Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Теорема о сложении скоростей
Как уже отмечалось, одно и то же движение в различных системах отсчета может выглядеть совершенно по-разному. Для описания движения часто необходимо бывает знать, как при переходе из одной системы в другую меняется мгновенная скорость точки. Правило это и представляет собой содержание так называемой теоремы о сложении скоростей.
Рис. 10
Итак, рассмотрим две системы отсчета P и Q, произвольно движущиеся относительно друг друга. Примем условно одну из них, например P, за неподвижную и назовем лабораторной системой, а другую Q, будем считать движущейся. Пусть в подвижной системе точка имеет некую мгновенную скорость, которую назовем относительной скоростью и обозначим как vотн. Чему будет равна ее скорость в лабораторной системе (так называемая абсолютная скорость) vабс, если известно, как движется в данный момент подвижная система относительно неподвижной?
Для ответа на этот вопрос нарисуем два положения 1 и 2 системы Q и точки в ней, разделенные малым интервалом времени t (рис. 10; чтобы не загромождать рисунок, на нем изображено лишь тело отсчета системы Q). Здесь AB= rотн вектор относительного перемещения точки за время t в системе Q. АA перемещение той точки подвижной системы (относительно лабораторной), с которой совпадает в данный момент движущаяся точка; оно называется переносным перемещением и обозначается как rпер. И наконец, АB = rабс абсолютное перемещение точки в системе Р. Из рис. 10, очевидно, rабс= rпер+А B . Разделим теперь это соотношение на t и перейдем к пределу при . При этом по определению скорости
, (15)
где vпер так называемая переносная скорость. Что же касается перемещения А B , то нетрудно видеть, что при безграничном уменьшении t положение 2 системы Q сколь угодно близко подходит к положению 1, а потому вектор А B (уменьшаясь по величине) стремится совпасть с вектором АВ= rотн. Стало быть,
, (16)
и, следовательно,
vабс=vпер+vотн. (17)
Это и есть содержание теоремы о сложении скоростей: абсолютная скорость точки равна векторной сумме ее переносной и относительной скоростей.
Отметим, что приведенный вывод теоремы справедлив в самом общем случае произвольного движения подвижной системы, включая и ее вращение. При этом различные точки Q будут иметь разные скорости. В (17) же входит скорость vпер вполне определенной точки этой системы, а именно той, с которой совпадает в данный момент движущаяся частица.
Рис. 11
Пример. С какой минимальной скоростью u должен двигаться автомобиль под дождем, чтобы его заднее стекло оставалось сухим? Скорость капель дождя вертикальна и равна v, стекло наклонено к вертикали под углом (рис. 11).
Найдем скорость капель дождя в движущейся системе координат, связанной с автомобилем. В соответствии с нашими определениями v абсолютная, а u переносная скорости капель. Из (17) их скорость относительно автомобиля
vотн= vабсvпер= v u = v +( u).
Таким образом, в системе, связанной с движущимся автомобилем, дождь окажется уже косым (см. рис.11), причем угол наклона vотн к вертикали тем больше, чем выше скорость автомобиля. Чтобы заднее стекло оставалось сухим, этот угол должен быть, очевидно, не меньше . Отсюда получаем величину минимальной скорости автомобиля u=vtg .
Замечание 1. Напомним еще раз, что мы рассматриваем нерелятивистские, т.е. далекие от световых, скорости. В общем случае произвольных скоростей формулы их преобразования из одной системы в другую заметно усложняются. Из этих формул, в частности, следует, что если vотн=c и vпер=c, где с скорость света, то vабс
равна не 2с, как это получалось бы в ньютоновой механике по формуле (17), а тоже с. Движение со скоростями, большими скорости света, невозможно. При vотн, vпер<<c релятивистский закон сложения скоростей,
естественно, переходит в (17).
Замечание 2. Наряду с вопросами преобразования скоростей встают аналогичные вопросы с трансформацией ускорений. Будет ли абсолютное ускорение равно сумме относительного и переносного? Да, показывают расчеты, но только при условии, что движущаяся система не вращается.
При наличии вращения формула для ускорений, аналогичная (17), перестает быть справедливой: в ее правой части появляется еще одно слагаемое так называемое кориолисово ускорение, пропорциональное угловой скорости вращения подвижной системы.
Модуль и направление ускорения Кориолиса. Поворотное ускорение характеризует одновременно и изменение вектора переносной скорости в отно-сительном движении, и изменение вектора относительной скорости в перенос-ном движении (рис. 1.74).
Модуль поворотного ускорения, как это следует из определения вектор-ного произведения
(1.89)
Поворотное ускорение может быть равно нулю в трех случаях: или , или , или относительная скорость параллельна оси переносного вращения (например, точка перемещается по образующей цилиндра, вращающегося вокруг оси своей симметрии).
а б
Рис. 1.74 Рис. 1.75
Для определения направления поворотного ускорения используется или обычное правило векторного произведения, или правило Н.Е.Жуковского. Рас-смотрим оба этих правила. Как известно, вектор векторного произведения 2() перпендикулярен плоскости перемножаемых векторов и направлен в ту сторону, откуда поворот первого вектора в произведении ко второму на наименьший угол виден против движения часовой стрелки (рис. 1.75а).
Согласно правилу Н.Е.Жуковского, (рис. 1.75б) чтобы найти направление поворотного ускорения, нужноспроецировать относительную скорость точки на плоскость, перпендикулярную оси переносного вращения , и повернуть эту проекцию в той же плоскости на 90° в сторону переносного вращения (рисунок 1.75б).
