дифференциация магмы равновесна, когда между кристаллами и расплавами сохраняется химическое равновесие и происходит механическое отделение кристаллов от равновесной с ними магмы. В случае нарушения равновесия между кристаллами (в целом) и магмой с образованием, например, зональных кристаллов отделение их от магмы приводит к изменению нормального течения реакции кристаллов с расплавом, т.е. к фракционной дифференциация магмы. Последняя широко проявляется при формировании расслоенных интрузий основных и ультраосновных пород, образовавшихся в результате последовательного осаждения продуктов кристаллизации на постепенно поднимающееся дно магматической камеры, а также при формировании глубоко дифференцированных массивов редкометалльных гранитоидов (щелочных, литий-фтористых, онгонитов и др.). Разновидности кристаллизационной дифференциации магмы — дифференциация в процессе зонной плавки, а также кинематически-гравитационная, в результате которой в поднимающейся к верхним горизонтам литосферы колонне магмы происходит обогащение фронтальных её частей SiO2, Al2О3, Na2О, К2О, а в нижних — CaO, MgO, FeO.Дифференциация магмы ликвационная — разделение расплава на две несмешивающиеся жидкие фазы (разделение в жидком состоянии), возникающие в процессе охлаждения в результате диффузии, гравитации (поднятие или погружение лёгких или тяжёлых молекул) и др. Ряд исследователей относят к ликвационному типу сульфидные месторождения в основных и ультраосновных породах, некоторые железорудные (апатит-магнетитовые) и хромитовые месторождения.При эманационной дифференциации магмы происходит разделение вещества магматического расплава за счёт образования химических соединений различных компонентов с флюидами, способными к обособлению. Эманационная дифференциация магмы предполагается под воздействием потоков трансмагматических флюидов. Дифференциация магмы обусловливает не только широкое разнообразие магматических горных пород, но и образование магматических рудных месторождений.
7.Формы залегания магматических пород зависят от условий их образования. Наиболее разнообразные условия могут возникать при формировании интрузивных горных пород, образование которых происходит на разных глубинах при различных сочетаниях условий давления, температуры, количества магмы, ее состава, а также тектонических условий, при которых затвердевает расплав. Разнообразие условий приводит к образованию специфичных и разнообразных форм залегания интрузивных горных пород, называемых интрузивными массивами, или интрузивами, или плутонами. Обычно на дневную поверхность выступает только часть интрузивного тела.  По размерам (по площади на карте) различают интрузивы крупные (более 100 км2 ) , средние (100-10 км2 ) и мелкие (менее 10 км2 ) . Интрузивные тела делятся па секущие (интрузивы прорывают вмещающие породы'), согласные (интрузивы залегают согласно с вмещающими породами) и частично согласные (интрузивы располагаются между складчатой и полого залегающей толщами). К наиболее широко распространенным секущим интрузивам относятся батолиты, штоки, дайки, магматические диапиры. Основными согласными интрузивными телами являются лополиты, лакколиты, факолиты, силлы, а частично согласные — гарполиты, магматические диапиры. Глубинные интрузивные породы в земной коре образуют обычно батолиты, гарполиты, лополиты и крупные штоки, а полуглубинные — более мелкие тела: штоки, дайки, лакколиты, факолиты, силлы, магматические диапиры. Условия образования вулканических горных пород, формирующихся на земной поверхности, менее разнообразны. Эффузивные горные породы в зависимости от химического состава лавы и особенностей излияния образуют покровы и потоки и связанные с ними некки-жерла вулканов. Наиболее вязкие (кислые) лавы образуют вулканические купола. Пирокластические породы имеют такие же формы залегания, как и осадочные: слой, линза.

8.Вулканы — геологические образования на поверхности земной коры или коры другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы, камни (вулканические бомбы) и пирокластические потоки.Слово «вулкан» происходит от имени древнеримского бога огня Вулкана.

Наука, изучающая вулканы, — вулканология, геоморфология.Вулканы классифицируются по форме (щитовидные, стратовулканы, шлаковые конусы, купольные), активности (действующие, спящие, потухшие), местонахождению (наземные, подводные, подледниковые) и др. Линейные вулканы или вулканы трещинного типа, обладают протяжёнными подводящими каналами, связанными с глубоким расколом коры. Как правило, из таких трещин изливается базальтовая жидкая магма, которая растекаясь в стороны, образует крупные лавовые покровы. Вдоль трещин возникают пологие валы разбрызгивания, широкие плоские конусы, лавовые поля. Если магма имеет более кислый состав (более высокое содержание диоксида кремния в расплаве), образуются линейные экструзивные валы и массивы. Когда происходят взрывные извержения, то могут возникать эксплозивные рвы протяжённостью в десятки километров.Вулканы центрального типа имеют центральный подводящий канал, или жерло, ведущее к поверхности от магматического очага. Жерло оканчивается расширением, кратером, который по мере роста вулканической постройки перемещается вверх. У вулканов центрального типа могут быть побочные, или паразитические, кратеры, которые располагаются на его склонах и приурочены к кольцевым или радиальным трещинам. Нередко в кратерах существуют озёра жидкой лавы. Если магма вязкая, то образуются купола выжимания, которые закупоривают жерло, подобно «пробке», что приводит к сильнейшим взрывным извержениям, когда поток газов буквально вышибает «пробку» из жерла.Формы вулканов центрального типа зависят от состава и вязкости магмы. Горячие и легкоподвижные базальтовые магмы создают обширные и плоские щитовые вулканы (Мауна-Лоа, Гавайские острова). Если вулкан периодически извергает то лаву, то пирокластический материал, возникает конусовидная слоистая постройка, стратовулкан. Склоны такого вулкана обычно покрыты глубокими радиальными оврагами — барранкосами. Вулканы центрального типа могут быть чисто лавовыми, либо образованными только вулканическими продуктами — вулканическими шлаками, туфами и т. п. образованиями, либо быть смешанными — стратовулканами.Различают моногенные и полигенные вулканы. Первые возникли в результате однократного извержения, вторые — многократных извержений. Вязкая, кислая по составу, низкотемпературная магма, выдавливаясь из жерла, образует экструзивные купола (игла Монтань-Пеле, 1902 г.).Кроме кальдер существуют и крупные отрицательные формы рельефа, связанные с прогибанием под воздействием веса извергнувшегося вулканического материала и дефицитом давления на глубине, возникшим при разгрузке магматического очага. Такие структуры называются вулканотектоническими впадинами,депрессиями. Вулканотектонические впадины распространены очень широко и часто сопровождают образование мощных толщ игнимбритов — вулканических пород кислого состава, имеющих различный генезис. Они бывают лавовыми или образованными спёкшимися или сваренными туфами. Для них характерны линзовидные обособления вулканического стекла, пемзы, лавы, называемых фьямме и туфовая или тофовидная структура основной массы. Как правило, крупные объёмы игнимбритов связаны с неглубоко залегающими магматическими очагами, сформировавшимися за счёт плавления и замещения вмещающих пород. Отрицательные формы рельефа, связанные с вулканами центрального типа, представлены кальдерами — крупными провалами округлой формы, диаметром в несколько километров.
9.Извержение вулкана — процесс выброса вулканом на земную поверхность раскалённых обломков, пепла, излияние магмы, которая, излившись на поверхность, становится лавой. Извержение вулкана может иметь временной период от нескольких часов до многих лет.

Извержения вулканов относятся к геологическим чрезвычайным ситуациям, которые могут привести к стихийным бедствиям. Типы вулканических извержений, как правило, называются в честь известных вулканов, на которых наблюдается характерное поведение. Извержения некоторых вулканов могут иметь только один тип в течение определённого периода активности, в то время как другие могут демонстрировать целую последовательность типов извержений. Существуют различные классификации, среди которых выделяются общие для всех типы.