Пример 2.6. Самолет, пролетающий над пунктами А и Б (рис. 1.76) имеет воз-душную скорость , равную по модулю 550 км/ч; вектор скорости ветра составляет с направлением АБ угол = 150°(угол ветра). Найти угол сноса - и время перелета, если скорость ветра равна 20 м/с и расстояние АБ составляет 800 км.
Экспериментальное определение мех. характеристик
Расчеты прочности и жесткости конструкций и их деталей невозможно осуществлять, если неизвестны механические свойства реальных материалов и их числовые характеристики, которые могут быть определены только экспериментальным путем. Важность эксперим-ых исследований объясняется еще и тем, что все решения сопротивления материалов являются приближенными. Поэтому их достоверность и пределы применимости могут быть установлены лишь экспериментально. Мех.св-ва материалов при различных видах деформаций (растяжение кручение сжатии и т.д.) изучаются путем испытания на специальных машинах брусьев простейшей формы, называемых образцами. Испытания проводятся обычно при комнатной температуре. В последнее время большое внимание уделяется исследованию свойств материалов при повышенных температурах. В процессе испытания изучается зависимость между нагрузками и вызванными ими удлинениями.
Экспериментальное изучение свойств материалов при сжатии проводится на коротких образцах с тем, чтобы исключить возможность искривления образца. Для пластичных материалов характер диаграммы при сжатии примерно до возникновения текучести такой же, как и при растяжении. В процессе деформации сжатия образец укорачивается; при этом размеры поперечного сечения увеличиваются. Из-за трения между опорными плитами нагружающего устройства и торцевыми поверхностями образца он принимает бочкообразную форму. Для ряда пластичных материалов обнаружить напряжение, аналогичное временному сопротивлению при растяжении, не удается, так как образец сплющивается.
Хрупкие материалы проявляют значительно лучшую способность сопротивляться деформациям сжатия, чем деформациям растяжения; для них разрушающее напряжение при сжатии превышает предел прочности при растяжении в несколько раз. Разрушение хрупких материалов при сжатии происходит за счет образования трещин.
Червячные передачи.
Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
Червячная передача (рис. 1) механизм для передачи вращения между валами посредством винта (червяка 1) и сопряженного с ним червячного колеса 2.
Рис. 1. Червячные передачи: 1 червяк; 2 червячное колесо
Геометрические оси валов при этом скрещиваются под углом 90°. Ведущим элементом здесь обычно является червяк (как правило, это винт с трапецеидальной резьбой), ведомым червячное колесо с зубьями особой формы, получаемыми в результате взаимного огибания с витками червяка. При вращении червяка вокруг своей оси его витки перемещаются вдоль образующей своей цилиндрической поверхности и приводит во вращательное движение червячное колесо. Для увеличения длины контактных линий в зацеплении с червяком зубья червячного колеса имеют дугообразную форму.
Червячные передачи относят к передачам зацеплением. Червячная передача это зубчато-винтовая передача, движение в которой осуществляют по принципу винтовой пары, которой, как известно, присуще повышенное скольжение.
Различают два вида червячных передач: цилиндрические (с цилиндрическими червяками, см. рис. 1, а, в); глобоидные (с глобоидньши червяками, см. рис.1, б).
Червячную передачу, у червяка и колеса которой делительные и начальные поверхности цилиндрические, называют цилиндрической червячной передачей.
В зависимости от направления линии витка червяка червячные передачи бывают с правым (предпочтительнее для применения) и левым направлением линии витка.
В зависимости от расположения червяка относительно колеса передачи бывают с нижним, верхним и боковым червяками. Расположение червяка определяет общая компоновка изделия и принятый способ смазывания зацепления. При картерном способе смазывания и окружной скорости червяка v1 < 5 м/с обычно применяют нижнее расположение червяка. При больших скоростях во избежание повышенных потерь на перемешивание и разбрызгивание масла применяют верхнее расположение червяка.
В зависимости от формы профиля витка различают:
- архимедов червяк (ZA) (рис. 2, а) цилиндрический червяк, торцовый профиль витка которого является архимедовой спиралью. Этот червяк подобен винту с трапецеидальной резьбой;
- эвольвентный червяк (ZI) (рис. 2, 6); имеет эвольвентный профиль витка в его торцовом сечении (как у косозубого колеса);
а) б)
Рис. 2. Конструкции цилиндрических червяков: а архимедов; б эвольвентный
- конволютный червяк (ZN); торцовый профиль витка является удлиненной или укороченной эвольвентой. В конволютном червяке режущий инструмент (или наждачный круг) установлен вдоль оси спирали зуба; это удобно при массовом производстве червяков, так как позволяет производить одновременную шлифовку двух сторон профиля зубьев.
В машиностроении из цилиндрических червяков наиболее распространены архимедовы червяки. Их можно нарезать на обычных токарных или резьбофрезерных станках. Однако шлифование его витков затруднено, что снижает точность изготовления и нагрузочную способность червячной передачи. Эвольвентные червяки можно шлифовать, что повышает точность изготовления, обеспечивает более полный контакт витков червяка с зубьями колеса, более высокую нагрузочную способность передачи. Но для изготовления эвольвентных червяков требуются специальные шлифовальные станки. Эвольвентные червяки применяются сравнительно редко. Конволютные червяки шлифуют плоским торцом шлифовального круга на обычных резьбошлифовальных станках. Глобоидные червяки появились сравнительно недавно и вследствие повышенной нагрузочной способности получают все большее распространение, но в изготовлении и монтаже значительно сложнее и сильно нагреваются. Поэтому по-прежнему преимущественное распространение имеют цилиндрические червяки с прямолинейным профилем в осевом сечении.