Извержения гавайского типа могут возникать вдоль трещин и разломов, как при извержении вулкана Мауна-Лоа на Гавайях в 1950 году. Они также могут проявляться через центральное жерло, как при извержении в кратере Килауэа Ики вулкана Килауэа (Гавайи) в 1959 году.

Данный тип характеризуется излияниями жидкой, высокоподвижной базальтовой лавы, формирующей огромные плоские щитовые вулканы. Пирокластический материал практически отсутствует. В ходе извержений через трещины фонтаны лавы выбрасывается через разломы в рифтовой зоне вулкана и растекаются вниз по склону потоками небольшой мощности на десятки километров. При извержении через центральный канал лава выбрасывается вверх на несколько сотен метров в виде жидких кусков типа «лепёшек», создавая валы и конусы разбрызгивания. Эта лава может скапливаться в старых кратерах, формируя лавовые озёра.

Впервые вулканы такого типа были описаны в Исландии (вулкан Крабла на севере Исландии, расположенный в рифтовой зоне). Тип извержения вулкана Фурнез на острове Реюньон очень близок к гавайскому.

Стромболианский тип (от вулкана Стромболи на Липарских островах к северу от Сицилии) извержений связан с более вязкой основной лавой, которая выбрасывается разными по силе взрывами из жерла, образуя сравнительно короткие и более мощные лавовые потоки. При взрывах формируются шлаковые конусы и шлейфы кручёных вулканических бомб. Вулкан Стромболи регулярно выбрасывает в воздух «заряд» бомб и кусков (последнее извержение март 2007 г.) раскалённого шлака.

Плинианский тип (вулканический, везувианский) извержений получил своё название по имени римского учёного Плиния Старшего, погибшего при извержении Везувия в 79 году н. э., уничтожившего три крупных римских города Геркуланум, Стабии и Помпеи.

Характерной особенностью этого типа извержений являются мощные, нередко внезапные взрывы, сопровождающиеся выбросами огромного количества тефры, образующей пемзовые и пепловые потоки. Плинианские извержения опасны, так как происходят внезапно, часто без предварительных предвещающих событий. Крупные извержения плинианского типа, такие как извержения вулкана Сент-Хеленс 18 мая 1980 года или извержение Пинатубо на Филиппинах 15 июня 1991 года, могут выбрасывать пепел и вулканические газы на десятки километров в атмосферу. При плинианском типе извержений часто возникают быстродвижущиеся пирокластические потоки.

К этому типу извержений относится и грандиозный взрыв вулкана Кракатау в Зондском проливе между островами Суматра и Ява. Звук от извержения был слышен за 5014 км, а столб вулканического пепла достиг почти 100 километровой высоты. Образовались огромные волны — цунами, высотой от 25 до 40 метров, от которых в прибрежных районах погибло 40 000 человек. На месте островов Кракатау образовалась гигантская кальдера.

Пелейский тип извержений характеризуется образованием грандиозных раскалённых лавин или палящих туч, а также ростом экструзивных куполов чрезвычайно вязкой лавы. Своё название этот тип извержений получил от вулкана Мон-Пеле на осторове Мартиника в группе малых Антильских островов, где 8 мая 1902 года взрывом была уничтожена вершина дремавшего до этого вулкана, и вырвавшаяся из жерла раскалённая тяжёлая туча уничтожила город Сен-Пьер с 28 000 жителями. После извержения из жерла вылезла «игла» вязкой магмы, которая достигнув высоты 300 метров, вскоре разрушилась. Подобное извержение произошло 30 марта 1956 года на Камчатке, где грандиозным взрывом была уничтожена вершина вулкана Безымянного. Туча пепла поднялась на высоту 40 км, а по склонам вулкана сошли раскалённые лавины, которые, растопив снег, дали начало мощным грязевым потокам.

Газовый или фреатический тип извержений (используется также название Бандайсанский (Бандайский) тип), при котором выбрасываются в воздух обломки твёрдых, древних пород (новая магма не извергается), обусловлен либо магматическими газами, либо связан с перегретыми грунтовыми водами. Фреатическая активность обычно слабая, но бывают сильные проявления, такие как извержение вулкана Тааль на Филиппинах в 1965 году и Ла-гранд-Суфриер на острове Гвадалупе.

Подлёдный тип извержений относят к вулканам, расположенным подо льдом или ледником. Такие извержения могут вызвать опасные наводнения, лахары и шаровую лаву. Всего пять извержений такого типа наблюдалось до настоящего времени.

Извержения пепловых потоков были широко распространены в недалёком геологическом прошлом, но в настоящем не наблюдались человеком. В какой-то мере данные извержения должны напоминать палящие тучи или раскалённые лавины. На поверхность поступает магматический расплав, который, вскипая, разрывается и раскалённые лапилли пемзы, обломки вулканического стекла, минералов, окружённые раскалённой газовой оболочкой, с огромной скоростью движутся под уклон. Возможным примером подобных извержений может стать извержение 1912 года в районе вулкана Катмай на Аляске, когда из многочисленных трещин, излился пепловый поток, распространившийся примерно на 25 км, вниз по долине, имея мощность около 30 м. Долина получила название «Десяти тысяч дымов» из-за большого количества пара, выделявшегося долгое время из центральной части потока. Объём пепловых потоков может достигать десятков и сотен кубических километров, что говорит о быстром опорожнении очагов с расплавом кислого состава.

Гидроэксплозивные извержения происходят в мелководных условиях океанов и морей. Их отличает образование большого количества пара, возникающего при контакте раскалённой магмы и морской воды.

Исландский тип (от вулканов Исландии) характеризуется выбросами очень жидкой базальтовой лавы с содержанием пирокластического материала. Как правило, образуют плоские щитовые вулканы. Извержение происходит по трещинам. (Гекла, Исландия). Историческим примером извержения исландского типа было извержение Лаки в Исландии в 1782 году.

Тип треск грома

Этот тип был зафиксирован при извержении вулкана на острове Пальма в 1915 году. Происходит на купольных вулканах. По трещинам, которые начинают идти из магматического очага, идёт лава, но уже не вязкая. Когда трещины доходят до кратера происходят эксплозивные извержения (со взрывами).
10.

Продукты вулканической деятельности

К действующим вулканам Средиземного моря относятся Везувий, Этна, Стромботи. В Малайском архипелаге десять действующих вулканов находятся на о. Суматра и тридцать - на Яве. Причины закономерного размещения большей части современных вулканов в трех поясах совершенно очевидны. Тихоокеанское побережье Америки и Азии, зоны Средиземного моря, Закавказья, Малой Азии и островов Малайского архипелага являются областями развития самой молодой складчатости - альпийской.

Формирование складчатых гор сопровождалось разломами земной коры, с которыми и связано распространение вулканов. Известны вулканы, приуроченные к крупным разломам и в других частях земного шара, независимо от названных поясов: в Исландии, Африке, Антарктиде и островах Гавайских, Азорских и др. Крупнейшие вулканы Африки, например, приурочены к зоне разломов меридионального направления, получивших название Восточноафриканского грабена (провала).

Жидкие продукты вулканических извержений представлены лавой. Лавы в отличие от магм лишены газов (магма теряет газы в момент выхода на земную поверхность). В зависимости от процентного содержания кремнезема они так же, как и магмы, или вязкие (Si02 более 65%), или жидкие.

Температура лав изменяется от 800° до 1300° С. В зависимости от консистенции лавы растекаются с разной скоростью. На скорость влияет и расстояние от кратеров, например при извержении Ключевской сопки в 1938 г. образовался поток длиной 12 км, шириной 1,5 км, высотой 10 м, двигавшийся с различной скоростью в зависимости от места излияния: Лавы отличаются плохой теплопроводностью. Так, в Исландии через год после одного извержения лава на глубине всего 2 м имела температуру 200-300°.

11-12.

Метаморфизм (греч. metamorphoómai — подвергаюсь превращению, преображаюсь) — процесс твердофазного минерального и структурного изменения горных пород под воздействием температуры и давления в присутствии флюида.Выделяют изохимический метаморфизм — при котором химический состав породы меняется несущественно, и не изохимический метаморфизм (метасоматоз) для которого характерно заметное изменение химического состава породы, в результате переноса компонентов флюидом.

По размеру ареалов распространения метаморфических пород, их структурному положению и причинам метаморфизма выделяются:

Региональный метаморфизм который затрагивает значительные объемы земной коры, и распространен на больших площадях.Метаморфизм сверхвысоких давлений

Контактовый метаморфизм приурочен к магматическим интрузиям и происходит от тепла остывающей магмы.

Динамометаморфизм происходит в зонах разломов, связан со значительной деформацией пород.

Импактный метаморфизм происходит при ударе метеорита о поверхность планеты.

Автометаморфизм.Основными факторами метаморфизма являются температура, давление и флюид.

Температура - важнейший фактор метаморфизма, влияющий на процессы кристаллообразования и определяющий состав минеральных ассоциаций. Метаморфические преобразование горных пород происходит в температурном интервале 250 -1100°C. Именно на этом рубеже, в связи с резким возрастанием скоростей химических реакций, проводится граница между диагенезом и метаморфизмом.

Флюидом называются летучие компоненты метаморфических систем. Это в первую очередь вода и углекислый газ. Реже роль могут играть кислород, водород, углеводороды, соединения галогенов и некоторые другие. В присутствии флюида область устойчивости многих фаз (особенно содержащих эти летучие компоненты) изменяются. В их присутствии плавление горных пород начинается при значительно более низких температурах.
Метаморфические породы очень разнообразны. В качестве породообразующих минералов в них установлено более 20 минералов. Породы близкого состава, но образовавшиеся в различных термодинамических условиях, могут иметь совершенно разный минеральный состав. Первыми исследователями метаморфических комплексов было установлено, что можно выделить несколько характерных, широко распространенных ассоциаций, которые образовались в разных термодинамических условиях. Первое деление метаморфических пород по термодинамическим условиям образования сделал Эскола. В породах базальтового состава он выделил зеленые сланцы, эпидотовые породы, амфиболиты, гранулиты и эклогиты. Последующие исследования показали логичность и содержательность такого деления.
13.Землетрясе́ния — подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными процессами (взрывы, заполнение водохранилищ, обрушение подземных полостей горных выработок). Небольшие толчки могут вызываться также подъёмом лавы при вулканических извержениях.

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. Большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент упругой деформации напряжённых пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы: «нормальные» — 33 — 70 км, «промежуточные» — до 300 км, глубокофокусные — свыше 300 км. К последней группе относится землетрясение, которое произошло 24 мая 2013 года в Охотском море, тогда сейсмические волны достигли многих уголков России, в том числе и Москвы. Глубина этого землетрясения достигала 600 км.
14.ДВИЖЕНИЯ ТЕКТОНИЧЕСКИЕ КОЛЕБАТЕЛЬНЫЕ  — общее назв. вертикальных движений земной коры разл. знака, разных масштабов, площадного распространения, разл. скоростей и амплитуд, изменяющих с течением времени эти свои параметры и не создающих складчатых структур. Термин Д. т. к. впервые употребляется в работах Озерского (1849), а термины “колебания” и “волнообразные колебания” — у Карпинского (1894) для обозначения медленных плавных поднятий и опусканий значительных участков земной поверхности, без видимых изменении залегания слоев горных пород. Д. т. к. проявляются в слоистости и ритмичности толщ, а также в образовании морских и речных террас. Примерно тот же смысл Гилберт, Штилле и др. вкладывали в термин “движения эпейрогенические” (или “эпейрогенез”). К 30-м годам XX в. выяснилась этимологическая неточность термина Гилберта, подверглись ревизии до того господствовавшие представления контракционистов и были выдвинуты новые концепции, отводившие вертикальным движениям ведущее место в тектогенезе. В связи с этим в СССР термин Д. т. к. был возрожден и получил широкое распространение благодаря работам Тетяева (1934, и др.) и Белоусова (1948 я др.), хотя Шатский (1939) и Муратов (1949) предлагали сохранить для некоторых видов Д. т. к. термин “эпейрогенез”. Хаин (1939) подразделил Д. т. к. на осцилляционные и эпейрогенические и затем одновременно с Вассоевичем (1948) предложил для вторых термин “волновые движения”. Белоусов (1954) соответственно применил термины “общие колебания” и “волновые колебания”, а Хаин (1954) — “осцилляционные”, или “собственно колебательные движения” и “волновые движения” (с выделением плавной и разрывной форм последних). При этом Хаин рассматривал указанные два вида Д. т. к. как самостоятельные типы. В европейской лит. по-прежнему сохраняют свое значение термины “эпейрогенические движения”, “эпейрогенез” в понимании, близком к термину “общие колебания”, однако Бубнов предложил термин “диктиогенез”, в общем эквивалентный волновым колебаниям. Д. т. к. существенно влияют на процессы седиментации осад. п., обусловливая расположение на земной поверхности основных обл. сноса и накопления осадков. Амплитуда движений непосредственно влияет на мощн. (и скорость) накапливающихся от л. (чем больше амплитуда погружения, тем более мощные осад. толщи могут быть отложены при наличии достаточного количества осад. материала). Д. т. к. являются основной причиной ритмичного строения осад. толщ. В образовании крупных элементов слоистого строения толщ (ритмов) они играют основную роль. Д. т. к. влияют и на состав осад. п., вызывая перемещение береговых линий басс. и др. изменения физико-географических условий. Различие амплитуды поднятий в обл. сноса обусловливает размыв разных по возрасту и составу толщ. В геоморфологии с Д. т. к. пытаются связать эпохи расчленения рельефа и его выравнивания, не учитывая особенностей экзогенных процессов, в частности эвстатические изменения ур. моря, а также резкую изменчивость увлажненности климата, приводящую к усилению и ослаблению эрозии . В. А. Унксов.

15

Рис. 14.4. Складки:

1- антиклинальная складка, 2- синклинальная складка, 3- периклинальное замыкание антиклинали (в плане), 4- центриклинальное замыкание синклинали (в плане)

Рис. 14.3. Основные элементы складки.

Складкой называется изгиб слоя без разрыва его сплошности. В природе наблюдается большое разнообразие складок. Классифицировать их можно по разным признакам, но сначала следует остановиться на элементах единичной складки, часть которых может быть определена достаточно строго, а часть носит условный характер (рис.14.3). В складке выделяются: крылья-пласты, боковые части складки, располагающиеся по обе стороны перегиба или свода; ядро - внутренняя часть складки, ограниченная каким-либо пластом; угол при вершине складки - угол, образованный продолжением крыльев складки до их пересечения; замок, или свод,- перегиб пластов; осевая поверхность - поверхность, делящая угол при вершине складки пополам; шарнир - точка перегиба в замке, или своде складки; шарнирная линия - линия Выделяются два основных типа складок: антиклинальная, в ядре которой залегают древние породы, и синклинальная, в ядре которой располагаются более молодые породы по сравнению с крыльями (рис.14.4). Эти определения не меняются даже в том случае, если складки оказываются перевернутыми или опрокинутыми. Если невозможно определить кровлю или подошву слоев, например, в глубоко метаморфизованных породах, для определения изгиба слоев используют термины: антиформа, если слои изогнуты вверх, и синформа, если они изогнуты вниз.пересечения осевой поверхности с кровлей или подошвой пласта в замке или своде складки. Осевая линия, или ось - линия пересечения осевой поверхности складки с горизонтальной поверхностью. Гребень - высшая точка складки, не совпадающая с шарниром в случае наклонных или лежачих складок.