Зубья на червячном колесе чаще всего нарезают червячной фрезой, которая представляет собой копию червяка, с которым будет зацепляться червячное колесо. При нарезании заготовка колеса и фреза совершают такое же взаимное движение, какое имеют червяк и червячное колесо при работе.
По числу витков червяки делят на однозаходные и многозаходные, по направлению витка левые или правые. Наиболее распространено правое направление с числом витков червяка , зависящим от передаточного числа ; выбирают так, чтобы обеспечить число зубьев колеса : .
Очевидно, что однозаходный червяк даёт наибольшее передаточное отношение. Однако, с увеличением числа заходов (витков) червяка угол подъема винтовой линии возрастает, что повышает КПД передачи, что связано с уменьшением трения за счёт роста угла трения. Поэтому однозаходные (одновитковые) червяки не всегда рекомендуется применять.
Для увеличения КПД передачи:
1) червяк должен иметь твердую, очень чисто обработанную поверхность зубьев (желательна полировка). Материалом для червяков служат высокоуглеродистые калимые или малоуглеродистые цементированные стали, например, Ст.У-7, У-8, Ст.50 или Ст.20Х, Ст.18ХГТ, Ст.20ХНЗА;
2) венец червячного колеса должен быть изготовлен из антифрикционного материала - бронзы;
3) смазка должна быть обильной в закрытом пыленепроницаемом корпусе.
В большинстве случаев червяки изготовляют за одно целое с валом, реже отдельно от вала, а затем закрепляют на нем.
Рис. 3. Основные разновидности червяков и принцип образования профиля: а архимедов; б конвалютный;
в эвольвентный
Червячное колесо 2 (см. рис. 1, а) в отличие от косозубых зубчатых колес имеет вогнутую форму зуба, способствующую облеганию витков червяка.
Направление и угол подъема зубьев червячного колеса соответствуют направлению и углу подъема витков червяка.
Червячные колеса нарезают червячными фрезами и в редких случаях резцами, укрепленными на вращающейся оправке (летучими резцами).
Червячные колеса изготовляют цельными (см. рис. 1, а, б) или сборными (на рис. 1, в показан венец червячного колеса). Минимальное число зубьев колеса определяют из условия отсутствия подрезания и обеспечения достаточной поверхности зацепления. Для силовых передач рекомендуется принимать , во вспомогательных кинематических передачах . Максимальное число зубьев не ограничено, но в силовых передачах чаще принимают 5060 (до 80). В кинематических передачах z2 может доходить до 6001000.
Червячную передачу, показанную на рис. 4, называют глобоидной.
Рис. 4
Витки ее червяка расположены на глобоидной (торовой) поверхности. Эта передача появилась сравнительно недавно, имеет повышенную нагрузочную способность (в 1,52 раза больше, чем у обычных червячных передач), так как линия контакта в глобоидных передачах располагается благоприятно, что улучшает условия для образования масляных клиньев, и в зацеплении находится большее число зубьев колеса и витков червяка.
Глобоидные передачи требуют повышенной точности изготовления и монтажа, искусственного охлаждения. Эти передачи применяют реже, чем цилиндрические.
Червячные передачи, как и зубчатые, могут быть корригированными.
Корригирование червячных передач осуществляется так же, как и зубчатых, т. е. радиальным смещением инструмента относительно оси заготовки при нарезании.
Корригирование передачи осуществляют только за счет колеса. Корригированные колеса нарезают на тех же станках и тем же инструментом, что и некорригированные. Корригирование в основном применяют для вписывания передачи в заданное межосевое расстояние.
В машиностроении преимущественно применяют некорригированные червячные передачи.
Материалы червячной передачи.
Материалы в червячной передаче должны иметь в сочетании низкий коэффициент трения, обладать повышенной износостойкостью и пониженной склонностью к заеданию. Обычно это разнородные материалы.
Червяки изготовляют в основном из сталей марок 40, 45, 50 (реже из сталей 35, Ст5) с закалкой до HRC 45-55; 15Х, 20Х, 40Х, 40ХН, 12ХНЗ, 18ХГТ с цементацией и закалкой до HRC 5863.
Червячные колеса (или их венцы) изготовляют только из антифрикционных сплавов.
При скоростях скольжения до 2 м/с и больших диаметрах колес для их изготовления можно использовать чугуны марок СЧ15, СЧ20, СЧ25; до 6 м/с применяют алюминиево-железистые бронзы БрА9Ж4 (при этом червяк должен иметь твердость не менее HRC 45), до 25 м/с и длительной работе без перерыва применяют оловяниетую бронзу БрОЮФ, оловянно-никелевую бронзу БрОНФ.
Для получения высоких качественных показателей передачи применяют закалку до твердости HRCЭ, шлифование и полирование витков червяка. В старых редукторах нашли применение эвольвентные червяки типа ZI, а перспективными являются нелинейчатые: образованные конусом типа ZK или тором типа ZT (по изобретению проф. Г. Ниманна). Рабочие поверхности витков нелинейчатых червяков шлифуют с высокой точностью конусным или тороидным кругом. Передачи с нелинейчатыми червяками характиризует повышенная нагрузочная способность.
Термообработку улучшение применяют для передачи малой мощности до 1,1 кВт.
Таким образом, для силовых передач следует применять эвольвентные нелинейчатые червяки.
Зубчатые венцы червячных колес изготовляют преимущественно из бронзы, реже из латуни или чугуна, причем выбор марки материала зависит от скорости скольжения .
Материалы венцов червячных колес по мере убывания антизадирных и антифрикционных свойств и рекомендуемым для применения скоростям скольжения можно условно свести к трем группам.
Группа I. Оловянные бронзы (марок БрО10Ф1, БрО10Н1Ф1 и др.), применяют при высоких скоростях скольжения (= 5...25 м/с). Обладают хорошими антизадирными свойствами, но имеют невысокую прочность.
Группа II. Безоловянные бронзы и латуни применяют при средних скоростях скольжения ( до 3...5 м/с). Чаще других применяют алюминиевую бронзу марки БрА9ЖЗЛ. Эта бронза имеет высокую механическую прочность, но обладает пониженными антизадирными свойствами, поэтому ее применяют в паре с закаленными (Н > 45 HRCэ) шлифованными и полированными червяками.
Группа Ш. Серые чугуны марок СЧ15, СЧ20 применяют при малых скоростях скольжения (< 2...3 м/с).
При выборе материала колеса предварительно определяют ожидаемую скорость скольжения, м/с:
где п1 мин-1; Т2 в Нм.
Механические характеристики для наиболее распространенных материалов венцов червячных колес приведены в табл. 1.
Практика показала, что большее сопротивление изнашиванию оказывают зубья венцов, отлитых центробежным способом.
Таблица 1. Механические характеристики материалов венцов червячных колес
Группа материала |
Марка бронзы, чугуна |
Способ отливки |
Скорость скольжения , м/с |
|||
Н/мм2 |
||||||
I
II
III |
БрО10Н1Ф1 БрО10Ф1 БрО10Ф1
БрА9ЖЗЛ БрА9ЖЗЛ БрА9ЖЗЛ
СЧ15 |
Центробежный В кокиль В песок
Центробежный В кокиль В песок
В песок |
165 195 132
200 195 195
|
285 245 215
500 490 395
|
320 |
>5 >5 >5
2...5 2...5 2...5
<2 |
Примечание. предел текучести; временное сопротивление; предел прочности при изгибе.
Допускаемые контактные напряжения для оловянных бронз:
при шлифованном и полированном червяке с твердостью > 45HRC; при несоблюдении указанных условий для червяка. Для бронзы БрАЖ9-4 (МПа) при шлифованном и полированном червяке с твердостью > 45HRC, коэффициент, учитывающий скорость скольжения выбирают по таблице 2.
Таблица 2
Vs |
2 |
3 |
4 |
5 |
6 |
7 |
м/с |
|
1,33 |
1,21 |
1,11 |
1,02 |
0,95 |
0,88 |
0,83 |
0,8 |
Эти зависимости используются при длительном сроке службы и нагрузке, близкой к постоянной.
Допускаемые напряжения изгиба для всех марок бронз
Для проверки червячных передач на прочность при кратковременных перегрузках, принимают следующие предельные допускаемые напряжения: оловянные бронзы ; бронза БрАЖ9-4 ; для бронзы всех марок.
Конструктивные элементы червячной передачи
В большинстве случаев червяк изготовляют как одно целое с валом. При конструировании червяка желательно иметь свободный выход инструмента при нарезании и шлифовании витков (шероховатость рабочих поверхностей витков Rа < 0,63 мкм).
С целью экономии бронзы зубчатый венец червячного колеса изготовляют отдельно от чугунного или стального центра. В зависимости от способа соединения венца с центром различают следующие конструкции червячных колес:
1. С напрессованным венцом бронзовый венец насажен на стальной центр с натягом. Такую конструкцию применяют при небольших диаметрах колес в мелкосерийном производстве.
2. С привернутым венцом бронзовый венец с фланцем крепят болтами к центру. Фланец выполняют симметрично относительно венца для уменьшения деформаций зубьев. Эту конструкцию применяют при больших диаметрах колес ( мм).
3. С венцом, отлитым на стальном центре стальной центр вставляют в металлическую форму (кокиль), в которую заливают бронзу для получения венца. Эту конструкцию применяют в серийном и массовом производстве.
Крепление венца к ступице должно обеспечивать фиксацию как от проворота (осевая сила червяка = окружной силе колеса), так и от осевого "снятия" венца (окружная сила червяка = осевой силе колеса).
Во всех рассмотренных конструкциях чистовое обтачивание заготовки колеса и нарезание зубьев производят после закрепления венца на центре. Центр может состоять из диска и ступицы, размеры их элементов определяют по соотношениям, рекомендуемым для цилиндрических зубчатых колес.
Червячное зацепление чувствительно к осевому смешению колеса. Поэтому в червячных передачах предусматривают регулирование положения средней плоскости венца колеса относительно оси червяка. Регулирование выполняют осевым перемещением вала с закрепленным на нем колесом. Перемещение вала осуществляют постановкой под фланцы привертных крышек подшипников набора тонких ( мм) металлических прокладок или применением винтов, воздействующих на подшипники через нажимные шайбы.
Передаточное число червячной передачи и определяют из условия, что за каждый оборот червяка колесо поворачивается на число зубьев, равное числу витков червяка,
, (1)
где z2 число зубьев колеса червячной передачи; z1 число витков червяка.
Достоинства червячных передач:
- возможность получения больших передаточных чисел (одной парой от 8 до 100, а в кинематических передачах до 1000);
- плавность и бесшумность работы;
- возможность выполнения самотормозящей передачи (ручные грузоподъемные тали);
- демпфирующие свойства снижают уровень вибрации машин;
- возможность получения точных и малых перемещений;
- компактность и сравнительно небольшая масса конструкции передачи.