Сильно сжатые, или изоклинальные, складки, сложенные чаще всего глинистыми сланцами, аргиллитами, тонкими алевролитами, раскладываются на многочисленные, очень тонкие параллельные друг другу и осевой поверхности складки, пластинки и поперечный срез складки оказывается при этом рассеченным системой тонких трещин. Это явление называется кливажем. Образование кливажа связано с сильным сжатием, расплющиванием слоев по нормали к ним.

Классифицировать складки по их форме в поперечном сечении можно, основываясь на разных признаках, например по характеру наклона осевой поверхности (рис. 14.5). В этом случае выделяются складки: прямые (симметричные) - осевая поверхность вертикальна; наклонные - осевая поверхность наклонена, но крылья падают в разные стороны, хотя и под разными углами; опрокинутые - осевая поверхность наклонная, крылья падают в одну и ту же сторону под разными или одинаковыми углами; лежачие - осевая поверхность горизонтальная; ныряющие - осевая поверхность "ныряет" ниже линии горизонта.

Рис. 14.5. Морфологические типы складок

По отношению осевой поверхности и крыльев выделяются складки: открытые - угол при вершине складки тупой; закрытые - угол при вершине складки острый; изоклинальные - осевая поверхность параллельна крыльям складки, что фиксирует сильную степень сжатия.

Рис. 14.6.Складки:

/- подобные, 2- концентрические, 3- диапироидные, 4- диапировые

По форме замка складки подразделяются на: гребневидные-узкие, острые антиклинали, разделенные широкими пологими синклиналями; килевидные - узкие острые синклинали, разделенные широкими, плоскими антиклиналями; сундучные или коробчатые - широкие плоские антиклинали и синклинали. По соотношению мощности пластов на крыльях и в замках выделяются подобные, концентрические, диапироидные и диапировые складки. Подобные - мощность на крыльях меньше, а в замках больше при сохранении угла наклона крыльев (рис.14.6). Такая форма складки образуется при раздавливании крыльев и перетекании материала пластов в своды, или замки. Концентрические-мощность пластов в сводах и замках такая же, как и на крыльях, но с глубиной происходит изменение наклона слоев. Диапироидные - складки с утоненными замками и хорошо развитым ядром, образуются в пластичных толщах. Диапировые - складки с ядром из соли, гипса, глины и других пластичных толщ, которое, всплывая, в результате инверсии плотностей протыкает перекрывающие пласты, нередко выходя на поверхность.

Рассматривая складки, в плане можно выделить следующие их основные типы: линейные-длина складки намного превышает ее ширину; брахиморфные - овальные складки, длина которых в 2-3 раза больше ширины; куполовидные - антиклинальные складки - ширина и длина примерно равны; мульды - синклинальные складки, ширина и длина которых примерно одинаковы (рис. 14.7).

Рис. 14.8. Антиклинорий (А) и синклинорий (Б)

Рис. 14.7. Типы складок в плане (A) и разрезе (Б)

Замыкание антиклинальной складки в плане называется периклиналью, а синклинальной - центриклиналью. По ним можно судить о форме складки в замке или своде, что важно при построении геологических разрезов. Довольно часто периклинальные и центриклинальные замыкания складок осложняются более мелкими складками, при этом основная складка как бы расщепляется, дихотомирует на несколько. На периклинальных окончаниях антиклинальной складки шарнирная линия погружается ниже дневной поверхности, а в центриклиналях, наоборот, воздымается. В этом случае говорят об ундуляции шарнирной линии. Если все высшие точки складок - гребни - соединить плоскостью или в поперечном разрезе линией, то она будет называться зеркалом складчатости.

16.Разрывным нарушением называется деформация пластов горных пород с нарушением их сплошности, возникающая в случае превышения предела прочности пород тектоническими напряжениями. Тектонические разрывы, как и складки, необычайно разнообразны по своей форме, размерам, величине смещения и другим параметрам. В разрывном нарушении, как и в складке, различают его элементы. Рассмотрим их более подробно (рис. 14.9).

Рис. 14.10. Типы разрывов

Рис. 14.9. Элементы сброса

В любом разрывном нарушении всегда выделяются плоскость разрыва или сместителя и крылья разрыва, т.е. два блока пород по обе стороны сместителя, которые подверглись перемещению. Крыло или блок, находящийся выше сместителя, называется висячим, а ниже- лежачим. Важным параметром разрыва является его амплитуда. Расстояние от пласта (его подошвы или кровли) в лежачем крыле до этого же пласта (его подошвы или кровли) в висячем крыле называется амплитудой по сместителю. Кроме того, различают стратиграфическую амплитуду, которая измеряется по нормали к плоскости напластования в любом крыле разрыва до проекции пласта; вертикальную амплитуду-проекцию амплитуды по сместителю на вертикальную плоскость; горизонтальную амплитуду - проекцию амплитуды по сместителю на горизонтальную плоскость.

Положение сместителя в пространстве определяется, как и ориентировка любой другой плоскости, с помощью линий падения, простирания и угла падения.

Основные типы тектонических разрывов. Среди различных типов разрывных нарушений можно выделить главные: сброс-сместитель вертикален или наклонен в сторону опущенного крыла (рис. 14.10). Угол падения сброса может быть разным, но чаще всего составляет от 40 до 60 o. Сбросы образуются в условиях тектонического растяжения. Взброс - сместитель наклонен в сторону поднятого крыла с углами больше 45 o. Надвиг - тот же взброс, но угол падения сместителя пологий, обычно меньше 45 o. Следует отметить, что это подразделение условное. Надвиги и взбросы образуются в условиях тектонического сжатия, и поэтому их формирование сопровождает процессы складчатости. Сдвиг - разрыв с перемещением крыльев по простиранию сместителя. Как правило, сместитель у сдвигов ориентирован близко к вертикальному положению. Различают правые и левые сдвиги. Правым сдвигом называют разрыв, у которого крыло за сместителем, по отношению к наблюдателю, смещается вправо и, наоборот, при левом сдвиге дальнее крыло смещается влево. Раздвиг - разрыв с перемещением крыльев перпендикулярно сместителю. При раздвигах обычно образуется зияние между крыльями.Покров, или шарьяж,- разрыв с почти горизонтальным положением сместителя. У покрова различают собственно тело покрова, или аллохтон, т.е. ту его часть, которая перемещается; автохтон- породы, подстилающие покров. В самом теле покрова - аллохтоне- выделяют фронт покрова и корень покрова - место, откуда происходит его перемещение. Если аллохтон расчленяется эрозией таким образом, что обнажаются породы автохтона, то их выход на дневную поверхность называется тектоническим окном. Если от фронтальной части аллохтона эрозией отделены его блоки, то они именуются тектоническими останцами. Сместитель в покрове часто называют поверхностью срыва или волочения.

17.ПЛАТФО́РМА, в геологии — одна из главных глубинных структур земной коры (см. ЗЕМНАЯ КОРА), характеризующаяся малой интенсивностью тектонических движений, магматической деятельности и плоским рельефом. Платформы противопоставляются высокоподвижным геосинклинальным поясам. Платформы имеют двухъярусное строение: нижний ярус (фундамент платформы) образуют комплексы сильно смятых, метаморфизованных (см. МЕТАМОРФИЗМ) и пронизанных гранитами (см. ГРАНИТ) пород; верхний ярус (платформенный чехол) сложен спокойно залегающими преимущественно осадочными (см. ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ) и отчасти вулканогенными толщами. В пределах платформы выделяются щиты (см. ЩИТ (в геологии)), где складчатый фундамент выступает на поверхность, и плиты (см. ПЛИТА (в геологии)), в которых фундамент погружен на глубину. Платформы разделяются на древние с фундаментом докембрийского (см. ДОКЕМБРИЙ) возраста (напр., Восточно-Европейская, Сибирская и др.) и молодые с фундаментом палеозойского (см. ПАЛЕОЗОЙСКАЯ ЭРАТЕМА (ЭРА)) и мезозойского (см. МЕЗОЗОЙСКАЯ ЭРА) возраста (напр., равнинные территории Зап. Сибири, Сев. Казахстана, Предкавказья).
Геосинклинальные области и платформы образуют главнейшие структурные блоки земной коры, находящие отчетливое выражение в современном рельефе.