Недостатки:
- в отличие от эвольвентных зацеплений, где преобладает контактное качение, виток червяка скользит по зубу колеса. Следовательно, червячные передачи имеют "по определению" один фундаментальный недостаток: высокое трение в зацеплении;
- сравнительно невысокий КПД (0,70,92), в самотормозящих передачах до 0,5 вследствие больших потерь мощности на трение в зацеплении;
- сильный нагрев передачи при длительной работе вследствие потерь мощности на трение, который вызывает значительное выделение тепла, которое необходимо отводить от стенок корпуса. Это обстоятельство ограничивает мощность практически применяемых передач пределом 10-20 кВт, зато для малых мощностей эти передачи нашли самое широкое применение;
- необходимость применения для колеса дорогих антифрикционных материалов;
- повышенное изнашивание и заедание;
- необходимость регулировки зацепления.
Кроме того, помимо достоинств и недостатков, червячные передачи имеют важное свойство: движение передаётся только от червяка к колесу, а не наоборот. Никакой вращающий момент, приложенный к колесу, не заставит вращаться червяк. Именно поэтому червячные передачи находят применение в подъёмных механизмах, например в лифтах. Там электродвигатель соединён с червяком, а трос пассажирской кабины намотан на вал червячного колеса во избежание самопроизвольного опускания или падения.
Это свойство не надо путать с реверсивностью механизма. Ведь направление вращения червяка может быть любым, приводя либо к подъёму, либо к спуску той же лифтовой кабины.
Червячные передачи применяют в механизмах деления и подачи зуборезных станков, продольно-фрезерных станков, глубоко расточных станков, грузоподъемных и тяговых лебедках, талях, механизмах подъема грузов, стрел и поворота автомобильных и железнодорожных кранов, экскаваторах, лифтах, троллейбусах и других машинах.
Червячные передачи во избежание их перегрева предпочтительно использовать в приводах периодического, а не непрерывного действия.
Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
В червячной передаче в качестве расчетного модуля принимают осевой модуль червяка т, равный окружному модулю червячного колеса . Значения модуля т червячных передач стандартизированы (табл. 3).
Таблица 3. Значения модуля т и коэффициента диаметра червяка q
т, мм |
1-й ряд |
2,0 |
2,5 |
3,15 |
4,0 |
5,0 |
6,3 |
8,0 |
10,0 |
12,5 |
16,0 |
2-й ряд |
3,0 |
3,5 |
6,0 |
7,5 |
12 |
|
|
|
|
|
|
q |
1-й ряд |
8,0 |
10,0 |
12,5 |
16,0 |
20,0 |
25,0 |
|
|
|
|
2-й ряд |
7,1 |
9,0 |
11,2 |
14,0 |
18,0 |
22,4 |
|
|
|
|
В цилиндрических червячных передачах с архимедовыми червяками шаг червяка р и шаг зубьев червячного колеса равны между собой (рис. 5):
. (2)
Рис. 5. Геометрические параметры червячной передачи
Угол (рис. 6), образованный винтовой линией по делительному цилиндру червяка с плоскостью, перпендикулярной к его оси, называют углом подъема витка червяка на делительном цилиндре:
(3)
или
где число витков червяка; ход винтовой линии червяка.
В червячных передачах вводят q коэффициент диаметра червяка (отношение делительного диаметра червяка d1 к его расчетному модулю т).
Принимают
(4)
Рис.6. Схема образования винтовой линии червяка
Для сокращения числа размеров фрез, требуемых для нарезания червячных колес, рекомендуется придерживаться значений q, предусмотренных стандартом на червячные передачи (см. табл. 1).
Некоторые значения угла подъема витка червяка: 3°34'35"; 4°05'08";4°45'49"; 5°42'38"; 6°20'25"; 7°07'30"; 11°18'36"; 12°31'44"; 14°02'10"; 14°55'53"; 15°56'43"; 18°25'06"; 21°48'05"; 23°57'45"; 26°33'54"; 28°04'21".
Геометрические параметры червяка и червячного колеса (см. рис.5) некорригированной червячной передачи.
Высота витка ; высота зуба червячного колеса ; высота головки винта ; высота головки зуба ; высота ножки витка ; высота ножки зуба колеса ; расчетная толщина витка ; радиальный зазор .
Делительные диаметры:
червяка ;
червячного колеса
Диаметры вершин:
витков червяка ;
зубьев червячного колеса .
Диаметры впадин:
червяка ;
червячного колеса .
Межосевое расстояние .
Условный угол обхвата червяка венцом 25 (см. рис. 5) определяется точками пересечения дуги окружности диаметром с контуром венца;
Конструктивные элементы передачи: длину нарезной части червяка , ширину венца колеса и наружный диаметр колеса определяют в зависимости от числа витков червяка , модуля т и числа зубьев колеса по соотношениям, приведенным в табл. 4.
Таблица 4. Формулы для расчета конструктивных элементов червячной передачи
Число заходов червяка |
Длина нарезанной части червяка |
Ширина венца колеса |
Наружный диаметр колеса |
1 |
|||
2
|
|||
4 |
Основные критерии работоспособности червячных передач и расчет их на прочность
В червячной передаче имеет место молекулярно-механическое изнашивание. При больших контактных напряжениях или удельных давлениях происходит разрушение защитных плёнок и пластическое деформирование, в результате силы молекулярного сцепления приводят к схватыванию. Процесс возникновения и развития повреждений поверхностей трения вследствие схватывания в технике называется заеданием. Ускоренное повышение температуры во время схватывания прямо пропорционально скорости скольжения, коэффициенту трения, контактному напряжению, а также обратно пропорционально суммарной скорости контактирующих точек относительно зоны контакта и приведённому радиусу кривизны.
Работоспособность червячной передачи ограничивается:
1) стойкостью рабочих поверхностей зубьев;
2) изгибной прочностью зубьев;
3) предельной допустимой температурой масла или корпуса;
4) прочностью и жесткостью червяка.
В червячной паре менее прочным элементом является зуб колеса, для которого возможны все виды разрушений и повреждений, встречающиеся в зубчатых передачах.
Виды разрушений зубьев:
- заедание; особо опасно при колесах из твердых безоловянистых бронз и чугуна. Слабой формой заедания является намазывание витков червяка бронзой (сечение зуба постепенно уменьшается, но передача продолжает работать еще длительное время), а опасной формой задир контактирующихся поверхностей в виде борозд параллельно скорости скольжения с последующим катастрофическим изнашиванием и повреждением зубьев колеса частицами, приварившимися к виткам червяка. Этот вид разрушения зубьев встречается наиболее часто в передачах с колесами из безоловянных бронз (алюминиевых) и серых чугунов. Для предупреждения заедания рекомендуют тщательно обрабатывать поверхности витков и зубьев, применять материалы с высокими антифрикционными свойствами, применять масла с противоизносными и противозадирными присадками (И-Г-С-220, И-Т-С-320, И-Т-Д-100).
- усталостное выкрашивание; в передачах с колесами из оловянных бронз (мягкие материалы) наиболее опасно усталостное выкрашивание рабочих поверхностей зубьев колеса.
- изнашивание зубьев; происходит по той же причине, что и заедание, а также при ухудшении условий смазывания (загрязнении смазочного материала), точности монтажа, длительной работе с частыми пусками и остановками передачи, а также от значений контактных напряжений;
- изломы зубьев колеса; наблюдаются после их изнашивания, чаще при наличии динамических нагрузок.
К эксплутационным требованиям червячной пары можно отнести: показатели надёжности, износостойкости, сопротивление усталости, контактную жёсткость, виброустойчивость, коррозионную стойкость и прочность сцепления покрытий. Например, хромирование витков червяка существенно повышает стойкость к заеданию и износу червячной пары. В этих кинематических парах отношение скорости скольжения к суммарной скорости больше единицы, поэтому наилучшие результаты достигаются сочетанием высокотвёрдой поверхности витка с антифрикционным венцом колеса. Обеспечение этих свойств и качеств технологическими методами связано с показателями геометрического и физико-термического характера. Качество деталей по прочности размеров, шероховатость и микронеровность соприкасающихся поверхностей влияют на износостойкость. Например, важно среднее арифметическое отклонение профиля, средний шаг неровностей профиля по средней линии, относительная опорная длина профиля. Поверхностный слой любой детали отличается от основного материала и представляет собой своеобразный композит. Поверхностной твёрдости добиваются созданием защитных оксидных плёнок, легированием, ионной имплантацией.
Одной из причин повышенного изнашивания зубьев червячного колеса (и заедания) является скольжение витков червяка по зубьям червячного колеса при отсутствии разделяющей их масляной пленки. Скорость скольжения направлена по касательной к винтовой линии делительного диаметра червяка и определяется из параллелограмма скоростей (см. рис. 7):
где и окружные скорости червяка и колеса, м/с; , мм; - угловая скорость червяка, рад/с.
Рис. 7. Скольжение в червячной передаче
Червячные передачи так же, как и зубчатые, рассчитывают по контактным напряжениям и напряжениям изгиба.
В связи с тем, что в червячных передачах при работе происходит выделение большого количества тепла (что, в свою очередь, ухудшает условия смазывания, увеличивает изнашивание и опасность заедания), закрытые передачи дополнительно рассчитывают на нагрев.
Интенсивность изнашивания червячных передач во многом зависит от величины контактных напряжений, поэтому расчет по контактным напряжениям является основным. Он должен обеспечивать не только отсутствие усталостного выкрашивания зубьев, но и заедания. Для червячных закрытых передач расчет на контактную прочность является, как правило, и расчетом на заедание.
Расчет червячных передач по напряжениям изгиба производят, как проверочный. Значение расчетных напряжений изгиба в зубьях колес, размеры которых найдены из расчета на контактную прочность, как правило, значительно ниже допускаемых.
После проведения этих расчетов производят тепловой расчет передачи.
Расчет червячной передачи на контактную прочность
При аналогии с расчетом зубьев зубчатых колес наибольшие контактные напряжения в зоне зацепления определяют по формуле Герца:
(5)
где приведенный модуль упругости материалов червяка и колеса; приведенный радиус кривизны профилей сцепляющихся зуба колеса и витка червяка; коэффициент Пуассона (для стали, бронзы и чугуна = 0,3); нормальная нагрузка, приходящаяся на единицу длины контактных линии колеса и червяка (принимают )
(6)
где нормальная нагрузка к поверхности зуба червячного колеса и витка червяка (ее условно считают приложенной в полюсе зацепления); вращающий момент на червячном колесе; = 20° угол зацепления; = 40-260 угол подъема линии витка по делительному цилиндру; делительный диаметр червячного колеса. Выражение для приведенного радиуса
(7)
Значение приведенного модуля упругости
(8)
Для червячных передач принимают МПа (стальной червяк); МПа (бронзовое или чугунное колесо).