Самыми молодыми структурными элементами материковой земной коры являются геосинклинали. Геосинклиналь – это высокоподвижный, линейно-вытянутый и сильно расчлененный участок земной коры, характеризующийся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями. Геологическая структура, возникшая там, где движения имеют геосинклинальный характер, носит название складчатой зоны. Таким образом, очевидно, что складкообразование характерно, прежде всего, для геосинклиналей, здесь оно проявляется в наиболее полной и яркой форме. Процесс геосинклинального развития сложен и во многом еще не достаточно изучен.

В своём развитии геосинклиналь проходит несколько стадий. На ранней стадии развития в них наблюдается общее погружение и накопление мощных толщ морских осадочных и вулканогенных пород. Из осадочных пород для этой стадии характерны флиши (закономерное тонкое чередование песчаников, глины и мергелей), а из вулканических – лавы основного состава. На средней стадии, когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8-15 км, процессы погружения сменяются постепенным воздыманием, осадочные породы подвергаются складкообразованию, а на больших глубинах – метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает кислая магма.  В позднюю стадию развития на месте геосинклинали под влиянием общего воздымания поверхности возникают высокие складчатые горы, увенчанные активными вулканами с излиянием лав среднего и основного состава; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более. С прекращением процессов  воздымания высокие горы медленно, но неуклонно разрушаются, пока на их месте не образуется холмистая равнина – пенеплен – с выходом на поверхность «геосинклинальных низов» в виде глубоко метаморфизованных кристаллических пород. Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры – платформу.

18Срединно-океанический хребет (в литературе часто сокращается до СОХ) — сеть хребтов, расположенных в центральных частях всех океанов. Возвышаются над абиссальными равнинами на 2—3 км. Общая протяжённость хребтов более 70 тыс. км. В этих структурах происходит образование новой океанической коры и процесс спрединга.

Срединно-океанические хребты имеют сравнительно выдержанную форму и геологическое строение. Они гораздо однообразнее, чем, например, горные хребты на суше, потому, что последние образуются в результате комплекса процессов, и находятся на разном эрозионном уровне.

Срединно-океанические хребты разделяются на быстро-спрединговые и медленно-спрединговые. Для хребтов со скоростью расхождения плит 8—16 см/г характерно отсутствие прогиба в центральной части. Характерный пример такого рифта Восточно-Тихоокеанское поднятие. Профиль рельефа в стороны от хребта этого типа лучше всего описывается формулой H=0,35 * t0,5, где H увеличение глубины по сравнению с осью хребта, а t возраст океанической коры. Медленно-спрединговые хребты имеют отчётливую центральную депрессию — рифт глубиной 4000—5000 метров.

ГЛУБОКОВОДНЫЕ ЖЕЛОБА

В окраинных частях океанов обнаружены особые формы рельефа дна — глубоководные желоба. Это сравнительно узкие впадины с крутыми, отвесными склонами, тянущиеся на сотни и тысячи километров. Глубина таких впадин очень велика. Глубоководные желоба имеют почти ровное дно. Именно в них находятся самые большие глубины океанов. Обычно желоба расположены с океанической стороны островных дуг, повторяя их изгиб, или протягиваются вдоль материков. Глубоководные желоба — это переходная зона между материком и океаном.

Образование желобов связано с движением литосфер-ных плит. Океаническая плита изгибается и как бы «ныряет» под континентальную. При этом край океанической плиты, погружаясь в мантию, образует желоб. Районы глубоководных желобов находятся в зонах проявления вулканизма и высокой сейсмичности. Это объясняется тем, что желоба примыкают к краям литосферных плит.

По мнению большинства ученых, глубоководные желоба считаются краевыми прогибами и именно там идет интенсивное накопление осадков разрушенных горных пород.

Самый глубокий на Земле — Марианский желоб. Его глубина достигает 11022 м. Он был обнаружен в 50-е годы экспедицией на советском исследовательском судне «Витязь». Исследования этой экспедиции имели очень большое значение для изучения желобов.

Континентальные рифты (от англ. rift – щель, разлом) подобно геосинклиналям отличаются повышенной подвижностью земной коры, высокой сейсмичностью и вулканизмом. Однако рифтовые зоны как структурные элементы земной коры полная противоположность геосинклиналям. В геосинклиналях за погружением следует накопление мощных толщ осадков, затем орогенез и как конечный результат – утолщение континентальной коры. Рифтовые зоны возникают под влиянием восходящих движений в мантии, которая внедряясь в земную кору, приподнимает, дробит и частично перерабатывает ее. Осью рифтовой зоны является узкая тектоническая впадина – грабен (от нем. – ров). Рифтовые зоны на материках – это области деградации континентальной коры, ее перерождения в кору океаническую. Рифты разновозрастны: древние рифтовые зоны платформ называют авлакогенами (развивались на протяжении от рифея до кайнозоя). На Русской платформе крупнейшим авлакогеном является Припятско-Днепровско-Донецкий. Современные рифтовые ситемы были заложены в кайнозое. В их числе – Восточно-Африканская рифтовая система, в Западной Европе – Верхнерейнский грабен, в России – Байкальская рифтовая система.

191. Первое положение тектоники плит касается особенностей строения верхней части Земли, которое определяется развитием двух отличных по реологическим свойствам оболочек – литосферы и астеносферы. Литосфера является жесткой и упруго-хрупкой оболочкой, а астеносфера – пластичной и подвижной оболочкой. Динамическая вязкость литосферы составляет 1022-1026 П (Пуаз, соотношение единиц измерения вязкости в системах СГС и СИ, вязкость воды в сравнительном плане – см. пункт 2.2.3. Неоднородность и динамика мантии), а астеносферы – 1019-1020 П (под океанами) и 1020-1021 П (под континентами) [30, 37]. Таким образом, литосфера как бы плавает на астеносфере.

Выделение литосферы и астеносферы производится по сейсмическим (характер изменения скоростей сейсмических волн) или магнитотеллурическим (степень сопротивления естественным электрическим токам) данным.

2. Второе положение отражает латеральную неоднородность литосферы, в которой выделяется ограниченное число тектонически обособленных блоков, именуемых литосферными плитами . Основанием для выделения плит послужило размещение очагов землетрясений, которое характеризуется резко выраженной неравномерностью.

Линейные зоны концентрации сейсмических очагов и явились границами плит, внутренние же части плит очень слабо сейсмичны.В современной Земле выделяются 7 крупных (мега-) и разное количество средних (мезо-) и малых (мини-, микро-) плит. Неопределенность в выделении средних и малых плит связана с наличием поясов рассеянной сейсмичности в Евразии, Северной Америке, Африке (см. рис. 4.2 и рис. 4.4), а также крайне слабым проявлением или отсутствием сейсмичности на отдельных участках, которые считаются границами даже крупных плит (например, граница между Евразийской и Северо-Американской плитами в пределах северо-востока России или граница между Американскими плитами в Центральной Атлантике).