Подставляя в формулу (5) вместо , , и их значения и решая это уравнение относительно межосевого расстояния , получим формулы для проверочного расчета червячных передач по контактным напряжениям
(9)
где расчетное контактное напряжение в поверхностных слоях зубьев колеса, МПа; коэффициент диаметра червяка; межосевое расстояние, мм; расчетный момент на червячном колесе, Нмм; число зубьев колеса; коэффициент неравномерности нагрузки (при постоянной нагрузке , при переменной нагрузке в зависимости от жесткости червяка ); коэффициент динамической нагрузки (при окружной скорости < 3 м/с принимается , при > 3 м/с - ).
Проверочный расчет.
Допускаемое напряжение получают умножением табличных значений на коэффициент долговечности , т.е.
,
при этом
где циклическая долговечность.
Для постоянной нагрузки ; для переменной , где частота вращения червяка, об/мин; срок службы, ч; коэффициент приведения переменной нагрузки к постоянной. Здесь и промежуточные и максимальные моменты; , , , соответствующие этим моментам частота вращения и продолжительность работы.
Значения можно выбрать по табл. 5 и 6.
Таблица 5. Значения , МПа, для оловянистых бронз
Материалы и способ литья |
Твердость поверхности витков червяка |
||||||||
до HRC 45 |
св. HRC 45 |
||||||||
БрО10Ф1, в песчаные формы |
130 |
160 |
|||||||
БрО10Ф1, в кокиль |
190 |
225 |
|||||||
БрОНФ, центробежное |
210 |
250 |
|||||||
Таблица 6. Значение , МПа, для твердых бронз и чугунов по условию стойкости передачи к заеданию |
|||||||||
Червячное колесо червяк |
Скорость скольжения , м/с |
||||||||
0,5 |
1 |
2 |
3 |
4 |
5 |
8 |
|||
БрА9Ж4 закаленная сталь |
250 |
230 |
210 |
180 |
160 |
120 |
90 |
||
СЧ15 или СЧ20 сталь 20 или 20Х (цементованная) |
130 |
115 |
90 |
|
|
|
|
||
СЧ10 или СЧ15 сталь 45 или Стб |
ПО |
90 |
70 |
|
|
|
|
||
Проектировочный расчет. Решая уравнение (9) относительно параметра , (межосевое расстояние), получим формулу проектировочного расчета червячных передач:
(10)
где , мм; , Нмм; МПа.
Меры повышения контактной прочности
1. Увеличение твердости и чистоты обработки рабочей поверхности червяка;
2. Применение червяка с вогнутым профилем витков;
3. Выбор более современного способа отливки венца для оловянного способа;
4. Уменьшение коэффициента диаметра червяка для венцов из безоловянной бронз, латуни, чугунов. Чем скорость скольжения выше, тем меньше опасность заедания.
5. Выбор смазочного материала, способного образовывать на поверхности контакта более прочные пленки.
Расчет червячной передачи на прочность по напряжениям изгиба
Расчет зубьев червячных колес на изгиб аналогичен расчету цилиндрических зубчатых колес.
На изгиб рассчитывают лишь зубья червячного колеса (витки червяка обладают избыточной прочностью на изгиб).
Проверочный расчет. В формулу вводят соответствующие поправки для числового коэффициента, учитывающие увеличение прочности зубьев червячного колеса (примерно на 40%) по сравнению с косозубыми цилиндрическими передачами за счет дугообразной формы зуба червячного колеса.
Прочность на изгиб зуба червячного колеса проверяют по формуле
(11)
где расчетный момент на червячном колесе, Нмм; коэффициент диаметра червяка (см. табл. 1); число зубьев колеса; коэффициент формы зуба для червячных передач (выбирают по эквивалентному числу зубьев из табл. 7); и расчетное и допускаемое напряжения изгиба, МПа.
Таблица.7. Значения коэффициента формы зуба червячного колеса
26 |
1,85 |
35 |
1,64 |
50 |
1,45 |
150 |
1,27 |
28 |
1,80 |
37 |
1,61 |
6 |
1,40 |
300 |
1,24 |
30 |
1,76 |
40 |
1,55 |
80 |
1,34 |
|
|
32 |
1,71 |
45 |
1,48 |
100 |
1,30 |
|
|
По аналогии допускаемое напряжение изгиба
Значения можно выбрать по табл. 8;
Таблица 8. Значения , МПа, для различных способов литья
Материалы
|
Способ литья |
Твердость поверхности витков червяка |
|||
до HRC 45 |
св. HRC 45 |
||||
нереверсивная |
реверсивная |
нереверсивная |
реверсивная |
||
БрОЮФ |
В песчаные формы |
40 |
29 |
50 |
36 |
БрО10Ф1 |
В кокиль |
58 |
42 |
72 |
52 |
БрОНФ |
Центробежное |
65 |
46 |
81 |
57 |
БрАЖ9-4 |
В песчаные формы |
78 |
64 |
100 |
75 |
СЧ10 |
Тоже |
34 |
21 |
42 |
26 |
СЧ15 |
|
38 |
24 |
48 |
30 |
СЧ20 |
|
43 |
27 |
54 |
34 |
СЧ25 |
|
48 |
30 |
60 |
37 |
коэффициент долговечности ();
; ,
где коэффициент приведения переменной нагрузки к постоянной.
Методы повышения изгибной прочности при сохранении габаритов и материалов:
увеличение модуля зацепления с одновременным уменьшением коэффициента диаметра червяка ;
применение положительного инструмента для нарезания зубьев;
повышение точности обработки колес и выбор режима смазывания колес.
Тепловой расчет червячной передачи
В червячной передаче имеют место сравнительно большие потери передаваемой мощности на трение, передача работает с большим тепловыделением.