20Спрединг (от англ. spread — растягивать, расширять) — геодинамический процесс растяжения, выражающийся в импульсивном и многократном раздвигании блоков литосферы океанической коры и в заполнении высвобождающегося пространства магмой, генерируемой в мантии, а также твердыми протрузиями мантийных перидотитов.Процессы спрединга локализуются, главным образом, в пределах Срединно-океанических хребтов и формируют океаническую кору, поэтому в этих районах она относительно молодая. Термин «спрединг морского дна» впервые был предложен Р. Дитцем (англ. Dietz, Robert Sinclair) в 1961 году, а концепция спрединга морского дна была сформулирована Г. Хессом (англ. Hess, Harry Hammond) и развита в работах Ле Пишона в 1960-х годах. Экспериментально подтверждена в 1964—1965 годах во время 36-го рейса НИС «Витязь» к хребту Карлсберг и разлому Витязь в Индийском океане, под руководством Г. Удинцева.Весь ранее рассмотренный материал относился к субдукции океанской литосферы (или Б-субдукции). Континентальная субдукция предполагает погружение континентальной литосферы или отдельных блоков континентальной коры. Субдукция континентальных образований возможна при окончании субдукции океанской литосферы, подходе к конвергентной границе континентальной части субдуцирующей плиты и её затягивание в мантию. Через определенное время в связи с малой плотностью континентальной коры и её высокой плавучестью погружение замедляется, происходит отрыв этой коры от слэба и возможно обратное перемещение сиалических (континентальных) пород (их эксгумация). При затягивании на глубину породы континентальной коры претерпевают метаморфизм сверхвысоких давлений. При значительной скорости эксгумации (1-2 см/год и более) происходит сохранение высокобарического комплекса минералов (коэсит, алмаз, пироп и некоторые другие), изучение которых показало, что континентальные блоки могут претерпеть метаморфизм при температуре 700-900 0С и давлении 28-40 кбар, соответствующим глубинам 100-200 км .Погружение блоков континентальной коры проявляется и на тех участках в тылу окраинно-континентальных горных сооружений, где субдуцирующая океанская литосфера способна оказать на континент давление, порождающее направленные от океана взбросы и надвиги. Движения по ним приводят к надвиганию горных сооружений на обрамляющие их прогибы (передовые прогибы), соседствующие с платформами (надвигание Скалистых гор в сторону Северо-Американской платформы, Анд – в сторону Южно-Американской платформы; соответственно эти платформы пододвигаются под указанные орогены). Формирование крупных надвигов и поддвигов возможно в этих областях и на меньшем удалении от глубоководных желобов.Коллизия континентов — это столкновение континентальных плит, которое всегда приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, её стороны интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идет выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, например Зерендинский и Ангаро-Витимский.

21Выветривание — это совокупность процессов разрушения горных пород и минералов в приповерхностном слое земной коры и на земной поверхности. В условиях земной поверхности горные породы и слагающие их минералы испытывают разрушающее воздействие колебаний температур, действия воды, кислорода, углекислоты, жизнедеятельности животных и растительных организмов. Различают физическое, химическое и биологическое выветривание, которые могут сопровождать друг друга при благоприятных к тому условиях при постоянном воздействии сил гравитации и электромагнитного поля Земли.

При физическом выветривании происходит только механическое разрушение горной породы, распадение ее на обломки и отдельные минералы (дезинтеграция) с дальнейшим раздроблением их и перетиранием при транспортировке к участкам их накопления – долинам рек, морским и озерным бассейнам.

При химическом выветривании изменяется химический состав горных пород и минералов, неустойчивых в условиях земной поверхности. Такому выветриванию подвержены особенно различные изверженные и метаморфические породы, а также осадочные, минералы которых представлены галоидными, карбонатными и сернокислыми соединениями. Здесь действуют процессы растворения, гидролиз, гидратация и дегидратация, окисление. Так, пирит (FeS2) под действием кислорода и воды превращается вначале в сульфат закиси железа с образованием свободной серной кислоты.

Биологическое выветривание производят живые организмы (бактерии, грибки, вирусы, роющие животные, низшие и высшие растения и т. д.).

22Ветер - один из важнейших экзогенных факторов, преобразующих рельеф Земли и формирующих специфические отложения. Наиболее ярко эта деятельность проявляется в пустынях, занимающих около 20% поверхности континентов, где сильные ветры сочетаются с малым количеством выпадающих атмосферных осадков (годовое количество не превышает 100-200 мм/год); резким колебанием температуры, иногда достигающим 50o и выше, что способствует интенсивным процессам выветривания; отсутствием или разреженностью растительного покрова. Особенно большие площади заняты пустынями в Азии, Африке, Австралии, меньше в Европе и Америке. Кроме того, активная деятельность ветра проявляется во внепустынных областях - на побережьях океанов, морей и в крупных речных долинах, не покрытых растительностью, а местами в полупустынях и даже в умеренном климате.

Геологическая работа ветра состоит из следующих видов: 1) дефляции (лат. "дефляцио" - выдувание и развевание); 2) корразии (лат. "корразио" - обтачивание, соскабливание); 3) переноса и 4) аккумуляции (лат. "аккумуляцио" - накопление). Все указанные стороны работы ветра в природных условиях тесно связаны друг с другом, проявляются одновременно и представляют единый сложный процесс. Можно говорить лишь о том, что в одних местах преобладают одни виды процесса, в других - иные. Все процессы, обусловленные деятельностью ветра, создаваемые ими формы рельефа и отложения называют эоловыми (Эол в древнегреческой мифологии - бог ветров).

23-25.Геологическая работа поверхностных текучих вод зависит от массы воды и скорости ее течения. Чем больше масса и скорость, тем больше совершаемая работа. Она складывается из смыва, размыва (эрозии), переноса и отложения (аккумуляции) продуктов разрушения горных пород. Деятельность поверхностных вод, или водная денудация, имеет огромное значение в формировании рельефа. Она приводит к расчленению и в целом к понижению поверхности материков.

Геологическая деятельность плоскостного стока и временных русловых потоков.

Плоскостной склоновый сток.

Сила воды тонких струек или пелены способна захватывать часть рыхлого, мелкого материала и перемещать его вниз по склону, у основания которого этот материал накапливается. Процесс плоскостного смыва получил название делювиального, а формирующиеся при этом осадки называются делювием. Максимальные мощности делювия 15-20 и более метров, а ширина шлейфа может достигать сотни метров. Под влиянием плоскостного смыва постоянно уменьшается крутизна склонов, они приобретают плавные очертания и характерный вогнутый профиль. В вершине делювиального шлейфа откладывается относительно более глубокий материал — песчаный. В конце шлейфа скапливаются только тонкие пылеватые и глинистые частицы.

Наиболее благоприятные условия для делювиального процесса создаются в пределах равнинных степных районов умеренного и субтропического поясов и зоне сухих саванн, где в кратковременные сезоны выпадения дождей или таяния снега по склонам смываются рыхлые продукты выветривания.

Среди временных русловых потоков выделяются временные потоки оврагов равнинных территорий и временные горные потоки. В этих потоках происходят процессы эрозии, переноса и аккумуляции обломочного материала.

Овраги. Первая стадия: образование на склоне рытвины или промоины. Постепенно промоина увеличивается вниз и вверх по склону. На всем протяжении ее происходит интенсивная глубинная эрозия. Таким образом, овраг удлиняется вверх по течению потока. Такой процесс роста оврага называется регрессивной или попятной эрозией. Помимо роста оврага вверх, происходит энергичная эрозия вниз по склону до тех пор, пока его устье не достигнет реки, озера или моря, куда впадает овражный поток. Уровень реки или какого-либо бассейна, в который выходит овраг, носит название базиса эрозии.

Следующая стадия развития оврага и начинается с момента, когда он достигает базиса эрозии. Применительно к этому уровню глубинная эрозия постепенно сглаживается и приобретает форму вогнутой кривой. В последнюю стадию уменьшается глубинная эрозия, сглаживается обрыв вершины, склоны оврага постепенно осыпаются, приобретают угол устойчивого естественного откоса и зарастают растительностью.

В ряде районов овраги, поверхности которых сложены рыхлыми породами, очень быстро разрастаются. В результате возникает сложная ветвящаяся овражная система, захватывающая огромные площади.