Если отвод тепла будет недостаточен, передача перегреется. Так как смазочные свойства масла при нагреве резко ухудшаются, то возникает опасность заедания передачи и выхода ее из строя. При установившемся режиме работы червячного редуктора количество тепла, выделяемого в нем, равно количеству отводимого от него тепла. Этот тепловой баланс устанавливается при определенном перепаде температур между находящимся в редукторе маслом и окружающим корпус воздухом. Тепловой режим работы редуктора нормальный, если перепад температур находится в допустимых пределах. Для обеспечения нормальной работоспособности для червячных редукторов (закрытой передачи) производят тепловой расчет. Тепловой расчет червячной передачи при установившемся режиме работы производят на основе теплового баланса, т. е. приравнивания тепловыделения теплоотводу.
Условие нормального теплового режима:
(13)
где температура масла в корпусе редуктора; допускаемая температура масла в корпусе редуктора. Допускаемое значение зависит от сорта масла, его способности сохранять смазывающие свойства при повышении температуры. Для обычных редукторных масел допускают t1= 60...70°С, в исключительных случаях = 90 °С; - определяют из условия теплового баланса, а именно: выделяемое червячной парой тепло должно полностью отводиться в окружающую среду
количество теплоты, выделяемое передачей при непрерывной работе; количество теплоты, отводимое свободной поверхностью корпуса передачи за то же время.
Количество теплоты, выделяющейся в передаче в секунду, или тепловая мощность
где P1 мощность на входном валу передаваемая червяком, Вт; КПД передачи
Количество тепла, отводимое через поверхность охлаждения корпуса редуктора,
где А площадь поверхности корпуса передачи, соприкасающаяся с воздухом, м2. В площадь поверхности охлаждения А входит площадь наружной поверхности корпуса редуктора без днища. Если корпус снабжен охлаждающими ребрами, то учитывают только 50% площади их поверхности.; внутренняя температура редуктора или температура масла, °С; температура окружающей среды (воздуха), °С (при проектировании обычно принимают = 20°С); коэффициент теплопередачи количество теплоты, передаваемое в окружающую среду с единицы поверхности в 1 с при разности. температур в 1°С, Вт/(м2 °С). При нормальной циркуляции воздуха вокруг корпуса = (14-17,5) Вт/(м2 0С), при плохой = (8-10,5) Вт/(м2 °С).
Итак, на основании теплового баланса можно определить температуру масла
(14)
Тепловой расчет червячной передачи выполняют как проверочный.
При необходимо предпринять меры от перегрева.
Способы предотвращения перегрева
1. изменение корпуса (ребра жесткости, которые выбирают из условия лучшего обтекания воздухом). При естественном охлаждении в соответствии с тем, что нагретый воздух идет вверх, ребра располагают вертикально;
2. установка вентилятора на валу червяка (ребра располагают вдоль направления потока);
3. установка масляного радиатора;
4. установка в масляную ванну змеевика, по которому пропускают проточную воду.
Глубина погружения колес в масло не должна превышать высоты зуба или витка червяка для быстроходных колес и 1/3 радиуса тихоходных колес. Рекомендуемое количество масла, заливаемого в корпус, 0,5...0,7 л на 1 кВт передаваемой мощности. Сорт масла выбирают по справочникам в зависимости от окружной скорости и нагруженности передачи.
Рис. 8. Червячный редуктор с нижним расположением червяка:
1 вентилятор; 2 ведущий вал редуктора
КПД червячной передачи
КПД закрытой червячной передачи должен учитывать потери в зацеплении и подшипниках, а также потери на разбрызгивание, перемешивание масла и др. Роль смазывания в червячной передаче еще важнее, чем в зубчатой, так как в зацеплении происходит скольжение витков червяка вдоль контактных линий зубьев червячного колеса. В случае несовершенства смазывания резко возрастают потери, возможно повреждение зубьев.
Червячная передача является зубчато-винтовой и имеет потери, свойственные как зубчатой передаче, так и передаче винт гайка.
Среднее значение КПД при однозаходном червяке можно принимать равным 0,7 - 0,75; при двухзаходном 0,75 - 0,82; трех- и четырехзаходном 0,83 - 0,92. Общий КПД для закрытой червячной передачи можно определить по формуле (уточненный расчет)
где степень п число пар подшипников; КПД, учитывающий потери в одной паре; КПД, учитывающий потери в подшипниках, на разбрызгивание и перемешивание масла; КПД, учитывающий дополнительные потери в зацеплении аналогичны потерям в зубчатых передачах; - КПД, учитывающий основные потери в зацеплении как в винтовой паре.
Значения угла трения в зависимости от скорости скольжения приведены в табл. 9. Они получены экспериментально для червячных передач на опорах с подшипниками качения, т.е. в этих значениях учтены потери мощности в подшипниках качения, в зубчатом зацеплении и на размешивание и разбрызгивание масла. Величина значительно снижается при увеличении , так как при больших скоростях в зоне контакта создаются благоприятные условия для образования масляного слоя, разделяющего витки червяка и зубья колеса и уменьшающего потери в зацеплении.
Таблица 9. Значения угла трения в червячной передаче при различных скоростях скольжения
, м/с |
, м/с |
, м/с |
|||
1,0 1,5 2,0 |
2030'...З010' 2°20'...2050' 20 00'...2°30' |
2,5 3,0 4,0 |
1°40'...2°20' 1030...2°00 1°20'...1°40' |
7.0 10 15 |
1000'...1030' 0°55'...1020' 0050'...1°10' |
Примечание. Меньшие значения для передач с венцом колеса из оловянной бронзы, большие из безоловянной бронзы и чугуна.