Временные горные потоки. Верховья их расположены в верхней части горных склонов и представлены системой множества сходящихся рытвин и промоин, образующих водосборный бассейн. Из этого бассейна вниз по склону вода движется уже в едином русле, которое называется каналом стока. В период выпадения дождей или снеготаяния все промоины и канал стока заполняются водой, которая с большой скоростью движется вниз по склону. При этом движении вода захватывает обломочный материал, который усиливает разрушительную работу потока. При выходе его на подгорную равнину скорость течения резко уменьшается, откладывается обломочный материал, образуя конус выноса. В Средней Азии и других горных странах аридной зоны конусы выноса, сливаясь друг с другом, образуют широкие предгорные шлейфы.

В строении конусов выноса наблюдается дифференциация материала от более крупного до тонкого по мере удаления от вершины конуса. Отложения конусов выноса образуют генетический тип континентальных отложений и названы пролювием.

Сели. В горных районах периодически возникают бурные грязекаменные потоки, низвергающиеся с большой скоростью, содержащие огромное количество обломочного материала ( до 75-80% от общего объема). В Средней Азии и на Кавказе их называют сели (бешеный поток), в Альпах — муры. Они возникают при быстром таянии снега и льда во время сильных ливней. Сели обладают большой разрушительной силой и иногда носят опустошительный характер.

Геологическая деятельность рек.

Реки производят огромную денудационную и аккумулятивную работу, существенно преобразуя рельеф. Питание рек бывает: снеговое, ледниковое, дождевое, смешанное, за счет подземных вод. Для каждой реки в течение года характерно чередование периодов высокого и низкого уровня воды. Состояние низкого уровня называется меженью , а высокого — паводком или половодьем. Движение воды в реках всегда турбулентное (беспорядочное, вихревое). В поперечном сечении потока максимальные скорости наблюдаются в наиболее глубокой части потока — стержне, меньше — у берегов.

Мощные водные потоки производят большую эрозионную, переносную и аккумулятивную работу. Способность рек производить работу называют энергией реки, или ее живой силой (К). Она пропорциональна массе воды и скорости течения.

В образовании речных долин главная роль принадлежит эрозии. Различают эрозию донную, или глубинную, направленную на врезание потока в породы, слагающие дно русла, и боковую, ведущую к подмыву берегов и, в целом, к расширению долины. Соотношение глубинной и боковой эрозии меняется на разных стадиях развития долины. В начальных стадиях преобладает глубинная эрозия, когда водный поток стремиться выработать свой продольный профиль, который характеризуется значительными неровностями. Река стремиться сгладить эти неровности применительно к уровню моря или озера, в которые впадает река. Уровень бассейна, куда впадает река, определяет глубину эрозии речного водного потока и называется базисом эрозии. Он является общим для всей речной системы. Постепенно в нижнем течении реки уклон продольного профиля уменьшается, приближаясь к горизонтальной линии, уменьшается скорость течения и, следовательно, затухает глубинная эрозия.

Одновременно с эрозией реки при своем движении захватывают продукты разрушения (при выветривании или эрозии) горных пород и переносят их волочением по дну, во взвешенном состоянии, и в растворенном виде. Влекомые по дну и взвешенные частицы принято называть твердым стоком рек.

Грубый обломочный материал усиливает донную эрозию, но и сам измельчается, истирается и окатывается, образуя гальку, гравий, песок.

25.ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОКЕАНОВ И МОРЕЙ

Вся совокупность водных пространств океанов и морей, занимающих 361 млн. км, или 70,8% поверхности Земли, называется Мировым океаном или океаносферой. Мировой океан включает четыре океана: Тихий, Индийский, Атлантический, Северный Ледовитый, все окраинные (Берингово, Охотское, Японское и др.) и внутриконтинентальные моря (Средиземное, Черное, Балтийское и др.). Особенностью океаносферы является единство и взаимосвязь между отдельными частями - океанами и морями. Окраинные моря, будучи отделены от океанов только отдельными островами или подводными возвышенностями, характеризуются относительно свободным водообменом с океанами. Внутриконтинентальные моря, окруженные материковой сушей, имеют связь с океанами через относительно узкие проливы, что вызывает изменения в динамике, составе вод и в других показателях.

Одновременно с эрозией и переносом происходит и отложение обломочного материала. Уже на первых стадиях развития реки при явном преобладании процессов эрозии и переноса на отдельных участках частично откладывается обломочный материал. Отложения, накапливающиеся в речных долинах в результате деятельности водного потока, называются аллювиальными отложениями или аллювием.

Различные стадии образования прирусловых отмелей:

А- начальная стадия в плане и разрезе;

Б- расширенная прирусловая отмель различного времени накопления в соответствии с прогрессирующим развитием мендры.

26.элементы симметрии(ось, плоскость, центр)

Плоскость симметрии — плоскость, которая делит фигуру на две части, расположенные друг относительно друга, как предмет и его зеркальное отражение. Относительно элементов ограничения плоскость симметрии может занимать следующее положение:

  1.  проходит через ребра;
  2.  лежать перпендикулярно к ребрам в их серединах;
  3.  проходить через грань перпендикулярно к ней;
  4.  пересекать гранные углы в их вершинах.

В кристаллах возможны следующие количества плоскостей симметрии: 9Р, 7Р, 6Р, 5Р, 4Р, 3Р, 2Р, Р, отсутствие плоскости симметрии.

Ось симметрии – воображаемая ось, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой в пространстве. Она обозначается буквой L. У кристаллов при вращении вокруг оси симметрии на полный оборот одинаковые элементы ограничения (грани, ребра, углы) могут повторяться только 2, 3, 4, 6 раз. Соответственно этому оси будут называться осями симметрии второго, третьего, четвертого и шестого порядка и обозначаться: L2, L3, L4 и L6.Порядок оси определяется числом совмещений при повороте на 360С.Ось симметрии первого порядка не принимается во внимание, так как ею обладают вообще не фигуры, в том числе и несимметричные. Количество осей одного и того же порядка пишут перед буквой L: 6L6, 3L4 и т.п.

Центр симметрии – это точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие одинаковые элементы ограничения кристалла (грани, ребра, углы). Обозначается она буквой С. Практически присутствие центра симметрии будет сказываться в том, что каждое ребро многогранника имеет параллельное себе ребро, каждая грань – такую же параллельную себе зеркально-обратную грань. Если же в многограннике присутствуют грани, не имеющие себе параллельных, то такой многогранник не обладает центром симметрии.

Достаточно поставить многогранник гранью на стол, чтобы заметить, имеется ли сверху такая же параллельная ей зеркально-обратная грань. Конечно, на параллельность нужно проверить все типы граней.

Существует ряд простых закономерностей, по которым сочетаются друг с другом элементы симметрии. Значение этих правил облегчает их нахождение.

  1.  Линия пересечения двух или нескольких плоскостей является осью симметрии. Порядок такой оси равен числу пересекающихся в ней плоскостей.
  2.  L6 может присутствовать в кристалле только в единственном числе.
  3.  С L6 не могут комбинироваться ни L4, ни L3, но может сочетаться L2 причем L6 и L2 должны быть перпендикулярны; в таком случае присутствует 6L2.
  4.  L4 может встречаться в единственном числе или трех взаимно перпендикулярных осей.
  5.  L3 может встречаться в единственном числе или с 4L3.

27.Простые формы кристаллов(моноэдр, призма, куб и др.)

  Моноэдр (от греч. "моно"- один, "эдра"- грань) - простая форма, представленная одной единственной гранью. Моноэдром является, например, основание пирамиды.

  Пинакоид (от греч."пинакс"- доска) - простая форма, состоящая из двух равных параллельных граней, часто обратно ориентированных.

  Диэдр (от греч."ди" - два, "эдр"- грань) - простая форма, образованная двумя равными пересекающимися (иногда на своем продолжении) гранями, образующими "прямую крышу".

Рис.6.   Простые формы низшей категории: моноэдр (1), пинакоид (2), диэдр (3).

Открытыми простыми формами сингоний средней категории будут призмы и пирамиды.

  Тригональная призма (от греч."гон"- угол) - три равных грани, пересекающихся по параллельным ребрам и образующих в сечении равносторонний треугольник;

  Тетрагональная призма (от греч."тетра"- четыре) - четыре равных попарно параллельных грани, образующих в сечении квадрат;   Гексагональная призма (от греч."гекса"- шесть) - шесть равных граней, пересекающихся по параллельным ребрам и образующих в сечении правильный шестиугольник.

Призмой называется многогранник, у которого две грани - равные многоугольники с соответственно параллельными сторонами, а все остальные грани - параллелограммы

  1.  Определение
  2.  Расчет объема

Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.

Куб является частным случаем параллелепипеда и призмы.

28.Физические свойства минераловВажнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны. Важнейшие свойства минералов, являющиеся диагностическими признаками и позволяющие их определять, следующие:Габитус кристаллов. Выясняется при визуальном осмотре, для рассматривания мелких образцов используется лупаТвердость. Определяется по шкале Мооса. По этой шкале, самым твёрдым эталонным минералом является алмаз (10 по шкале Мооса, с абсолютной твёрдостью 1600, может резать стекло), а самым мягким является тальк (1 по шкале Мооса, с абсолютной твёрдостью 1, царапается ногтем)[2]. Твёрдость минерала не всегда постоянна для каждой из его сторон, что является производным от кристаллической структуры минерала - в некоторый направлениях срезать слой кристаллической решётки легче, чем в других]. Примером такого минерала является кианит имеющий твёрдость 5.5 по шкале Мооса в одном направлении и твёрдость 7 в другом.Блеск — световой эффект, вызываемый отражением части светового потока, падающего на минерал. Зависит от отражательной способности минерала.Спайность — способность минерала раскалываться по определённым кристаллографическим направлениям.Излом — специфика поверхности минерала на свежем не спайном сколе.

  1.  Цвет — признак, с определённостью характеризующий одни минералы (зелёный малахит, синий лазурит, красная киноварь), и очень обманчивый у ряда других минералов, окраска которых может варьировать в широком диапазоне в зависимости от наличия примесей элементов-хромофоров либо специфических дефектов в кристаллической структуре (флюориты, кварцы, турмалины).
  2.  Цвет черты — цвет минерала в тонком порошке, обычно определяемый царапанием по шершавой поверхности фарфорового бисквита.
  3.  Магнитность — зависит от содержания главным образом двухвалентного железа, обнаруживается при помощи обычного магнита.
  4.  Побежалость — тонкая цветная или разноцветная плёнка, которая образуется на выветрелой поверхности некоторых минералов за счёт окисления.
  5.  Хрупкость — прочность минеральных зёрен (кристаллов), обнаруживающаяся при механическом раскалывании. Хрупкость иногда увязывают или путают с твёрдостью, что неверно. Иные очень твёрдые минералы могут с лёгкостью раскалываться, то есть быть хрупкими (например, алмаз).
  6.  Удельная плотность

29.Минеральные агрегаты(секреции, друзы и др.)

Минералы могут встречаться в случайных срастаниях в виде дендритов, друз, секреций, конкреций, оолитов, бобовин, сферолитов, натечных форм (сталактиты, сталагмиты, сталагнаты, налеты, примазки, выцветы).

Дендриты – ветвящиеся древовидные срастания отдельных зерен минерала. Рост кристаллов в дендритах происходит очень быстро при проникновении концентрированных растворов по тонким трещинам породы. Такие формы образуют самородные элементы – золото, медь, окислы марганца.

Друзы (щетки) – наросты хорошо сформированных кристаллов, на какой либо поверхности (трещины, пустоты горных пород). Щетки тесно сросшихся и очень мелких кристаллов называются кристаллическими корками. Друзы формируются при циркуляции минеральных растворов в пустотах и трещинах. Встречаются друзы кварца, пирита, топаза, кальцита и других минералов.

Секреции образуются при заполнении какой-либо естественной полости от периферии к центру минеральным веществом из водных растворов или путем диффузии вещества, что часто сопровождается образованием концентрических полос заполняющего вещества. Мелкие секреции называются миндалинами, крупные – жеодами. Крупные секреции часто имеют полость, стенки которой покрыты друзами кристаллов или натечными образованиями. При изменении состава раствора образуются слоистые секреции – разновидности аметиста, халцедона, агата и др.

Конкреции – шарообразные, сплюснутые или неправильной формы минеральные агрегаты, образующиеся в результате кристаллизации (стяжения) минерального вещества вокруг какого-либо центра (органический остаток, другой минерал). Кристаллы нарастают от центра к периферии. Конкреции очень крепки, и в изломе их иногда наблюдается радиально-лучистое или концентрически-скорлуповатое строение вещества. Поперечные размеры конкреций от 1 см до десятков сантиметров и даже метров. Наиболее характерны железо-марганцевые конкреции на дне Мирового океана, сидеритовые, фосфоритовые, кальцитовые конкреции в толщах осадочных и метаморфических пород.

Оолиты – это сферические образования разных размеров (от долей миллиметра до одного сантиметра) концентрически-скорлуповатого строения, в которых минеральное вещество при выпадении из раствора кристаллизуется слоями вокруг какого-либо центра (песчинки, обломка раковины и др.). оолиты сцементированы друг с другом и образуют осадочную горную породу. Оолиты бывают сложены кальцитом, лимонитом, доломитом, пиролюзитом, бокситом морского и озерного происхождения.

30.изоморфизм,полиморфизм,псевдоморфизм

Изморфизм (от др.-греч. ἴσος — «равный, одинаковый, подобный» и μορφή — «форма») - этот термин был впервые введен в химической науке Э. Митчерлихом в 1819 г. Первоначально он означал внешнее сходство кристаллической формы у веществ, родственных по химическому составу. Современное определение понятия изоморфизма может быть выражено следующим образом: изоморфизм — свойство элементов замещать друг друга в структуре минерала.

Полиморфизм - способность твердых веществ и жидких кристаллов существовать в двух или нескольких формах с различной кристаллической структурой и свойствами при одном и том же химическом составе. Это слово происходит от греческого "полиморфос" – многообразный.

ПСЕВДОМОРФИЗМ, в минералогии - химическое и структурное изменение минерала без изменения его формы. Одним из проявлений псевдоморфизма является замещение, при котором первоначальное вещество вытесняется и заменяется другим.




1. а Где его искать Первоначало греки ищут и находят в чемто достаточно определенном более или менее конкр
2. Work together n chmbers shring rent nd expenses
3. Фінанси підприємств Освітньокваліфікаційний рівень ~ бакалавр Напрям підготовки підготовки 6.
4. Тема 51 12 Сканирующий метод получения рентгеновского изображения ПОЯСНИТЕ
5. ТЕМА 2. Місце мереж NGN в структурі сучасних мереж Лекція 3.html
6. тема права Источник- В
7. сранью Знаешь зашипела я поражаясь пофигизму Рене
8. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Харків ~
9.  Смысл понятия
10. Соотношение типа и формы государства
11. Панагия Евангелистрия
12. Демографічна ситуація в Україні з 2000 по 2008 рік
13. пересечении всех типов общественного сознания ~ чувственного и рационального обыденного и специализиров
14. . Модальность. Сколько чувств на перцептивном уровне Пять или больше Как же быть с чувством боли 2
15. Геноцид
16. . Вращения головой вправовлево
17. на тему- Проектирование конструкции фундамента сооружения Выполнил- ст
18. I942 ~ один из основателей микробиологической службы на Западном Урале
19. ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ Выполнил студент 2 курса
20. Петуховская средняя общеобразовательная школа 3 г